

## Conventions Used in This Manual

Operating buttons are enclosed by square brackets [ ]; e.g., [ENTER]
Reference pages are indicated by (p. **).

The following symbols are used.
NOTE
This indicates an important note; be sure to read it.
MEMO This indicates a memo regarding the setting or function; read it as desired.
This indicates a useful hint for operation; read it as necessary.
cf.
This indicates information for your reference; read it as necessary.
TERM
This indicates an explanation of a term; read it as necessary

Before using this unit, carefully read the sections entitled: "USING THE UNIT SAFELY" and "IMPORTANT NOTES" (p. 3; p. 5). These sections provide important information concerning the proper operation of the unit. Additionally, in order to feel assured that you have gained a good grasp of every feature provided by your new unit, Owner's manual should be read in its entirety. The manual should be saved and kept on hand as a convenient reference.

All rights reserved. No part of this publication may be reproduced in any form without the written permission of ROLAND CORPORATION.

About $\triangle$ WARNING and $\triangle$ CAUTION Notices

| WARNING | Used for instructions intended to alert the <br> User to the risk of death or severee iniury <br> should the unit be used improperly. |
| :--- | :--- |
| CAUTION | Used for instructions intended to alert the <br> User to the risk of iniury or material <br> damage should the unit be used <br> improperly. <br> * Material damage refers to damage or <br> other adverse effects caused with <br> respect to the home and all its <br> furnishings, as well to domestic animals <br> or pets. |

About the Symbols

| The $\triangle$ symbol alerts the user to important instructions or |
| :--- | :--- |
| warnings.The specific meaning of the symbol is |
| determined by the design contained within the triangle. |
| In the case of the symbol at left, it is used for general |
| cautions, warnings, or alerts to danger. | warnings. The specific meaning of the symbol is determined by the design contained within the triangle. In the case of the symbol at left, it is used for genera The $Q$ symbol alerts the user to items that must never be carried out (are forbidden). The specific thing that must not be done is indicated by the design contained within the circle. In the case of the symbol at left, it means that the unit must never be disassembled.

The symbol alerts the user to things that must be carried out. The specific thing that must be done is indicated by the design contained within the circle. In the case of the symbol at left, it means that the power-cord plug must be unplugged from the outlet.

## ALWAYS OBSERVE THE FOLLOWING

## $\triangle$ WARNING

- Do not open or perform any internal modifications on the unit or its AC adaptor. (The only exception would be where this manual provides specific instructions which should be followed in order to put in place user-installable options; see p. 18.)
- Do not attempt to repair the unit, or replace parts within it (except when this manual provides specific instructions directing you to do so). Refer all servicing to your retailer, the nearest Roland Service Center, or an authorized Roland distributor, as listed on the "Information" page.
- Never use or store the unit in places that are:
- Subject to temperature extremes (e.g., direct sunlight in an enclosed vehicle, near a heating duct, on top of heat-generating equipment); or are
- Damp (e.g., baths, washrooms, on wet floors); or are
- Humid; or are
- Exposed to rain; or are
- Dusty; or are
- Subject to high levels of vibration.
- This unit should be used only with a rack or stand that is recommended by Roland.

- When using the unit with a rack or stand recommended by Roland, the rack or stand must be carefully placed so it is level and sure to remain stable. If not using a rack or stand, you still need to make sure that any location you choose for placing the unit provides a level surface that will properly support the unit, and keep it from wobbling.


## WARNING

- Be sure to use only the $A C$ adaptor supplied with the unit. Also, make sure the line voltage at the installation matches the input voltage specified on the AC adaptor's body. Other AC adaptors may use a different polarity, or be designed for a different voltage, so their use could result in damage, malfunction, or electric shock.
- Use only the attached power-supply cord. Also, the supplied power cord must not be used with any other device.
- Do not excessively twist or bend the power cord, nor place heavy objects on it. Doing so can damage the cord, producing severed elements and short circuits. Damaged cords are fire and shock hazards!
- This unit, either alone or in combination with an amplifier and headphones or speakers, may be capable of producing sound levels that could cause permanent hearing loss. Do not operate for a long period of time at a high volume level, or at a level that is uncomfortable. If you experience any hearing loss or ringing in the ears, you should immediately stop using the unit, and consult an audiologist.
- Do not allow any objects (e.g., flammable material, coins, pins); or liquids of any kind (water, soft drinks, etc.) to penetrate the unit.


## WARNING

- Immediately turn the power off, remove the AC adaptor from the outlet, and request servicing by your retailer, the nearest Roland Service Center, or an authorized Roland distributor, as listed on the "Information" page when:
- The AC adaptor, the power-supply cord, or the plug has been damaged; or
- If smoke or unusual odor occurs; or
- Objects have fallen into, or liquid has been spilled onto the unit; or
- The unit has been exposed to rain (or otherwise has become wet); or
- The unit does not appear to operate normally or exhibits a marked change in performance.
- In households with small children, an adult should provide supervision until the child is capable of following all the rules essential for the safe operation of the unit.
- Protect the unit from strong impact.
(Do not drop it!)

- Do not force the unit's power-supply cord to share an outlet with an unreasonable number of other devices. Be especially careful when using extension cords-the total power used by all devices you have connected to the extension cord's outlet must never exceed the power rating (watts/ amperes) for the extension cord. Excessive loads can cause the insulation on the cord to heat up and eventually melt through.
- Before using the unit in a foreign country, consult with your retailer, the nearest Roland Service Center, or an authorized Roland distributor, as listed on the "Information" page.
- Always turn the unit off and unplug the $A C$ adaptor before attempting installation of the circuit board (model no. SRX series; p. 18).
- DO NOT play a CD-ROM disc on a conventional audio CD player. The resulting sound may be of a level that could cause permanent hearing loss. Damage to speakers or other system components may result.


## CAUTION

- The unit and the AC adaptor should be located so their location or position does not interfere with their proper ventilation.
- This (JUNO-STAGE) for use only with Roland stand KS-12. Use with other stands is capable of resulting in instability causing possible injury.


## CAUTION

- Always grasp only the plug on the AC adaptor cord when plugging into, or unplugging from, an outlet or this unit.
- At regular intervals, you should unplug the AC adaptor and clean it by using a dry cloth to wipe all dust and other accumulations away from its prongs. Also, disconnect the power plug from the power outlet whenever the unit is to remain unused for an extended period of time. Any accumulation of dust between the power plug and the power outlet can result in poor insulation and lead to fire.
- Try to prevent cords and cables from becoming entangled. Also, all cords and cables should be placed so they are out of the reach of children.

- Never climb on top of, nor place heavy objects on the unit.

- Never handle the AC adaptor or its plugs with wet hands when plugging into, or unplugging from, an outlet or this unit.
- Before moving the unit, disconnect the AC adaptor and all cords coming from external devices.
- Before cleaning the unit, turn off the power and unplug the AC adaptor from the outlet (p. 22).
- Whenever you suspect the possibility of lightning in your area, disconnect the AC adaptor from the outlet.
- Install only the specified circuit board(s) (model no. SRX series). Remove only the specified screws (p. 18).
- Keep any screws you may remove and the included hexagon wrench in a safe place out of children's reach, so there is no chance of them being swallowed accidentally.
- Always turn the phantom power off when connecting any device other than condenser microphones that require phantom power. You risk causing damage if you mistakenly supply phantom power to dynamic microphones, audio playback devices, or other devices that don't require such power. Be sure to check the specifications of any microphone you intend to use by referring to the manual that came with it.
(This instrument's phantom power: 48V DC, 10 mA Max)


## IMPORTANT NOTES

## Power Supply

- Do not connect this unit to same electrical outlet that is being used by an electrical appliance that is controlled by an inverter (such as a refrigerator, washing machine, microwave oven, or air conditioner), or that contains a motor. Depending on the way in which the electrical appliance is used, power supply noise may cause this unit to malfunction or may produce audible noise. If it is not practical to use a separate electrical outlet, connect a power supply noise filter between this unit and the electrical outlet.
- The AC adaptor will begin to generate heat after long hours of consecutive use. This is normal, and is not a cause for concern.
- Before connecting this unit to other devices, turn off the power to all units. This will help prevent malfunctions and/ or damage to speakers or other devices.


## Placement

- Using the unit near power amplifiers (or other equipment containing large power transformers) may induce hum. To alleviate the problem, change the orientation of this unit; or move it farther away from the source of interference.
- This device may interfere with radio and television reception. Do not use this device in the vicinity of such receivers.
- Noise may be produced if wireless communications devices, such as cell phones, are operated in the vicinity of this unit. Such noise could occur when receiving or initiating a call, or while conversing. Should you experience such problems, you should relocate such wireless devices so they are at a greater distance from this unit, or switch them off.
- Do not expose the unit to direct sunlight, place it near devices that radiate heat, leave it inside an enclosed vehicle, or otherwise subject it to temperature extremes. Excessive heat can deform or discolor the unit.
- When moved from one location to another where the temperature and/or humidity is very different, water droplets (condensation) may form inside the unit. Damage or malfunction may result if you attempt to use the unit in this condition. Therefore, before using the unit, you must allow it to stand for several hours, until the condensation has completely evaporated.
- Do not allow objects to remain on top of the keyboard. This can be the cause of malfunction, such as keys ceasing to produce sound.
- Depending on the material and temperature of the surface on which you place the unit, its rubber feet may discolor or mar the surface.
You can place a piece of felt or cloth under the rubber feet to prevent this from happening. If you do so, please make sure that the unit will not slip or move accidentally.


## Maintenance

- For everyday cleaning wipe the unit with a soft, dry cloth or one that has been slightly dampened with water. To remove stubborn dirt, use a cloth impregnated with a mild, nonabrasive detergent. Afterwards, be sure to wipe the unit thoroughly with a soft, dry cloth.
- Never use benzine, thinners, alcohol or solvents of any kind, to avoid the possibility of discoloration and/or deformation.


## Repairs and Data

- Please be aware that all data contained in the unit's memory may be lost when the unit is sent for repairs. Important data should always be backed up on a USB memory, or written down on paper (when possible). During repairs, due care is taken to avoid the loss of data. However, in certain cases (such as when circuitry related to memory itself is out of order), we regret that it may not be possible to restore the data, and Roland assumes no liability concerning such loss of data.


## Additional Precautions

- Please be aware that the contents of memory can be irretrievably lost as a result of a malfunction, or the improper operation of the unit. To protect yourself against the risk of loosing important data, we recommend that you periodically save a backup copy of important data you have stored in the unit's memory on a USB memory.
- Unfortunately, it may be impossible to restore the contents of data that was stored in the unit's memory or on a USB memory once it has been lost. Roland Corporation assumes no liability concerning such loss of data.
- Use a reasonable amount of care when using the unit's buttons, sliders, or other controls; and when using its jacks and connectors. Rough handling can lead to malfunctions.
- Never strike or apply strong pressure to the display.
- A small amount of noise may be heard from the display during normal operation.
- When connecting / disconnecting all cables, grasp the connector itself-never pull on the cable. This way you will avoid causing shorts, or damage to the cable's internal elements.
- To avoid disturbing your neighbors, try to keep the unit's volume at reasonable levels. You may prefer to use headphones, so you do not need to be concerned about those around you (especially when it is late at night).
- When you need to transport the unit, package it in the box (including padding) that it came in, if possible. Otherwise, you will need to use equivalent packaging materials.
- Use only the specified expression pedal (EV-5; sold separately). By connecting any other expression pedals, you risk causing malfunction and/or damage to the unit.
- Some connection cables contain resistors. Do not use cables that incorporate resistors for connecting to this unit. The use of such cables can cause the sound level to be extremely low, or impossible to hear. For information on cable specifications, contact the manufacturer of the cable.
- Unauthorized duplication, reproduction, hiring, and lending prohibited.
- The usable range of D Beam controller will become extremely small when used under strong direct sunlight. Please be aware of this when using the D Beam controller outside.
- The sensitivity of the D Beam controller will change depending on the amount of light in the vicinity of the unit. If it does not function as you expect, adjust the sensitivity as appropriate for the brightness of your location.


## Using USB Memory

- Carefully insert the USB memory all the way in-until it is firmly in place.
- Never touch the terminals of the USB memory. Also, avoid getting the terminals dirty.
- USB memory are constructed using precision components; handle the cards carefully, paying particular note to the following.
- To prevent damage to the cards from static electricity, be sure to discharge any static electricity from your own body before handling the cards.
- Do not touch or allow metal to come into contact with the contact portion of the cards.
- Do not bend, drop, or subject cards to strong shock or vibration.
- Do not keep cards in direct sunlight, in closed vehicles, or other such locations (storage temperature: -25 to $85^{\circ} \mathrm{C}$ ).
- Do not allow cards to become wet.
- Do not disassemble or modify the cards.


## Handling CD-ROMs

- Avoid touching or scratching the shiny underside (encoded surface) of the disc. Damaged or dirty CD-ROM discs may not be read properly. Keep your discs clean using a commercially available CD cleaner.


## Copyright

- Recording, duplication, distribution, sale, lease, performance, or broadcast of copyrighted material (musical works, visual works, broadcasts, live performances, etc.) belonging to a third party in part or in whole without the permission of the copyright owner is forbidden by law.
- Do not use this unit for purposes that could infringe on a copyright held by a third party. We assume no responsibility whatsoever with regard to any infringements of thirdparty copyrights arising through your use of this unit.
* Microsoft and Windows are registered trademarks of Microsoft Corporation.
* The screen shots in this document are used in compliance with the guidelines of the Microsoft Corporation.
* Windows ${ }^{\circledR}$ is known officially as: "Microsoff ${ }^{\circledR}$ Windows ${ }^{\circledR}$ operating system."
* Apple and Macintosh are registered trademarks of Apple Inc.
* Mac OS is a trademark of Apple Inc.
* IBM and IBM PC are registered trademark of International Business Machines Corporation.
* Pentium is a registered trademark of Intel Corporation.
* MMX is a trademark of Intel Corporation.
* lomega is a registered trademark of lomega Corporation.
* All product names mentioned in this document are trademarks or registered trademarks of their respective owners.
* VST is a trademark of Steinberg Media Technologies AG.
* MPEG Layer-3 audio compression technology is licensed from Fraunhofer IIS Corporation and THOMSON Multimedia Corporation.


## Contents

USING THE UNIT SAFELY ..... 3
IMPORTANT NOTES ..... 5
Introduction ..... 13
Panel Descriptions ..... 14
Front Panel ..... 14
Rear Panel. ..... 16
Getting Ready ..... 18
Installing a Wave Expansion Board ..... 18
Cautions When Installing a Wave Expansion Board ..... 18
How to Install a Wave Expansion Board ..... 18
Checking the Installed Wave Expansion Board ..... 19
Connections ..... 19
Connecting the AC Adaptor ..... 19
Connecting the External Equipment ..... 20
Connecting Pedals ..... 21
Connecting a Portable Audio Device. ..... 21
Turning On/Off the Power ..... 22
Turning Off the Power ..... 22
Adjusting the Volume Level ..... 22
Adjusting the Display Contrast ([LCD CONTRAST] Knob) ..... 22
Using the Included USB Memory Protector ..... 22
Quick Start ..... 23
Listening to the Demo Songs ..... 24
Playing the Keyboard ..... 25
Playing in Piano Mode ([PIANO MODE]) ..... 25
Selecting Sounds ..... 28
Selecting Sounds (Patches) ..... 28
Playing Various Sounds (Category Group Buttons) ..... 28
Selecting Sounds from the List ..... 29
Registering and Selecting Frequently Used Sounds (FAVORITE) ..... 30
Auditioning the Sounds ([PREVIEW]) ..... 30
Playing Multiple Sounds ..... 31
Playing Different Sounds in the Left and Right Areas of the Keyboard ([SPLIT]) ..... 31
Changing the Split Point ..... 32
Playing Layered Sounds ([DUAL]). ..... 32
Modifying the Sound in Real Time ..... 33
Using the Pitch Bend/Modulation Lever to Modify the Sound ..... 33
Changing the Pitch in Steps of an Octave (OCTAVE [DOWN] [UP]) ..... 33
Changing the Pitch in Semitone Steps ([TRANSPOSE]) ..... 34
Using the Knobs to Modify the Sound (SOUND MODIFY) ..... 35
Reference ..... 37
Chapter 1. Overview ..... 38
How the JUNO-STAGE is Organized ..... 38
Basic Structure ..... 38
Patch Mode and Performance Mode ..... 38
About the Effects. ..... 40
About Memory ..... 41
Basic Operation of the JUNO-STAGE. ..... 42
Switching the Sound Generator Mode. ..... 42
About the Function Buttons ..... 43
Editing a Value ..... 43
Entering a Value ([NUMERIC]) ..... 44
Assigning a Name. ..... 44
Chapter 2. Selecting Sounds ..... 45
Selecting Patches ..... 45
Selecting Patches in Patch Mode ..... 45
Using the VALUE Dial to Select a Patch ..... 45
Selecting Patches from the Patch List. ..... 46
Selecting Patches by Number ([NUMERIC]) ..... 46
Using a Pedal to Select Patches (PATCH SELECT Pedal) ..... 46
Auditioning a Patch ([PREVIEW]) ..... 47
Registering and Calling Up Favorite Patches or Performances (FAVORITE) ..... 47
Registering a Favorite Patch or Performance ..... 47
Calling Up a Favorite Sound ..... 48
Registering, Calling Up, or Editing Favorites in a List ..... 48
Switching Favorites with a Single Button ([FAVORITE UP/ASSIGNABLE]) ..... 48
Using a Pedal to Select Favorites (PATCH SELECT Pedal) ..... 48
Playing the JUNO-STAGE in Performance Mode ..... 49
Selecting a Performance ..... 49
Selecting a Part ..... 50
Selecting a Patch for Each Part. ..... 50
Playing Layered Sounds (DUAL) ..... 51
Dividing the Keyboard into Two Areas to Play Separate Sounds (SPLIT) ..... 51
Changing the Split Point ..... 51
Chapter 3. Versatile Performance Functions ..... 52
Changing the Keyboard Settings ..... 52
Changing the Pitch in One-octave Steps (OCTAVE [DOWN] [UP]) ..... 52
Transposing the Pitch in Semitone Steps ([TRANSPOSE]) ..... 52
Changing the Temperament to an Arabian or Other Scale (Scale Tune) ..... 53
Adjusting the Keyboard Touch ..... 54
Changing the Pitch in Real Time (Pitch Bend/Modulation Lever) ..... 54
Assigning Functions to [S1] [S2] ..... 55
Controlling Portamento ..... 55
Playing Monophonically ..... 55
Simulating a Guitarist's Double-bending ..... 55
Switching the Speed of the Organ Rotary Effect ..... 55
Using the D Beam Controller to Modify the Sound ..... 56
SOLO SYNTH ..... 57
ACTIVE EXPRESSION ..... 57
ASSIGNABLE ..... 57
Using the Knobs to Modify the Sound (SOUND MODIFY) ..... 58
Disabling the Knobs ([LOCK]). ..... 59
Assigning a Function to the Pedal (Control Pedal) ..... 59
Playing Arpeggios ([ARPEGGIO]) ..... 60
About Arpeggio Function ..... 60
Playing by Using Arpeggios ..... 60
Arpeggio Settings ..... 61
Creating an Arpeggio Style ..... 62
Saving an Arpeggio Style You've Created (WRITE) ..... 63
Using the Chord Memory Function ([CHORD MEMORY]) ..... 64
About the Chord Memory Function ..... 64
Performing with the Chord Memory Function ..... 64
Creating Your Own Chord Forms ..... 65
Saving the Chord Forms You Have Created (WRITE) ..... 65
Using the V-LINK ([V-LINK]) ..... 66
What is V-LINK? ..... 66
Connection Example ..... 66
Turning the V-LINK ON/OFF ..... 66
V-LINK Settings (V-LINK SETUP) ..... 67
Chapter 4. Using the Song Player ..... 68
Playing Back Music Files (SONG PLAYER) ..... 68
SMF/Audio Files That Can Be Played ..... 69
Selecting and Playing a Song ([SONG LIST]) ..... 69
Selecting and Playing a Playlist ..... 71
Changing the Song Order ..... 72
Deleting a Song From the Playlist. ..... 72
Saving the Settings of the Playlist (WRITE) ..... 73
Performing Along With a Song ([C. CANCEL/MINUS ONE]) ..... 73
Connecting a Portable Audio Device (EXT INPUT jack) ..... 73
Playing Rhythm Patterns ([RHYTHM PATTERN]) ..... 74
Playing Rhythm Patterns ..... 74
Editing a Rhythm Pattern ..... 75
Creating a Rhythm Pattern ..... 76
Saving a Rhythm Pattern (WRITE). ..... 77
Creating a Rhythm Group. ..... 77
Saving a Rhythm Group You've Created (WRITE) ..... 78
Listening to a Click in Time with the Tempo (SONG/CLICK OUT jack) ..... 78
Chapter 5. Applying Effects to the Sound ..... 79
Applying Effects ..... 79
How Effects are Handled in Each Mode ..... 79
Turning Effects On/Off (Effect Switch) ..... 79
Making Effect Settings ..... 79
Applying Effects in Patch Mode ..... 80
Signal Flow and Parameters (EFFECT ROUTING) ..... 80
Applying Effects in Performance Mode ..... 82
Signal Flow and Parameters (EFFECT ROUTING) ..... 82
Multi-Effect Settings (MFX 1-3) ..... 84
Controlling a Multi-Effect via MIDI (MFX 1-3 CTRL) ..... 84
Specifying How Multi-Effects are Combined (MFX STRUCTURE) ..... 86
Chorus Settings (CHORUS) ..... 86
Reverb Settings (REVERB) ..... 86
Chapter 6. Performing with a Microphone ..... 87
Connecting a Mic ..... 87
Adjusting the Volume of the Mic ..... 87
Applying Reverb to the Mic ..... 87
Using a Condenser Mic. ..... 87
Using the Vocoder. ..... 87
Chapter 7. Connecting an External MIDI Device. ..... 88
About MIDI ..... 88
About MIDI Connectors ..... 88
MIDI Channels and Multitimbral Sound Generators. ..... 88
Using the JUNO-STAGE as a Master Keyboard (MIDI Controller Mode) ..... 89
Specifying the Transmit Channel ..... 89
Detailed Settings in MIDI Controller Mode ..... 89
Playing the JUNO-STAGE from an External MIDI Device ..... 90
Setting the Receive Channel ..... 90
Setting the Program Change Receive Switch ..... 90
Synchronizing with an External MIDI Device ..... 91
Transmitting Synchronization Data ..... 91
Exchanging MIDI Messages with Your Computer ..... 92
Installing the USB Driver ..... 92
Specifying the USB Driver. ..... 93
Using JUNO-STAGE Editor/Librarian/Playlist Editor. ..... 93
Installing JUNO-STAGE Editor/Librarian/Playlist Editor in Your Computer ..... 93
Chapter 8. Detailed Editing for Patches ..... 94
How to Edit a Patch ..... 94
Editing in a Graphic Display (ZOOM EDIT) ..... 94
Viewing and Editing All Parameters (PRO EDIT) ..... 95
Initializing a Patch ..... 96
Copying Patch (Tone) Settings ..... 96
Saving a Patch You've Created ([WRITE]) ..... 97
Functions of Patch Parameters ..... 98
Settings Common to the Entire Patch ..... 98
Modifying Waveforms/Pitch/Pitch Envelope ..... 103
Modifying the Brightness of a Sound with a Filter (TVF/TVF Envelope) ..... 106
Adjusting the Volume (TVA/TVA Envelope) ..... 108
Matrix Control Settings/Miscellaneous Settings ..... 110
Modulating Sounds/Output Setting ..... 113
Setting Effects for a Patch (Effects/MFX/MFX Control/Chorus/Reverb) ..... 115
Detailed Settings for Piano Mode ..... 116
Adjusting the Keyboard Touch (Key Touch) ..... 117
Changing the degree to which the lid is open (Lid State) ..... 117
Adjusting the Amount of Resonance (Resonance) ..... 118
Selecting an Effect for the Electric Piano (EFFECT) ..... 118
Saving Your Piano Mode Settings ..... 119
Chapter 9. Detailed Settings for a Rhythm Set ..... 120
Editing a Rhythm Set ..... 120
Editing in a Graphic Display (ZOOM EDIT) ..... 120
Viewing and Editing All Parameters (PRO EDIT) ..... 121
Initializing a Rhythm Set ..... 122
Copying Rhythm Set (Rhythm Tone) Settings ..... 122
Saving a Rhythm Set You've Created ([WRITE]) ..... 123
Functions of Rhythm Set Parameters ..... 124
Settings Common to the Entire Rhythm Set ..... 124
Modifying Waveforms/Pitch/Pitch Envelope ..... 125
WAVE MIX Parameters ..... 127
Modifying the Brightness of a Sound with a Filter (TVF/TVF Envelope) ..... 128
Adjusting the Volume (TVA/TVA Envelope) ..... 130
Output Settings (OUTPUT) ..... 131
Setting Effects for a Rhythm Set (Effects/MFX/MFX Control/Chorus/Reverb) ..... 131
Chapter 10. Detailed Editing for Performances ..... 132
How to Edit a Performance ..... 132
Initializing a Performance ..... 132
Editing the Patch That's Assigned to a Part ..... 133
Saving a Performance You've Created ([WRITE]) ..... 133
Performance Edit Screens and Parameters ..... 134
Selecting the Parts that will Produce Sound (Keyboard Switch) ..... 134
Specifying the Range of Each Part (Key Range) ..... 134
Making Settings for the D Beam Controller and Other Controllers ..... 135
Enabling/Disabling Reception of Messages for Each MIDI Channel (Part) ..... 138
Adjusting Sound Settings Such as Volume or Pan (PART MIXER) ..... 139
Silencing Specific Parts (Mute) ..... 139
Detailed Settings for Each Part (PART VIEW) ..... 140
Chapter 11. Other Settings ..... 144
Saving User Data to USB Memory ..... 144
Types of Data that can be Saved ..... 144
Saving Data to USB Memory (User Backup) ..... 144
Restoring Saved Data from USB Memory Back into the JUNO-STAGE (User Restore) ..... 144
System Settings ..... 145
Procedure for Making System Settings ..... 145
Saving the Changes You've Made to the System Settings (WRITE) ..... 145
Functions of System Parameters ..... 146
System Menu [2 (GENERAL)] ..... 146
System Menu [3 (KBD/CTRL)]. ..... 147
System Menu [4 (MIDI/SYNC)] ..... 150
System Menu [5 (CLICK/PLAYER)] ..... 151
System Menu [6 (D BEAM)] ..... 152
Detailed Settings for the MIC INPUT (MIC Input Setting) ..... 154
Detailed Settings for Minus-One (Minus One Setting) ..... 154
Utility. ..... 155
Backing Up User Data (User Backup) ..... 155
Restoring Backed-Up Data (User Restore) ..... 155
Returning to the Factory Settings (Factory Reset) ..... 155
Initializing USB Memory (USB Memory Format) ..... 155
Playing the Demo Songs ..... 156
Appendices ..... 157
Troubleshooting ..... 158
Error Messages ..... 162
Effects List ..... 163
Performance List. ..... 192
Patch List ..... 193
Rhythm Set List ..... 200
Waveform List ..... 209
Arpeggio Style List ..... 213
Rhythm Group List ..... 214
Rhythm Pattern List ..... 215
MIDI Implementation ..... 217
MIDI Implementation Chart ..... 244
Specifications ..... 245
Index. ..... 246

## Introduction

## Panel Descriptions

## Front Panel



## 1 USB MEMORY Connector

You can connect USB memory (sold separately) to this connector.

* Carefully insert the USB memory all the way in-until it is firmly in place.
* Connect the USB memory after you turn on the JUNO-STAGE's power. Never disconnect the USB memory while the JUNO-STAGE is powered up.


## 2 VOLUME Knob

Adjusts the overall volume that is output from the rear panel OUTPUT jacks and PHONES jack (p. 22).

## 3 D BEAM Controller

Turns the D Beam controller on/off. You can apply a variety of effects to the sound by moving your hand above the D Beam controller (p. 56).

## [SOLO SYNTH]

The D Beam will function as a monophonic synthesizer (p. 57).

## [ACTIVE EXPRESS]

The D Beam will control active expression (p. 57).

## [ASSIGNABLE]

You can assign a variety of parameters or functions to the D Beam to control the sounds in real time (p. 57).

## 4 MIC IN

## [REVERB]

Turns on/off the reverb that is applied to the sound from MIC INPUT jack.

## MIC VOLUME Knob

Adjusts the volume of the input from MIC INPUT jack (p. 87).

## 5 MODE

## [PATCH]

Selects Patch mode (p. 45).

## [PERFORM]

Selects Performance mode (p. 49).

## [PART SELECT]

Shows the patch that is selected for each part (p.50).

## [MENU]

Displays a menu where you can make system settings and use utility functions.

## [MIDI CONTROLLER]

Selects MIDI Controller mode, allowing you to control an external MIDI sound generator (p. 89).
[PREVIEW]
Hold down this button to audition the currently selected sound (p. 47).
[PIANO MODE]
Selects Piano mode. This provides the most suitable settings for piano playing (p. 25, p. 116).

## 6 KEYBOARD

[SPLIT]
Splits the keyboard into left and right zones, allowing you to play separate sounds (patches) in each (p. 51).

## [DUAL]

Puts the keyboard in "Dual," allowing you to play two sounds (patches) simultaneously as a layer (p. 51).

## [ARPEGGIO]

Turns the arpeggiator on/off.
A setting screen will appear when you press this button to turn it on (p.60).

## [CHORD MEMORY]

Turns the chord memory function on/off.
A setting screen will appear when you press this button to turn it on (p. 64).

## [V-LINK]

Turns V-LINK on/off.
The setting screen will appear when you turn V-LINK on (p. 66).

## [TRANSPOSE]

By holding down [TRANSPOSE] and pressing [-] [+] you can raise or lower the pitch of the keyboard in semitone steps (p. 52).
OCTAVE [DOWN/-] [UP/+]
Transpose the pitch of the keyboard in one-octave units (p. 52).

## 7

[EDIT]
Allows you to make detailed settings for patches, rhythm sets, and effects (p. 79, p. 94, p. 120).
[WRITE]
Saves the modified settings in internal memory (p. 73, p. 97, p. 123, p. 133, p. 145).

## [FAVORITE UP/ASSIGNABLE]

Switches the favorite to the next number (p. 48).
If desired, you may assign a different function to this button (p. 148).

## FAVORITE [ON/OFF]

Turns the Favorite function on/off (p. 47).

## FAVORITE [BANK]

When this button is on, you can use [RHYTHM/0]-[BASS/9] to select
Favorite banks (p. 47).
[NUMERIC]
When this button is on, you can use [RHYTHM/0]-[BASS/9] to enter numeric values (p. 44).


## 8

## Display

This shows information about the operation you're performing.

## PATCH/PERFORM NUMBER Display

This indicates the number of the currently selected patch or performance.

## [RHYTHM/0]-[BASS/9] (Category Group Buttons)

In Patch mode, use these buttons to select the patch category (p. 46).
Function Buttons ([KBD/ORG/2]-[VOCAL/PAD/7])
The six buttons located below the display will execute various functions when you're editing or performing other tasks.
The function of these buttons will depend on the screen you've selected (p. 43).

## 9

## [DEC] [INC]

Use these to modify values. The value will change faster if you hold down one button and press the other.
If you press one of these buttons while holding down [SHIFT], the value will change in larger steps (p. 43).

## 

These buttons move the cursor position up/down/left/right (p. 43).

## VALUE Dial

Use this to modify values. The value will change faster if you turn the VALUE dial while holding down [SHIFT] (p. 43).

## [SHIFT]

This button is used in combination with other buttons to execute various functions.

## [EXIT]

Returns you to the previous screen, or closes the currently open window. In some screens, this button will cancel the currently executing function.

## [ENTER/LIST]

Use this button to confirm a value or execute an operation.
This button is also used to display a list of patches or performances (p. 46, p. 49).

## 10 SONG PLAYER

## EXT INPUT Jack

You can connect your portable audio player or similar device here (p. 73).

* When connection cables with resistors are used, the volume level of equipment connected to the inputs (EXT INPUT) may be low. If this happens, use connection cables that do not contain resistors.
[C. CANCEL/MINUS ONE]
Turns the Center Cancel or Minus-One function on/off (p. 73).
[SONG LIST]
Displays the song list if USB memory is connected.


## LEVEL[ ] ] [ ] ]

Use these buttons to adjust the volume of the rhythm pattern or song (p. 69, p. 74).

## [RHYTHM PATTERN]

Turns the rhythm pattern on/off (p. 74).

## 

If [RHYTHM PATTERN] is off, you can use these buttons to select a song or to move the playback location within a song.
When [RHYTHM PATTERN] is on, these buttons switch rhythm patterns (p. 74).
[STOP]
Stops playback (p. 69, p. 74).
[PLAY]
Starts playback (p. 69, p. 74).

## [TAP TEMPO]

Used to specify the tempo (p. 60, p. 70, p. 74).

## 11 SOUND MODIFY

## [LOCK]

If you turn this button on, the following knobs will be disabled (p. 59).

## ENVELOPE [ATTACK] [RELEASE] Knobs

These knobs modify the sound in real time, or edit parameter values ( p . 58).

## [CUTOFF] [RESONANCE] Knobs

These knobs modify the sound in real time, or edit parameter values (p. 58).

## MASTER EQ [LOW] [HIGH] Knobs

These knobs adjust the overall tone quality.
[LOW] knob adjusts the low frequency range, and [HIGH] knob adjusts the high frequency range (p. 59).

## [REVERB] Knob

Adjusts the amount of reverb applied to the overall sound (p. 59).

## 12

[S1] [S2] (Assignable Switches)
You can assign various parameters or functions to these buttons (p. 55).

## Pitch bend/Modulation Lever

This allows you to control pitch bend or apply vibrato ( p . 54).

Panel Descriptions

Rear Panel


## 1 [LCD CONTRAST] Knob

This knob adjusts the contrast of the display (p. 22).

## 2 MIDI Connectors (OUT, IN)

These connectors can be connected to other MIDI devices to receive and transmit MIDI messages (p. 88).

## 3 <br> PEDAL

## PATCH SELECT Jack

You can connect a pedal switch (such as one from the DP series; sold separately) here, and use it to switch patches or performances (p. 21).

## CONTROL Jack

You can connect an expression pedal (EV-5; sold separately), and use it to control a wide variety of parameters or functions that you can assign

* Use only the specified expression pedal (EV-5; sold separately). By connecting any other expression pedals, you risk causing malfunction and/or damage to the unit.


## HOLD Jack

You can connect a pedal switch (such as one from the DP series; sold separately) here, and use it as a hold pedal (p. 21).
Since this jack can be enabled to support half-pedaling, you can connect a damper pedal (DP-10; sold separately) here and use it to control subtle nuances of pedaling when you're playing piano sounds.

## 4 MIC INPUT Jack

You can connect a mic here (p. 87).
XLR type and phone type plugs are supported.

* This instrument is equipped with balanced (XLR/TRS) type jacks. Wiring diagrams for these jacks are shown below. Make connections after first checking the wiring diagrams of other equipment you intend to connect.


| Dynamic | Phone plug (balanced, unbalanced), XLR <br> * In "MIC INPUT SETTING," turn "Phantom Power" off (p. 154). | Nominal input level: -50 dBu (MIC VOLUME knob at MAX) |
| :---: | :---: | :---: |
| Condenser | XLR ( 48 V phantom power provided) <br> * In "MIC INPUT SETTING," turn "Phantom Power" on (p. 154). |  |

## 5 OUTPUT Jacks (R, L /MONO)

These output the audio signal in stereo to your amp or mixer. If you're outputting in mono, connect only the L/MONO jack (p. 20).

## 6 PHONES Jack

You can connect a set of headphones (sold separately) here (p. 20).

## 7 SONG/CLICK OUT Jack

You can connect a set of headphones (sold separately) here. Alternatively, this can output a stereo audio signal to your amp or mixer. When you're playing back an SMF song, a click will be output at the tempo of the song (p. 78).

## 8 USB MIDI Connector

Use this connector to connect the JUNO-STAGE to your computer via a USB cable (p. 92).

## 9 Cord Hook

Use this to secure the cord from the AC adaptor (p. 19).

## 10 DC IN Jack

Connect the AC adaptor here (p. 19).
You must use only the included AC adaptor.

## 11 [POWER] Switch

This turns the power on/off (p. 22).

## 12 Ground Terminal

Depending on the circumstances of a particular setup, you may experience a discomforting sensation, or perceive that the surface feels granular when you touch this device, microphones connected to it, or the metal portions of other objects, such as guitars. This is due to an infinitesimal electrical charge, which is absolutely harmless. However, if you are concerned about this, connect the ground terminal with an external ground. When the unit is grounded, a slight hum may occur, depending on the particulars of your installation. If you are unsure of the connection method, contact the nearest Roland Service Center.

Unsuitable places for connection

- Water pipes (may result in shock or electrocution)
- Gas pipes (may result in fire or explosion)
- Telephone-line ground or lightning rod (may be dangerous in the event of lightning)


## Getting Ready

## Installing a Wave Expansion Board

Two optional Wave Expansion Boards (SRX series; sold separately) can be installed in the JUNO-STAGE.
Wave Expansion Boards store Wave data, patches, and rhythm sets, and by equipping the JUNO-STAGE with these boards, you can greatly expand your sound palette.

## Cautions When Installing a Wave Expansion Board

- To avoid the risk of damage to internal components that can be caused by static electricity, please carefully observe the following whenever you handle the board.
- Before you touch the board, always first grasp a metal object (such as a water pipe), so you are sure that any static electricity you might have been carrying has been discharged.
- When handling the board, grasp it only by its edges. Avoid touching any of the electronic components or connectors.
- Use a Phillips screwdriver that is suitable for the size of the screw (a number 2 screwdriver). If an unsuitable screwdriver is used, the head of the screw may be stripped.
- To remove the screws, rotate the screwdriver counter-clockwise. To tighten a screw, rotate the screwdriver clockwise.

- When installing a Wave Expansion Board, remove only the specified screw.
- Be careful that the screw you remove do not drop into the interior of the JUNO-STAGE.
- Do not leave the bottom cover removed. After installation of the Wave Expansion Board is complete, be sure to replace the cover.
- Be careful not to cut your hand on the edge of the cover or the opening edge while removing the cover.
- Do not touch any of the printed circuit pathways or connection terminals.
- Never use excessive force when installing a circuit board. If it doesn't fit properly on the first attempt, remove the board and try again.
- When circuit board installation is complete, double-check your work.


## How to Install a Wave Expansion Board

Install the Wave Expansion Board after removing the bottom panel cover.

1. Before installing the Wave Expansion Board, turn off the power of the JUNO-STAGE and all connected devices, and disconnect all cables, including the AC adaptor, from the JUNO-STAGE.
2. From the JUNO-STAGE, remove only the screw shown in the following diagram, and detach the cover.

JUNO-STAGE : bottom


## NOTE

When turning the unit upside-down, get a bunch of newspapers or magazines, and place them under the four corners or at both ends to prevent damage to the buttons and controls. Also, you should try to orient the unit so no buttons or controls get damaged.

## NOTE

When turning the unit upside-down, handle with care to avoid dropping it, or allowing it to fall or tip over.

3. As shown in the following illustration, plug the connector of the Wave Expansion Board into the connector of the relevant slot, and at the same time insert the board holder through the hole of the Wave Expansion Board.

4. Use the Installation tool supplied with the Wave Expansion Board to turn the holders in the LOCK direction, so the board will be fastened in place.

5. Use the screw that you removed in step 2 to fasten the cover back in place.

## Checking the Installed Wave Expansion Board

After installation of the Wave Expansion Board has been completed, check to confirm that the installed board is being recognized correctly.

1. Turn on the power, as described in p. 22.
2. Press [MENU].

The Top Menu window will open.
3. Press [ $\Delta$ ] [ $\boldsymbol{]}$ to select "1. System," and then press [ENTER].
4. Press [7 (INFORMATION)].

The SYSTEM INFORMATION screen appears.

5. Press [2 (SRX)].

Verify that the name of the installed Wave Expansion Board is displayed.

## NOTE

If the name of the board does not appear, it is possible that the board is not being recognized correctly. Turn off the power as described in "Turning Off the Power" (p. 22), and re-install the Wave Expansion Board correctly.
6. To exit the SYSTEM INFORMATION screen, press [EXIT] or [7 (EXIT)].

## Connections

## Connecting the AC Adaptor

1. Make sure that the [POWER] switch is off.
2. Connect the included power cord to the included $A C$ adaptor.
3. Connect the AC adaptor to the JUNO-STAGE's DC IN jack, and plug the power cord into an AC outlet.


## NOTH

- Place the AC adaptor so the side with the indicator (see illustration) faces upwards and the side with textual information faces downwards.
- The indicator will light when you plug the $A C$ adaptor into an $A C$ outlet.
- To prevent the inadvertent disruption of power to your unit (should the plug be pulled out accidentally), and to avoid applying undue stress to the DC IN jack, anchor the power cord using the cord hook, as shown in the illustration.



## Getting Ready

## Connecting the External Equipment

Since JUNO-STAGE contains no amplifier or speakers, you'll need to connect it to audio equipment such as a keyboard amplifier, monitor speaker system or home stereo, or use headphones to hear its sound.
In order to fully experience the JUNO-STAGE's sound, we recommend using a stereo amp/speaker system. If you're using a mono system, however, make your connections to the JUNO-STAGE's OUTPUT L/MONO jack.

* Audio cables are not included with the JUNO-STAGE. You'll need to provide them.


## NOTE

To prevent malfunction and/or damage to speakers or other devices, always turn down the volume, and turn off the power on all devices before making any connections.


## Connecting Pedals

## Hold pedal

Connect a pedal switch (DP series; sold separately) to the rear panel HOLD jack.
While you hold down the pedal, the notes will be sustained (held) even if you take your fingers off the keyboard.


## Control pedal

Connect an expression pedal or pedal switch (EV-5 or DP series; sold separately) to the rear panel CONTROL jack.
You can use the pedal to vary the volume or tonal character, or to control various functions.


## MEMO

For details on pedal settings, refer to "Control Pedal Assign" (p. 147)

## NOTE

You must use the specified expression pedal or pedal switch (EV-5 or DP series; sold separately). Connecting a unit made by another manufacturer may cause the JUNO-STAGE to malfunction.

## Patch select pedal

Connect a pedal switch (sold separately) to the rear panel PATCH SELECT jack.
You can use the pedal to switch patches.
By using a stereo cable (sold separately) you can connect two pedal switches to the PATCH SELECT jack.


MEMO
For details, refer to "Patch Select" (p. 147).

## Connecting a Portable Audio Device

You can connect an MP3 player or other audio device to the EXT INPUT jack on the front panel and listen to the playback.

## Using the Included Cable and Pad

You can use the included cable and pad when connecting your portable audio player to the JUNO-STAGE.
Please read "Notes when using the Music Player Pad" (included with the pad).


## Turning On/Off the Power

## NOTE

Once the connections have been completed (p. 19), turn on power to your various devices in the order specified. By turning on devices in the wrong order, you risk causing malfunction and/ or damage to speakers and other devices.

1. Before turning on the JUNO-STAGE's power, consider these two questions:

- Are all devices connected properly?
- Have the volume controls of the JUNO-STAGE and all connected audio devices been turned to their lowest settings?

2. Turn on the [POWER] switch located on the rear panel of the JUNO-STAGE.

## NOTE

This unit is equipped with a protection circuit. A brief interval (a few seconds) after power up is required before the unit will operate normally.

## NOTE

To ensure proper operation of the pitch bend lever, make sure not to touch the lever when turning the JUNO-STAGE's power on.

3. Turn on the power for any connected audio devices.
4. While playing the keyboard and listening to the sound, slowly increase the volume of the JUNO-STAGE and the volume of the connected equipment until you obtain the desired volume.


## Turning Off the Power

1. Before turning off the power, consider these two questions:

- Have the volume controls of the JUNO-STAGE and all connected audio devices been turned to their lowest settings?
- Have you saved your JUNO-STAGE sounds or other data you've created?

2. Turn off the power for all connected audio devices.
3. Turn off the [POWER] switch of the JUNO-STAGE.

## Adjusting the Volume Level



1. Use the [VOLUME] knob to adjust the volume.

Turning the knob toward the left will decrease the volume, and turning it toward the right will increase the volume.
Also adjust the connected device to an appropriate volume.

## Adjusting the Display Contrast ([LCD CONTRAST] Knob)

The characters in the display may be difficult to view immediately after turning on the JUNO-STAGE's power or after extended use. If this occurs, turn the rear panel [LCD CONTRAST] knob to make the display legible.

## Using the Included USB Memory Protector

You can use the included USB memory protector to prevent theft of the USB memory connected to the JUNO-STAGE.


## Caution

- You must use the included screws.
- You must use the included Allen wrench to tighten or remove the screws. Using a tool that does not match the screw heads will damage them.
- Be careful not to over-tighten the screws. Doing so may damage the screw's head, causing the wrench to rotate uselessly.
- To tighten the screws, turn the Allen wrench clockwise. To loosen the screws, turn the Allen wrench counter-clockwise.

- Keep the removed screws out of the reach of small children to ensure they are not swallowed accidentally.


## Quick Start

## Listening to the Demo Songs

Here's how to listen to the demo songs.

(1) Power up the JUNO-STAGE as described in "Turning On/Off the Power" (p. 22).
(2) Press [PLAY].

The DEMO PLAY screen will appear.
The demo song will begin playing.
DEMO PLAY SONG1
Composing
Copyright (C) 2008 Roland Corporation
(3) To stop playback, press [STOP].

TIP
You can also select a demo song by using the cursor buttons to move the cursor.

(4) Press [EXIT] to exit the DEMO MENU screen.

| No. | Title | Composer | Copyright |
| :---: | :--- | :--- | :--- |
| 1 | JS-GetUp! | Scott Tibbs | © 2008 Roland Corporation |
| 2 | LAURENS | Mitsuru Sakaue | © 2008 Roland Corporation |
| 3 | Earth View | Gundy Keller | © 2008 Roland Corporation |

All rights reserved. Unauthorized use of this material for purposes other than private, personal enjoyment is a violation of applicable laws.

NOTE No data for the music that is played will be output from MIDI OUT connector.
MEMO If USB memory is connected, you can press [MENU] to access the DEMO PLAY screen and play
MEMO the demo songs. For details, refer to "Playing the Demo Songs" (p. 156).

## Playing the Keyboard

## Playing in Piano Mode ([PIANO MODE])

Here's how you can play piano on the JUNO-STAGE.
When you press [PIANO MODE], the JUNO-STAGE will be set to "Piano mode," which gives you the ideal settings for piano performance. You can choose either acoustic piano or electric piano as the sound, and make further detailed settings for each of these sounds.


When you press [PIANO MODE] to enter Piano mode, the settings of the patch or performance you were editing will be lost. If you want to keep your edits, you must save them first.

## (1) Press [PIANO MODE].

The PIANO MODE screen will appear, and you'll be in Piano mode.
2 Press [2 (AC.PIANO)] or [3 (EL.PIANO)].
If you pressed [2 (AC.PIANO)], the keyboard will play a piano sound.


If you pressed [3 (EL.PIANO)], the keyboard will play an electric piano sound.

(3) Use the cursor buttons to move the cursor to the patch name.

MEMO On the JUNO-STAGE, each of the sounds you play is called a "patch."
(4) Use the VALUE dial or [DEC] [INC] to select a patch.

In Piano mode, you'll be able to select piano sounds.
You can use the cursor buttons to move the cursor to the patch category, and use the VALUE dial or [DEC] [INC] to switch to "PNO" (acoustic piano) or "EP" (electric piano).

5 To exit Piano mode, press [7 (EXIT)] or [EXIT].
You can also exit Piano mode by pressing [PIANO MODE] so it's extinguished.

## Selecting a Patch from a List

Here's how to access a list of patches that you can select in Piano mode.
(1) In the PIANO MODE screen, press [6 (LIST)].


## 2 Press [2 (AC.PIANO)] or [3 (EL.PIANO)].

(3) Use the VALUE dial or [DEC] [INC] to select a patch, and then press [6 (SELECT)].

You will return to the PIANO MODE screen.
If you press [PREVIEW], you'll be able to audition the sound of the patch played by a suitable phrase provided for each category of patch.

By pressing [7 (WRITE)] you can register the currently selected patch as the patch that will be first selected when you enter Piano mode after turning on the power.

## Adjusting the Piano Sound

In the PIANO MODE screen, you can vary the sound by specifying the extent to which the lid is open, and adjusting the amount of resonance.

## (1) In the PIANO MODE screen, press [2 (AC.PIANO)].

(2) Use the cursor buttons to move the cursor to the value that you want to adjust.

(3) Use the VALUE dial or [DEC] [INC] to adjust the value.

| Parameter | Explanation | Range |
| :--- | :--- | :--- |
| Lid State | Adjusts the tonal changes that result from opening the lid <br> by varying amounts. | FULL OPEN, <br> OPEN HIGH, <br> OPEN MID, <br> OPEN LOW, |
|  | On an acoustic piano, pressing the damper pedal will <br> allow the unplayed strings to resonate with the strings of <br> the notes you played, adding a rich and spacious reso- <br> nance to the sound. This setting allows you to adjust the <br> amount of resonance. | $0-127$ |

You can make more detailed adjustments to the currently selected patch. For details, refer to "Chapter 8. Detailed Editing for Patches" (p. 94).

You can press [WRITE] and save the Lid State and Resonance settings to the currently selected patch. For details on saving, refer to "Saving a Patch You've Created ([WRITE])" (p. 97).

## Selecting the Effect That Will be Applied to the Electric Piano Sound

You can choose from effects that are often applied to electric piano. The parameters that can be edited will depend on the effect you've selected.

1 In the PIANO MODE screen, press [3 (EL.PIANO)].

(2) Use the cursor buttons to move the cursor to the effect name (below "EFFECT").
(3) Use the VALUE dial or [DEC] [INC] to change the effect.

| Effect name | Explanation |
| :--- | :--- |
| THRU | No effect will be applied. |
| Tremolo | The volume will be cyclically modulated, producing a wavering sound. |
| Chorus | Three-dimensional spaciousness and depth will be added to the sound. |
| Phaser | A swirling character will be added to the sound. |
| EQ | This allows you to adjust the tone quality of the high, mid, and low frequency ranges. |
| Speaker | This simulates various speaker types and placements of a mic that captures the sound <br> from the speaker. |

cf. For details on the effect parameters, refer to "Effects List" (p. 163).
cf.
You can make more detailed adjustments to the currently selected patch. For details, refer to "Chapter 8. Detailed Editing for Patches" (p. 94).

MEMO
You can press [WRITE] and save the effect settings to the currently selected patch. For details on saving, refer to "Saving a Patch You've Created ([WRITE])" (p. 97).

## Performing with the Hold Pedal

If a pedal switch (DP series; sold separately) is connected to the PEDAL HOLD jack, pressing the pedal switch will sustain (hold) the sound even after you remove your hands from the keyboard.
cf. For details on connections, refer to "Hold pedal" (p. 21).

## Selecting Sounds

## Selecting Sounds (Patches)

On the JUNO-STAGE, the sounds you'll be performing are called "patches."
The JUNO-STAGE contains a wide variety of patches such as "piano," "guitar," or "brass" patches. These are called "preset patches." You are also free to create and save your own original patches ("user patches").
This section explains how to perform using the built-in preset patches.

## Playing Various Sounds (Category Group Buttons)

Each preset patch is assigned to a category group such as "piano" or "guitar," and these groups correspond to the category group buttons [RHYTHM]-[BASS]. Within each category group, the patches are further classified into additional categories.
Here's how to use the category group buttons to select a patch.

(1) Press [PATCH].

The PATCH PLAY screen will appear.

(2) Press one of the [RHYTHM]-[BASS] buttons to select a category group.

TIP
By pressing [PIANO], [KBD/ORG], or [VOCAL/PAD] twice in succession you can select other categories within the same category group.
(3) Use the VALUE dial or [DEC] [INC] to select a patch.

Play the keyboard, and you'll hear the patch you selected.

## Selecting a Patch from an Expansion Board

The JUNO-STAGE allows you to install up to two separately available wave expansion boards, and select patches from them.
cf. For details on installing an expansion board, refer to "Installing a Wave Expansion Board" (p. 18).

## (1) Press [PATCH].

Patch Group Patch Number/Name
The PATCH PLAY screen will appear.


2 Use the cursor buttons to move the cursor to the patch group.
3 Use the VALUE dial or [DEC] [INC] to select "XP-A" or "XP-B."
MEMO Make sure that the patch type is "Patch." If it is set to "Rhythm," move the cursor to "Rhythm" and MEMO turn the VALUE dial or press [DEC] to select "Patch."
(4) Use the cursor buttons to move the cursor to the patch number.
(5) Use the VALUE dial or [DEC] [INC] to select a patch.

## Selecting Sounds from the List

(1) Press [PATCH].

The PATCH PLAY screen will appear.
(2) Use the cursor buttons to move the cursor to the patch number.
(3) Press [ENTER/LIST].

The PATCH LIST screen will appear.

(4) Use [ 4 ] [ ] to select the category.

TIP You can also press one of the category group buttons ([RHYTHM]-[BASS]) to select the category or group.

5 Use the VALUE dial or [DEC] [INC] to select a patch, and press [ENTER].
The patch will be selected, and you will return to the PATCH PLAY screen.
If you press [EXIT] without pressing [ENTER], the PATCH LIST screen will close without the currently selected patch being changed.

## Registering and Selecting Frequently Used Sounds (FAVORITE)

You can register your frequently used sounds in "Favorite" so they can be selected instantly when desired.
You can register your favorite sounds to the ten buttons [0]-[9].

## ■ Registering a Patch

(1) Press [PATCH].

The PATCH PLAY screen will appear.
(2) Select the patch that you want to register.
(3) Hold down FAVORITE [ON/OFF] and press the button ([0]-[9]) to which you want to register the favorite.
The patch will be registered in the favorite number you specified.

## ■ Calling up a Favorite Patch You've Registered

(1) Press FAVORITE [ON/OFF] so it's lit.
(2) Use [0]-[9] to select a favorite.

The patch you registered at that number will be called up.
cf.
For details on the Favorite function, refer to "Registering and Calling Up Favorite Patches or Performances (FAVORITE)" (p. 47).

## Auditioning the Sounds ([PREVIEW])

In the PATCH PLAY screen, pressing [PREVIEW] will play a phrase that's assigned for each type (category) of patch. This lets you audition the selected patch by hearing it played with an appropriate phrase.
You can also press [PREVIEW] in the PATCH LIST screen to audition the patch at which the cursor is located.
cf. If you want to change the way in which the phrase will play when you press [PREVIEW], refer to "Preview" (p. 146).

## Playing Multiple Sounds

In Performance mode you can play separate patches with your right and left hands, or layer multiple patches so that they are heard simultaneously.

## Playing Different Sounds in the Left and Right Areas of the Keyboard ([SPLIT])

"Split mode" is when you divide the keyboard at a specified key into right-hand and left-hand areas, and play a different patch in each area. The key at which the keyboard is divided is called the "split point."
The right-hand keyboard area is called the "Upper part," and the left-hand keyboard area is called the "Lower part." The split point key is included in the Upper part.
When you turn on the power, the split point is set to the "C4" key.
(1) Press [PERFORM].

The PERFORM PLAY screen will appear.

(2) Press [SPLIT] so it's lit.

The JUNO-STAGE will be in Split mode. [PART SELECT] will light, and the PART SELECT screen will appear.


The right-hand keyboard area will play the Upper part patch, and the left-hand keyboard area will play the Lower part patch.

(3) Use [ $\sim][-]$ to move the cursor to the UPPER or LOWER patch number, and use the VALUE dial or [DEC] [INC] to select the desired patch.
(4) To cancel Split, press [SPLIT] so it's extinguished.

## Changing the Split Point

When you're in Split, you can change the split point (the location at which the keyboard is divided).

## (1) Press [SPLIT] to turn Split on.

(2) While holding down [SPLIT], press the key that you want to assign as the split point.

The key you pressed will be the new split point.
The split point key is included in the Upper part.
(3) Press [EXIT] to close the setting window.

You can also change the split point by holding down [SHIFT] and pressing [SPLIT] to access the

## Playing Layered Sounds ([DUAL])

"Dual" is when two patches are layered across the keyboard.
(1) Press [PERFORM].

The PERFORM PLAY screen will appear.

## (2) Press [DUAL] so it's lit.

You'll be in Dual.
[PART SELECT] will light, and the PART SELECT screen will appear.
The Upper part and Lower part patches will sound together.

(3) Use [ $\Delta][\nabla]$ to move the cursor to the UPPER or LOWER patch number, and use the VALUE dial or [DEC] [INC] to select the desired patch.
4) To cancel Dual, press [DUAL] so it's extinguished.
[10) You can press [WRITE] to save the split or dual setting in the performance. For details on saving,

## Modifying the Sound in Real time

## Using the Pitch Bend/Modulation Lever to Modify the Sound



Pitch bend


Modulation

While playing the keyboard, you can lower the pitch by moving the lever to the left, or raise the pitch by moving the lever to the right. This is called "pitch bend."
Pushing the lever away from yourself will apply vibrato. This is called "modulation."
By moving the lever to left or right while pushing it away from yourself, you can apply both effects simultaneously.

## Changing the Pitch in Steps of an Octave (OCTAVE [DOWN] [UP])



You can change the pitch of the currently selected sound in steps of one octave. This is called the "octave shift" function.
(1) Press OCTAVE [DOWN] or [UP].

Pressing [DOWN] will lower the pitch one octave, and pressing [UP] will raise it one octave.
You can change the pitch in a range of three octaves down $(-3)$ to three octaves up $(+3)$.
A setting window will open when you press one of these buttons, and will close a short time after you release the button.
If the value is other than " 0 ," the OCTAVE [DOWN] or [UP] indicator will light.

USER Patch OCTAVE SHIFT $00: 00$
$=120$ OO9H OCT -1 KORG1

## Changing the Pitch in Semitone Steps ([TRANSPOSE])

The transpose function lets you change the pitch of the keyboard in semitone steps.
You can use this when you need to perform a transposing instrument such as trumpet or clarinet at the pitches printed in the musical score.

(1) While holding down [TRANSPOSE], press [-] or [+].

Specify the amount of transposition in semitone steps (G-F\#: -5-+6 semitones).
A setting window will open when you press the button,
 and will close a short time after you release the button. If the transposition value is other than " C ," the [TRANSPOSE] will light.

## Using the Knobs to Modify the Sound (SOUND MODIFY)



## MEMO

When you turn a knob, the corresponding setting window will open. The window will close a short time after you release the knob.

NOTE Depending on the settings of the patch, turning a knob might not affect the sound in some cases.
Meve When in split or dual keyboard mode (in Per-
MEMO
formance mode), these changes will affect the currently selected part. The part indicated by KNOE will be affected by the SOUND MODIFY knobs.

(Example screen in Split mode)

## Modifying How the Volume Changes

 (ENVELOPE [ATTACK]/[RELEASE] Knobs)The "envelope" is the curve that describes how the volume changes from when the instrument begins to sound until it decays to silence.
You can use these two knobs to modify the attack and release of the envelope in real time.
cf. For details on the envelope, refer to "Modifying How the Volume Changes (ENVELOPE [ATTACK]/[RELEASE] Knobs)" (p. 58).

| Knob | Explanation |
| :--- | :--- |
| [ATTACK] | Adjusts the time from when you press the key until the maximum level is reached. <br> Turning the knob toward the right will lengthen the attack time, and turning it toward <br> the left will shorten the attack time. |
| [RELEASE] | Adjusts the time from when you release the key until the sound diminishes to silence. <br> Turning the knob toward the right will lengthen the release time, and turning it <br> toward the left will shorten the release time. |

## Modifying the Tone Quality ([CUTOFF]/[RESONANCE] Knobs)

You can adjust the settings of the filter that cuts or boosts a specific frequency region of the sound.

| Knob | Explanation |
| :--- | :--- |
| [CUTOFF] | Adjusts the filter (cutoff frequency) at which the filter begins to take effect. <br> Turning the knob toward the right will brighten the sound, and turning it toward the <br> left will darken the sound. |
| [RESONANCE] | Adjusts the way in which the sound near the cutoff frequency is boosted to produce <br> a distinctive character. <br> Turning the knob toward the right will strengthen the distinctive character, and turn- <br> ing the knob toward the left will lessen it. |

## Adjusting the Level of the Low and High Frequency Ranges (MASTER EQ [LOW]/[HIGH] Knobs)

You can use the knobs to adjust the high and low range levels of the equalizer that is applied to the entire sound (MASTER EQ).

| Knob | Explanation |
| :--- | :--- |
| [LOW] | Adjusts the low range. <br> Turning the knob toward the right will boost the low range, and turning it toward the <br> left will lessen the low range. |
| $[\mathrm{HIGH}]$ | Adjusts the high range. <br> Turning the knob toward the right will boost the high range, and turning it toward <br> the left will lessen the high range. |

## Adding Reverberation to the Sound ([REVERB] Knob)

You can add reverb (reverberation) to the sounds you play from the keyboard.
Adding reverb will produce the pleasant reverberation you hear when playing in a concert hall or similar acoustic environment.

| Knob | Explanation |
| :--- | :--- |
| [REVERB] | Adjusts the depth of the reverb. <br> Turning the knob toward the right will deepen the reverb, and turning it toward the <br> left will lessen the reverb. |

cf. For details on SOUND MODIFY, refer to "Using the Knobs to Modify the Sound (SOUND MODIFY)" (p. 58).

## Reference

## Chapter 1. Overview

## How the JUNO-STAGE is Organized

## Basic Structure

Broadly speaking, the JUNO STAGE consists of a controller section, a sound generator section, and a song player section.


## Controller Section

This section consists of a keyboard, pitch bend/modulation lever, the panel buttons and knobs, D Beam controller, and pedals connected to the rear panel. The performance information generated when you press/release a key or press a hold pedal are transmitted as MIDI messages to the sound generator section and/or an external MIDI device.

## Sound Generator Section

This section produces the sound. It receives MIDI messages from the controller section, song player section, or an external MIDI device, generates musical sound according to the MIDI messages that were received, and outputs the sound from the output jacks and headphone jack.

## Song Player Section

The Song Player is used to play back audio files or SMF data saved in USB memory.
It can also play rhythm patterns in a variety of styles.
You can play along on the keyboard accompanied by the song or rhythm pattern played by the Song Player.

## MEMO

When using the JUNO-STAGE's Song Player to play songs, you can create a "playlist" to specify the order in which songs will play. To create playlists, you need to use the included "Playlist Editor." For details, refer to "Using JUNO-STAGE Editor/Librarian/Playlist Editor" (p. 93).

When using the JUNO-STAGE as a MIDI sound module, you can use it in either Performance mode or in Patch mode.

## Patch Mode and Performance Mode

## Patch Mode

In Patch mode you can use a connected keyboard or other device to play a single Patch on the JUNO-STAGE. Since Patch mode lets you use a variety of effects on a single patch, you can play very rich textures.
In Patch mode it's also easy to edit the selected sound, so this is the mode to use when editing or creating your own sounds.

## Performance Mode

In Performance mode you can use multiple patches or rhythm sets simultaneously. A performance contains sixteen "Parts." You can assign a patch or rhythm set to each part, and use them as an ensemble, or layer sounds to create rich textures.
Of the sixteen parts in a Performance on the JUNO-STAGE, part 1 is assigned to "UPPER" and part 2 is assigned to "LOWER" (p. 51).

## MEMO

With the factory settings, Patch mode is selected.

## How a Performance is Structured

A performance has a patch or rhythm set assigned to each of the 16 parts, and can simultaneously handle 16 sounds.
Because the JUNO-STAGE sound generator can control multiple sounds (instruments) it is called a Multi-timbral sound generator.


## Part

A "part" is something to which you assign a patch or rhythm set. In Performance mode, each performance has sixteen parts, and you can assign a patch or rhythm set to each part.

## How a Patch is Structured

Patches are the basic sound configurations that you play during a performance. Each patch can be configured by combining up to four tones. Each tone can be turned on/off individually, allowing you to select the tones that will produce sound.


Example 1: A Patch consisting of only one Tone
(Tones 2-4 are turned off).


Example 2: A Patch consisting of four Tones.

## Tones

On the JUNO-STAGE, the tones are the smallest unit of sound. However, it is not possible to play a tone by itself. The patch is the unit of sound which can be played, and the tones are the basic building blocks which make up the patch.


IIIL audio signal $\rightarrow$ control signal

## WG (Wave Generator)

Specifies the PCM waveform (wave) that is the basis of the sound, and determines how the pitch of the sound will change.

## TVF (Time Variant Filter)

Specifies how the frequency components of the sound will change.

## TVA (Time Variant Amplifier)

Specifies the volume changes and the sound's position in a stereo soundfield.

## Envelope

You use Envelope to initiate changes to occur to a sound over time. There are separate envelopes for Pitch, TVF (filter), and TVA (volume).

## LFO (Low Frequency Oscillator)

Use the LFO to create cyclic changes (modulation) in a sound. The JUNO-STAGE has two LFOs. Either one or both can be applied to effect the WG (pitch), TVF (filter) and/or TVA (volume). When an LFO is applied to the WG pitch, a vibrato effect is produced. When an LFO is applied to the TVF cutoff frequency, a wah effect is produced. When an LFO is applied to the TVA volume, a tremolo effect is produced.

## How a Rhythm Set is Structured

Rhythm sets are groups of a number of different percussion instrument sounds. Since percussion instruments generally do not play melodies, there is no need for a percussion instrument sound to be able to play a scale on the keyboard. It is, however, more important that as many percussion instruments as possible be available to you at the same time. Therefore, each key (note number) of a rhythm set will produce a different percussion instrument.


* There are four wave generators for each rhythm tone (percussion instrument sounds).
* LFO is not included in the rhythm tones (percussion instrument sounds).


## Calculating the Number of Voices Being Used

The JUNO-STAGE is able to play up to 128 notes simultaneously. The polyphony, or the number of voices (sounds) does not refer only to the number of patches actually being played, but changes according to the number of tones used in the patches, and the number of waves used in the tones. The following method is used to calculate the number of sounds used for one patch being played.
(Number of patches being played) $\times$ (Number of tones used by patches being played) $\times$ (Number of waves used in the tones)
For example, a patch that combines four tones, each of which use two waves, will use eight notes of polyphony at once. Also, when playing in Performance mode, the number of sounds for each part is counted to obtain the total number of sounds for all parts.

## How a Patch Sounds

When the JUNO-STAGE is requested to play more than 128 voices simultaneously, currently sounding notes will be turned off to make room for newly requested notes. The note with the lowest priority will be turned off first. The order of priority is determined by the Patch Priority setting (p. 98).
Patch Priority can be set either to "LAST" or "LOUDEST." When "LAST" is selected, a newly requested note that exceeds the 128 voice limit will cause the first-played of the currently sounding notes to be turned off. When "LOUDEST" is selected, the quietest of the currently sounding notes will be turned off. Usually, "LAST" is selected.

## Note priority in Performance Mode

Since Performance mode is usually used to play an ensemble consisting of several patches, it is important to decide which parts take priority. Priority is specified by the Voice Reserve settings (p. 142). When a note within a patch needs to be turned off to make room for a new note, the Patch Priority setting of the patch will apply (p. 98).

## Voice Reserve

The JUNO-STAGE has a Voice Reserve function that lets you reserve a minimum number of notes that will always be available for each part. For example if Voice Reserve is set to " 10 " for part 16 , part 16 will always have 10 notes of sound-producing capacity available to it even if a total of more than 128 notes (total for all parts) are being requested. When you make Voice Reserve settings, you need to take into account the number of notes you want to play on each part as well as the number of tones used by the selected patch (p. 142). It is not possible to make Voice Reserve settings that would cause the total of all parts to be greater than 64 voices.

## About the Effects

The JUNO-STAGE has built-in effect units, and you can independently edit each unit's settings.

## Multi-Effects

The multi-effects are multi-purpose effects that completely change the sound type by changing the sound itself. Contained are 79 different effects types; select and use the type that suits your aims. In addition to effects types composed of simple effects such as Distortion, Flanger, and other such effects, you can also set up a wide variety of other effects, even connecting effects in series or in parallel. Furthermore, while chorus and reverb can be found among the multi-effects types, the following chorus and reverb are handled with a different system. In Performance mode, three types of multi-effect can be used simultaneously; these are referred to as MFX1, MFX2, and MFX3. In Patch mode, you can use one multi-effect.

## Chorus

Chorus adds depth and spaciousness to the sound. You can select whether to use this as a chorus effect or a delay effect.

## Reverb

Reverb adds the reverberation characteristics of halls or auditoriums. Five different types are offered, so you can select and use the type that suits your purpose.

## Effects in Performance Mode

The multi-effects, chorus and reverb effects can be set individually for each performance. The intensity of each effect will be set for each part. When you apply effects in Performance mode, the effect settings of the patch or rhythm set assigned to each part will be ignored, and the effect settings of the performance will be used. Thus, the effects for the same patch or rhythm set may differ when played in Patch mode and in Performance mode. However, depending on the settings, you can have effect settings for a patch or rhythm set assigned to a part applied to the entire performance.


## Effects in Patch Mode

The multi-effects, chorus and reverb effects can be set up individually for each patch/rhythm set. Adjusting the signal level to be sent to each effects unit (Send Level) provides control over the effect intensity that's applied to each tone.


## About Memory

Patch and performance settings are stored in what is referred to as memory. There are three kind of memory: temporary, rewritable, and non-rewritable.


## Temporary Memory

## Temporary Area

This is the area that holds the data for the patch or performance that you've selected using the panel buttons.
When you play the JUNO-STAGE, sound is produced based on data in the temporary area. When you edit a patch or performance, you do not directly modify the data in memory; rather, you call up the data into the temporary area, and edit it there.
Settings in the temporary area will be lost when the power is turned off or when you select another patch/performance. To keep the settings you have modified, you must write them into user memory.

## Rewritable Memory

## User Memory

User memory is where you normally store the data you need.
To store a performance, execute Performance Write (p. 133). To store a patch, execute Patch Write (p. 97). To store a Rhythm Set, execute Rhythm Set Write (p. 123).
Arpeggio, chord memory, and rhythm pattern data you create is also stored in user memory (p. 63, p. 65, p. 77).

## System Memory

System memory stores system parameter settings that determine how the JUNO-STAGE functions.
To store system parameters, execute System Write (p. 145).

## USB Memory

The following settings can be backed up together to USB memory.

- User patches (rhythm sets)
- User performances
- Favorites
- User arpeggios
- User chord memories
- User rhythm patterns
- User rhythm groups
- MIDI controller mode settings
- The patch first selected in Piano mode
- System settings


## Non-Rewritable Memory

## Preset Memory

Data in Preset memory cannot be rewritten. However, you can call up settings from preset memory into the temporary area, modify them and then store the modified data in rewritable memory.

## Wave Expansion Boards (optional: SRX Series)

The JUNO-STAGE can be equipped with up to two Wave Expansion Boards (optional: SRX Series). Wave Expansion Boards contain Wave data, as well as patches and rhythm sets that use this Wave data, which can be called directly into the temporary area and played.

## Basic Operation of the JUNO-STAGE

## Switching the Sound Generator Mode

The JUNO-STAGE's sound generator can operate in one of two modes: Patch mode or Performance mode (p. 38). You can switch between these two modes as appropriate for your situation.

## Patch Mode

## PATCH PLAY Screen

Press $[P A T C H]$ to access this screen. In this screen you can select the patch or rhythm set that you'll play from the keyboard.


## Performance Mode

In Performance mode you can perform using multiple sounds (patches and/or rhythm sets).

## PERFORM PLAY Screen

Press [PERFORM] to access this screen.
This screen lets you select a performance.
Here you can also make detailed settings for the performance.


## PART SELECT Screen

Press [PART SELECT] to access this screen.
For each part, this screen shows the patch or rhythm set that is selected for that part.
If you're playing two patches as a layer (Dual: p. 51) or two patches split between the left and right regions of the keyboard (Split: p. 51), both patches will be shown in a single screen.


## About the Function Buttons

The six [KBD/ORG/2]-[VOCAL/PAD/7] buttons located below the display execute various functions (function buttons), and their operation will differ depending on the screen. The functions are shown in the bottom of the screen, and the corresponding function buttons will light.

* When indications such as [7 (EXIT)] appear in this manual, the numeral indicates the button name, and the text in parentheses indicates the function name displayed in the screen.



## Window

The somewhat smaller screens that appear temporarily on the normal screens are called windows. Various types of windows appears according to the situation. Some display lists, others allow you to make settings, and still others ask you to confirm an operation.


Press [EXIT] or [7 (CLOSE)] to close the window. Some windows will close automatically when an operation is performed.

## [SHIFT] Functions



By holding down [SHIFT] and pressing another button, you can access the screen for making settings related to that button. (In other words, [SHIFT] provides a shortcut to the corresponding screen.) For example, if you hold down [SHIFT] and press [SOLO SYNTH], the Solo Synth setting screen will appear.
For details, refer to the page where a particular function is explained.
In some screens, pressing [SHIFT] will change the operation of the function buttons. In this case, pressing [SHIFT] will change the name of the functions displayed at the bottom of the screen. To execute a function, hold down [SHIFT] and press the corresponding function button.

## Editing a Value

## Moving the Cursor

A single screen or window displays multiple parameters or items for selection. To edit the setting of a parameter, move the cursor to the value of that parameter. To select an item, move the cursor to that item. When selected with the cursor, a parameter value or other selection is highlighted.

[ $\boldsymbol{\Delta}$ ]: moves the cursor up.
[ $\boldsymbol{\nabla}$ ]: moves the cursor down.
[ ] ]: moves the cursor to the left.
[ ]: moves the cursor to the right.
If you hold down one cursor button while you also press the cursor button for the opposite direction, the cursor will move more rapidly in the direction of the first-pressed cursor button.

## Changing a Value

To change the value, use the VALUE dial or [DEC] [INC].


## VAlUE Dial

Turning the VALUE dial clockwise increases the value, counterclockwise decreases the value.
The value will change in larger steps if you hold down [SHIFT] while turning the VALUE dial.

## [INC] and [DEC]

Pressing [INC] increases the value, and [DEC] decreases it.

- Keep the button pressed for continuous adjustment.
- For faster value increases, keep [INC] pressed down and press [DEC]. For decreasing value faster, keep [DEC] pressed down and press [ INC ].
- The value will change in larger steps if you hold down [SHIFT] while you press [INC] or [DEC].


## Entering a Value ([NUMERIC])

If you turn [NUMERIC] on, you'll be able to use the ([RHYTHM/O][BASS/9]) to enter numeric values.
In the PATCH PLAY (p. 45), PERFORM PLAY (p. 49), PART SELECT (p. 50), and MIDI CONTROLLER screens, you can use this method to numerically specify patch numbers, performance numbers, or MIDI program change numbers.

1. Use the cursor buttons to move the cursor to the number that you want to change.
2. Press [NUMERIC] so it's lit.

The [0]-[9] buttons will light.
3. Use the [0]-[9] buttons to enter a numerical value, and then press [ENTER].
Your input will be finalized, and the illumination of the [0]-[9] buttons will return to their previous state.
If you press [NUMERIC] once again without pressing [ENTER], the [0]-[9] buttons will return to their previous state without the number being changed.

When you've turned [NUMERIC] on and are entering a number, pressing [EXIT] will set the value to " 0 ."

## Assigning a Name

On the JUNO-STAGE, you can assign names to each patch, rhythm set, performance. The procedure is the same for any type of data.


1. Press [ ] [ ] to move the cursor to the location where you wish to input a character.
2. Turn the VALUE dial, or press [DEC] [INC] to specify the character.

| Button | Explanation |
| :---: | :---: |
| [3 (TYPE)] | Selects the type of character. Each time you press this, you will alternately select the first character of a character set: uppercase (A), lowercase (a), or numerals and symbols ( 0 ). |
| [4 (DELETE)] | Deletes the character at the cursor location. |
| [5 (INSERT)] | Inserts a space at the cursor location. |
| [6 (CANCEL)] | Cancels the input and exits the naming screen. |
| [7 (WRITE)] | Saves the changes you've made. |
| [ $\\|$ ] ] | Move the cursor. |
| [ $\boldsymbol{A}][\nabla]$ | Switch between uppercase and lowercase letters. |

## Available Characters/Symbols

space, A-Z, a-z, 0-9, ! " \# \$ \% \& ' () * + , - . / : ; < = > ? @ [ \] ^_ $\{1\}$

## TIP

From a naming screen you can press [MENU] and select " 1 .
Undo" to return the name to what it was before you changed it.
From [MENU] you can select "2. To Upper" to change the character at the cursor to uppercase.
From [MENU] you can select "3. To Lower" to change the character at the cursor to lowercase.
From [MENU] you can select "4. Delete All" to clear all the characters you were inputting.

## Chapter 2. Selecting Sounds

## Selecting Patches

Each of the various sounds in the JUNO-STAGE is called a "patch." Some patches are collections of percussion instrument sounds, and these are called "rhythm sets."

The patches that are built into the JUNO-STAGE are organized into three groups: User, Preset, and GM. You can also install up to two wave expansion boards (SRX series; sold separately), giving you even more patches to choose from.
You can choose from the following patch groups.

## USER

This group contains rewritable patches in the JUNO-STAGE's internal memory.
Patches that you create can be saved in this group. When the JUNOSTAGE is shipped from the factory, this group already contains 256 patches.

## PRST (Preset)

This group contains non-rewritable patches in the JUNO-STAGE's internal memory.
Although the patches of this group cannot be rewritten, you are free to modify the settings of the currently selected preset patch and save the modified patch in the User patch group.

## GM (GM2)

This group contains patches compatible with GM2, which was designed to standardize the functionality of MIDI devices across manufacturers and models. You cannot rewrite these patches. Although the patches of this group cannot be rewritten, you are free to modify the settings of the currently selected preset patch and save the modified patch in the User patch group. This group contains 256 patches.

## XP-A, B

(Wave expansion board installed in the EXP A or B slot)
These groups contain patches in a wave expansion board installed in the EXP A or B slot. Although the patches of these groups cannot be rewritten, you are free to modify the settings of the currently selected patch and save the modified patch in the User patch group. The number of patches in each of these groups will depend on the wave expansion board that is installed.

## MEMO

XP-A or B patches can be selected only if an SRX series wave expansion board (sold separately) is installed in the corresponding slot.
"Patch List" (p. 193)

## Selecting Parches in Patch Mode

Here's how to select a patch in Patch mode.
You can select a patch in any of the following five ways.

- "Using the VALUE Dial to Select a Patch" (p. 45)
- "Selecting Patches from the Patch List" (p. 46)
- "Selecting Patches by Number ([NUMERIC])" (p. 46)
- "Using a Pedal to Select Patches (PATCH SELECT Pedal)" (p. 46)
- Register and select frequently used sounds (Favorite) (p. 47)


## MEMO

The basic procedure is the same in Performance mode as well. For details, refer to "Playing the JUNO-STAGE in Performance Mode" (p. 49).

## PATCH PLAY screen



## Using the VALUE Dial to Select a Patch

1. Press [PATCH].

The JUNO-STAGE will enter Patch mode, and the PATCH PLAY screen will appear.
2. Use the cursor buttons to move the cursor to the patch group.
3. Use the VALUE dial or [DEC] [INC] to select the desired patch group.
4. Use the cursor buttons to move the cursor to the patch type.
5. Use the VALUE dial or [DEC] [INC] to select "Patch" or "Rhythm."
6. Use the cursor buttons to move the cursor to the patch number.
7. Use the VALUE dial or [DEC] [INC] to select a patch (or rhythm set).

## Selecting patches by category (category lock)

The lock icon ( 5 ) shown in the PATCH PLAY screen and PART SELECT screen specifies whether you'll be selecting patches within the selected category or across categories.
If you move the cursor to the lock icon and use the VALUE dial or [DEC] [INC] to select the " - " position, you'll be able to select patch numbers across categories. If you select the " ${ }^{-}$" position, you'll be able to change the patch number within the currently selected category.

## Selecting Patches from the Patch List

You can view a patch list and select a patch from that list.

1. Press [PATCH].

The JUNO-STAGE will enter Patch mode, and the PATCH PLAY screen will appear.
2. Press one of the [RHYTHM]-[BASS] (category group) buttons to select the desired category group.
3. Press [ENTER].

The PATCH LIST screen will appear.

4. Use [ ] [ ] to select the desired patch category. Select a category within the currently selected category group. You can also use the category group buttons to select the category group.
5. Use the VALUE dial or [DEC] [INC] to select the desired patch (rhythm set).
If you press [EXIT] instead of pressing [ENTER], you'll return to the previous screen without the patch number being changed.

## Selecting Patches by Number ([NUMERIC])

Here's how to select a patch by entering the desired patch number.

1. Press [PATCH].

The JUNO-STAGE will enter Patch mode, and the PATCH PLAY screen will appear.
2. Use the cursor buttons to move the cursor to the patch group.
3. Use the VALUE dial or [DEC] [INC] to select the desired patch group.
4. Use the cursor buttons to move the cursor to the patch type.
5. Use the VALUE dial or [DEC] [INC] to select "Patch" or "Rhythm."
6. Use the cursor buttons to move the cursor to the patch number.
7. Press [NUMERIC] so it's lit.

The [0]-[9] buttons will light.
8. Use the [0]-[9] buttons to enter the desired patch number, and press [ENTER].
When you finalize the input, the [0]-[9] buttons will return to their previous state of illumination.
If you press [NUMERIC] without pressing [ENTER], the [0]-[9] buttons will return to their previous state without changing the patch number.

## Using a Pedal to Select Patches (PATCH SELECT Pedal)

You can switch patches by using a pedal switch (such as the separately available FS-5U or FS-6) connected to the PATCH SELECT jack.
You can use a stereo cable (sold separately) to connect either two pedal switches (sold separately) or one pedal switch (such as one from the DP series; sold separately) to the PATCH SELECT jack.
When you press a pedal that's connected to the PATCH SELECT jack, the patch number is incremented or decremented according to the number of times you've pressed the pedal, and the patch will be changed accordingly.
If you've connected only one pedal, pressing the pedal will increment the patch number.


## MEMO

This pedal will function according to the system setting "Patch Select." If "Patch Select" is assigned to "AUTO UP/(DOWN)," you'll be able to switch patches as described above. In Performance mode, pressing the pedal will switch performances, and if FAVORITE [ON/OFF] is on, pressing the pedal will switch favorites. For details, refer to the system setting "Patch Select" (p. 147).

## Auditioning a Patch ([PREVIEW])

You can press and hold down the [PREVIEW] button to audition the patch or rhythm set using a suitable phrase that's provided for each type (category) of patch. This allows you to hear the selected patch played by an appropriate phrase.

1. Press and hold [PREVIEW].

A phrase will play using the patch (rhythm set) that's selected in the screen.
2. The phrase will stop playing when you release the [PREVIEW] button.

## cf.

If you want to change how the phrase plays when you press [PREVIEW], refer to the system setting "Preview" (p. 146).

## Registering and Calling Up Favorite Parches or Performances (FAVORITE)

If there are sounds that you frequently use when playing live, you can register them in "favorites" so that they can be called up instantly. You can register patches, rhythm sets, or performances, and call them up whenever needed without regard to the mode you're in.
Each bank of favorites lets you register a total of ten patches, rhythm sets, or performances. You can create ten of these banks.
For example, up to ten sounds that you'll be using in the first song of your live set could be registered in the order in which you intend to use them.

## Registering a Favorite Patch or Performance

Here's how to register a patch (rhythm set) or performance in Favorites. You can register a sound in Favorites regardless of the FAVORITE [ON/OFF] status.

1. In Patch mode or Performance mode, select the patch (rhythm set) or performance that you want to register.
2. If you want to switch Favorite banks, hold down FAVORITE [BANK], and press the button of the bank ([0]-[9]) in which you want to register the sound.
When you press FAVORITE [BANK], the button of the currently selected bank will blink.
Pressing one of the [0]-[9] buttons will select the Favorite bank in which the sound will be registered.

## MEMO

You can also change the Favorites bank even if FAVORITE [ON/ OFF] is off.
3. Hold down FAVORITE [ON/OFF] and press the button ([0]-[9]) to which you want to register the currently selected sound.
A message like the following will appear, and the currently selected patch (rhythm set) or performance will be registered in the Favorite number you specified.


For example, if you registered a patch to "bank 7, number 1," the display will indicate "Patch registered to Bank: 7-1."
It's a good idea to register your favorites in the order in which they'll be used in your song or live set.

## Calling Up a Favorite Sound

If you leave FAVORITE [ON/OFF] turned on, you'll be able to switch between favorites simply by pressing the [0]-[9] buttons.

1. Press FAVORITE [ON/OFF] so it's lit.

Now you can use the [0]-[9] buttons to select favorites.
2. If you want to switch Favorites banks, hold down FAVORITE [BANK] and press the button ([0]-[9]) for the desired Favorites bank.
When you press FAVORITE [BANK], the button corresponding to the currently selected bank will blink.
When you press one of the [0]-[9] buttons, the corresponding Favorites bank will be selected.

## MEMO

You can also change the Favorites bank even if FAVORITE [ON/ OFF] is off.
3. Use [0]-[9] to select a Favorites number.

Depending on the favorite sound you selected, the JUNO-STAGE will enter Patch mode or Performance mode.

## MEMO

The screen's function buttons are not available if FAVORITE
[ON/OFF] is on. If you want to use the [0]-[9] buttons as function buttons, turn off FAVORITE [ON/OFF].

## Registering, Calling Up, or Editing Favorites in a List

Regardless of whether FAVORITE [ON/OFF] is on or off, you can view a list of the favorites you've registered, and add or call up registrations. You can also remove a previously registered favorite, or change the number to which it's registered.
In the favorites list, "(PAT)" is indicated for a registered patch, while "(RHY)" is indicated for a rhythm set, while "(PRF)" is indicated for a performance.

1. Hold down [SHIFT] and press FAVORITE [ON/OFF].

The FAVORITE LIST screen will appear.

2. Use $[<][\square]$ to select the desired bank.
3. Use the VALUE dial, [ $\Delta$ ] [ $\nabla$ ], or [DEC] [INC] to select the desired favorite.

| Button | Action |
| :--- | :--- |
| [ENTER] or <br> [7 (SELECT)] | Calls up the selected favorite. |
| [2 (REMOVE)] | Removes the selected favorite. |
| [3 (REGIST)] | Registers the currently selected patch <br> (rhythm set) or performance at the <br> selected favorite number. If a favorite has <br> already been registered at the selected <br> number, the registration will be <br> overwritten. |
| Hold down |  |
| [SHIFT] and press | Changes the registration number. If a <br> favorite has already been registered at <br> the move-destination number, the <br> selected favorite will be inserted at the <br> move destination. <br> * It will take several seconds for this |
| move to be executed. |  |

## Switching Favorites with a Single Button ([FAVORITE UP/ASSIGNABLE])

## 1. Press [FAVORITE UP/ASSIGNABLE].

You will switch to the next favorite that is registered following the currently selected favorite.
If you've selected the last number in a bank, you'll switch to a favorite in the next bank.

Numbers or banks in which no favorite has been registered will be skipped.

## MEMO

The function of this button will depend on the System setting "Assignable Switch" (p. 148). If "ASSIGNABLE Switch" is set to "FAVORITE UP," you'll be able to switch favorites as described above.

## Using a Pedal to Select Favorites (PATCH SELECT Pedal)

You can switch favorites by using a pedal switch (sold separately) connected to the PATCH SELECT jack.
You can use a stereo cable to connect two pedal switches to the PATCH SELECT jack. (See the connection diagram on p. 21)
When you turn FAVORITE [ON/OFF] on (button lit) and press the pedal connected to the PATCH SELECT jack, the favorite number will increment or decrement accordingly.
If only one pedal is connected, pressing the pedal will increment the favorite number.

## MEMO

This pedal function will operate according to the system setting
"Patch Select." For details, refer to the system setting "Patch Select" (p. 147).

## Playing the JUNO-STAGE in Performance Mode

A performance contains patch (or rhythm set) assignments for each part, as well as volume and pan settings.
When you switch performances, you are calling up the settings for parts 1-16 together with other related settings saved in that performance.

## MEMO

In Performance mode, there is a "keyboard switch" setting that specifies which of the parts $1-16$ will produce sound. When you play the keyboard in Performance mode, you'll hear the parts whose keyboard switch is " ON " and the part that is currently selected (the "current part"). For more about the keyboard switch, refer to "Selecting the Parts that will Produce Sound (Keyboard Switch)" (p. 134).

## Settings That Are Saved in a Performance

If you want to keep a performance you've edited, press [WRITE] to save it as a user performance. For details on saving, refer to "Saving a Performance You've Created ([WRITE])" (p. 133).
A performance contains the following settings.

- All parameters that can be edited from the PERFORM PLAY screen (p. 134) (performance parameters)
- Settings for the D Beam and other controllers (p. 135)
- Arpeggio and chord memory settings (p. 60, p. 64)
- Rhythm pattern group number (p. 74)
- The contents of effect editing done in Performance mode (p. 82)


## MEMO

When you edit a performance, an "*" will be shown in the PERFORM PLAY screen.

## NOTE

The changes you make by editing a performance are temporary; they will be discarded when you turn off the power or select another performance. If you want to keep the changes to a performance you've edited, you must save it to user memory (p. 133).

## Selecting a Performance

The JUNO-STAGE's performances are organized into two groups: user and preset.

## USER

This is a group of rewritable performances inside the JUNO-STAGE. Performances you create can be saved in this group. The user group already contains 64 performances.

## PRST (preset)

This is a group of non-rewritable performances inside the JUNOSTAGE. However, since you are free to edit the currently selected performance, you can select a preset performance, edit it, and write the edited performance into the user group.

## 1. Press [PERFORM].

The JUNO-STAGE will enter Performance mode, and the PERFORM PLAY screen will appear.

2. Use the cursor buttons to move the cursor to the performance group.
3. Use the VALUE dial or [DEC] [INC] to select the desired performance group.
4. Use the cursor buttons to move the cursor to the performance number.
5. Use the VALUE dial or [DEC] [INC] to select the desired performance.

## Selecting Performances from a List

When the cursor is located at the performance number, you can press [ENTER/LIST] to access the PERFORMANCE LIST screen.


Use [ ] [ ] to select the performance group, use the VALUE dial or [DEC] [INC] to select the desired performance, and press [ENTER].
Your choice of performance will be confirmed, and you will return to the PERFORM PLAY screen.
If you press [EXIT] instead of pressing [ENTER], you'll return to the previous screen without the performance number being changed.

## Selecting Performances by Number ([NUMERIC])

When the cursor is located at the performance number, you can select a performance by pressing [NUMERIC], using [0]-[9] to specify the desired performance number, and pressing [ENTER]. If you press [NUMERIC] instead of pressing [ENTER], you'll return to the previous screen without the performance number being changed.

## Registering and Selecting Frequently Used Performances (FAVORITE)

You can register your frequently used performances in "Favorite" so that they can be selected instantly when desired.
For details, refer to "Registering and Calling Up Favorite Patches or Performances (FAVORITE)" (p. 47).

## Using a Pedal to Select Performances (PATCH SELECT Pedal)

You can switch performances by using a pedal switch (sold separately) connected to the PATCH SELECT jack.
You can use a stereo cable to connect two pedal switches to the PATCH SELECT jack. (Refer to the connection diagram on p. 21) In Performance mode, each time you press a pedal connected to the PATCH SELECT jack, the performance number will increment or decrement accordingly.
If you've connected only one pedal, pressing the pedal will increment the Performance number.

## MEMO

This pedal will function according to the system setting "Patch
Select." For details, refer to the system setting "Patch Select" (p. 147).

## Selecting a Part

The currently selected part is called the "current part."

1. Press [PERFORM] or [PART SELECT] so it's lit.

The PERFORM PLAY screen or PART SELECT screen will appear.
If you're in the PERFORM PLAY screen
Part Number

2. Use $[\triangleleft][-]$ to select a part.

## If you're in the PART SELECT screen

## Part Number


2. Use the cursor buttons to move the cursor to the part number.
3. Use the VALUE dial or [DEC] [INC] to select a part.

## MEMO

If Split or Dual are on (i.e., if [SPLIT] or [DUAL] is lit), only the Upper or the Lower part can be selected.

## Selecting a Patch for Each Part

Here's how to select the patch that is assigned to a part.

1. Select a part in the PART SELECT screen.
2. Use the cursor buttons to move the cursor to the patch group or part number.
3. Use the VALUE dial or [DEC] [INC] to select the desired patch. MEMO

For details on selecting patches, refer to "Selecting Patches in Patch Mode" (p. 45).

## Playing Layered Sounds (DUAL)

"Dual" refers to a setup in which two patches sound together.
If Dual is on, the patches of part 1 and part 2 will sound simultaneously. Part 1 is called the "Upper" part, and part 2 is called the "Lower" part.

1. Press [DUAL] so it's lit.

Dual keyboard mode will be selected.
[PART SELECT] will light, and the PART SELECT screen will appear.


The Upper and Lower patches will sound together.
2. To cancel Dual keyboard mode, press [DUAL] so its illumination is turned off.
TIP
In the PART SELECT screen, you can move the cursor to a level
knob icon in the screen and use the VALUE dial or [DEC] [INC] to adjust the part's volume level (LEVEL). This is an easy way to adjust the volume balance of the upper and lower parts.

## MEMO

When you turn [DUAL] on, the keyboard switch (p. 134) will be turned "ON" for Upper and Lower part and turned "OFF" for parts 3-16, regardless of the previous keyboard switch setting.

## MEMO

When you turn [DUAL] on, the keyboard range setting (p. 134) will be set to "C-G9" (full keyboard) for Upper and Lower part, regardless of the previous keyboard range setting.

## Dividing the Keyboard into Two Areas to Play Separate Sounds (SPLIT)

"Split" refers to a setup in which the keyboard is divided into left-hand and right-hand areas with a different patch played by each area. The key at which the keyboard is divided is called the "split point." When you turn Split on, the right-hand area of the keyboard will play the patch that's assigned to part 1, and the left-hand area will play the patch that's assigned to part 2. Part 1 is called the "Upper" part, and part 2 is called the "Lower" part. The split point key is included in the upper area. The split point key is included in the Upper area.
When you turn on the power, the split point is set to "C4."

1. Press [SPLIT] so it's lit.

Split keyboard mode will be selected.
[PART SELECT] will light, and the PART SELECT screen will appear.


The right-hand keyboard area will play the Upper patch, and the left-hand keyboard area will play the Lower patch.

2. To cancel Split keyboard mode, press [SPLIT] so its illumination is turned off.

## TIP

In the PART SELECT screen, you can move the cursor to a level knob icon in the screen and use the VALUE dial or [DEC] [INC] to adjust the part's volume level (LEVEL). This is an easy way to adjust the volume balance of the upper and lower parts.

## MEMO

When you turn [SPLIT] on, the Keyboard Switch setting (p. 134)
will be turned "ON" for Upper and Lower part and turned "OFF" for parts 3-16, regardless of the previous keyboard switch setting.

## MEMO

When you turn [SPLIT] on, the keyboard range (p. 134) for Upper will be set so it spans from the split point key to "G9," while Lower will be set so it spans from "C-" to the key to the left of the split point, regardless of the previous settings.

## Changing the Split Point

In Split keyboard mode, here's how to change the split point (the location at which the keyboard is divided).

1. With [SPLIT] lit, hold down [SPLIT] and press the key that you want to specify as the split point.
The key you pressed will become the new split point.
The split point key is included in the Upper area.
2. To close the setting window, press [EXIT].

TIP
You can also specify the split point by holding down [SHIFT] and pressing [SPLIT] to access an setting window. In this case, open the setting window, use the VALUE dial or [DEC] [INC] to specify the desired split point, and then press [EXIT] to close the window.

## Chapter 3. Versatile Performance Functions

## Changing the Keyboard Settings

## Changing the Pitch in One-octave Steps (OCTÂVE [DOWN] [UP])

Octave Shift is a function that changes the pitch of the keyboard in steps of an octave.
If you're using your right hand to play a low-pitched part, such as a bass line, you'll find it easier to play if you shift the keyboard down one or two octaves.

1. Press OCTAVE [DOWN] or [UP].


Pressing [DOWN] will lower the pitch by one octave, and pressing [UP] will raise the pitch by one octave.
You can change the pitch as much as three octaves down ( -3 ) or three octaves up ( +3 ).
A setting window will open when you press one of these buttons, and will close shortly after you release the button.
When set to any value other than " 0, " either OCTAVE [DOWN] or [UP] will light.
By pressing OCTAVE [DOWN] and [UP] simultaneously you can reset the value to " 0 ."

## MEMO

In Patch mode or Piano mode, the octave shift setting is maintained even if you switch patches.

## NOTE

In Patch mode or Piano mode, this setting cannot be saved. The
value will be reset to " 0 " when you power up the JUNO-STAGE.

## MEMO

In Performance mode or MIDI controller mode you can specify an
Octave Shift setting for each part.

## Transposing the Pitch in Semitone Steps [[TRANSPOSE])

Transpose is a function that changes the pitch of the keyboard in semitone steps.
You can use this to play transposing instruments such as trumpet or clarinet at the pitches written in the score.

1. Hold down [TRANSPOSE] and press [-] or [+].


Specify the amount of transposition in semitone steps (G-F\#: -5+6 semitones).
A setting window will open when you press one of these buttons, and will close shortly after you release the button.
When any value other than " $C$ " is set, [TRANSPOSE] will light.
By holding down [TRANSPOSE] and pressing [DOWN] and [UP] simultaneously you can reset the value to "C."

## MEMO

There is a single Transpose setting for the entire JUNO-STAGE
The changed setting will be remembered even if you switch patches or performances.

## NOTE

This setting cannot be saved. The value will be reset to "C" when you power up the JUNO-STAGE.

## Changing the Temperament to an Arabian or Other Scale (Scale Tune)

Equal temperament is the method of tuning used by most music today, including Western music. However, the JUNO-STAGE lets you recreate other temperaments by individually altering the pitches of the notes.
Using this feature, you change the temperament of the instrument to that used for Baroque or other classical music, or set it for tunings used in Arabian music.
This feature is called "Scale Tuning."
Scale funing allows you to modify the pitch of each note in one-cent steps (1/100th of a semitone) relative to the equal-tempered pitch.

## 1. Press [MENU].

2. Use [ $\boldsymbol{\Delta}$ ] [ $\boldsymbol{\nabla}$ ] to select " 1 . System," and press [ENTER]. The System Menu window will appear.
3. Press [2 (GENERAL)].
4. Press [3 (SOUND)].
5. Use [ $\Delta$ ] [ $\boldsymbol{]}$ ] to move the cursor to "Scale Tune Switch" or "Patch Scale Tune for C-B."
6. Use the VALUE dial or [DEC] [INC] to select the value.

| Parameter | Range | Explanation |
| :--- | :--- | :--- |
| Scale Tune <br> Switch | OFF, ON | Turn this ON if you want to perform <br> in a temperament other than equal <br> temperament. |
| Patch Scale <br> Tune for <br> C-B | $-64-+63$ | Specifies the pitch difference in one- <br> cent steps (1/100th of a semitone) <br> relative to the equal-tempered pitch. |

7. If you want to save your settings, press [7 (WRITE)].
8. Press [EXIT] to return to the previous screen.

## MEMO

When you're in Performance mode, you can specify the scale tuning for each part. For details, refer to the performance parameter "Part Scale Tune for C-B" (p. 143).

## Equal temperament

This divides the octave into twelve equal intervals, and is the most widely used type of tuning, particular in Western music.

## - Just intonation (tonic of C )

Compared to equal temperament, the principal triads have a more pure sound in just intonation. However, this is the case only in one key, and triads will sound ambiguous if you play in a different key.

## - Arabian scale

Compared to equal temperament, this scale pitches the E and B notes a quarter-tone lower, and the C\#, F\#, and G\# notes a quarter-tone higher. There is a natural third (an interval between a major third and a minor third) between $G$ and $B, C$ and $\mathrm{E}, \mathrm{F}$ and $\mathrm{G} \#, \mathrm{Bb}$ and C \#, and Eb and F \#.
On the JUNO-STAGE you can use Arabian temperament in the three keys of $\mathrm{G}, \mathrm{C}$, and F .

## Example: Tonic of C

If you want to use Just intonation with a tonic of C , or an Arabian scale, set the "Scale Tune Switch" to "ON," and set "Patch Scale Tune for $C-B^{\prime \prime}$ as shown in the table.

| Note name | Equal <br> temperament | Just <br> infonation | Arabian <br> scale |
| :---: | :---: | :---: | :---: |
| C | 0 | 0 | -6 |
| C\# | 0 | -8 | +45 |
| D | 0 | +4 | -2 |
| E b | 0 | +16 | -12 |
| E | 0 | -14 | -51 |
| F | 0 | -2 | -8 |
| F \# | 0 | -10 | +43 |
| G | 0 | +2 | -4 |
| G \# | 0 | +14 | +47 |
| A | 0 | -16 | 0 |
| B b | 0 | +14 | -10 |
| B | 0 | -12 | -49 |

## Adjusting the Keyboard Touch

You can set the instrument so all notes sound at a fixed volume regardless of the strength (velocity) at which you play the keys, or adjust the way in which the keyboard responds to your playing touch.

1. Press [MENU].
2. Use [ $\Delta$ ][ $\nabla$ ] to select " 1 . System," and press [ENTER]. The System Menu window will appear.
3. Press [3 (KBD/CTRL)].
4. Press [2 (KBD)].
5. Use [ $\Delta$ ] [ $\boldsymbol{]}$ ] to select a parameter.
6. Use the VALUE dial or [DEC] [INC] to select the desired value.

| Parameter | Range | Explanation |
| :---: | :---: | :---: |
| Keyboard Velocity | $\begin{aligned} & \text { REAL, } \\ & 1-127 \end{aligned}$ | The velocity produced when you play a key. <br> REAL: The velocity will depend on how strongly you play the key. <br> 1-127: A fixed velocity will be produced regardless of how strongly you play the key. |
| Keyboard <br> Velocity <br> Curve | LIGHT, MEDIUM, HEAVY | Specifies the keyboard's touch sensitivity. <br> LIGHT: Light synthesizer <br> MEDIUM: Normal <br> HEAVY: Acoustic piano |
| Keyboard Velocity Sens | -63-+63 | This is a fine adjustment of the keyboard sensitivity after the Keyboard Velocity Curve has been applied. Higher settings for this parameter will cause higher velocity values to be transmitted as you play the keys more strongly. |

7. If you want to keep your settings, press [7 (WRITE)].
8. Press [EXIT] to return to the previous screen.

## MEMO

Changing the keyboard Velocity Curve setting will also affect the piano mode's "Key Touch Select" setting (p. 117).

## Changing the Pitch in Real Time (Pitch Bend/Modulation Lever)

While holding down a key, moving the lever to the left will lower the pitch, and moving it to the right will raise the pitch. This is called "pitch bend."
Pushing the lever away from yourself will apply vibrato. This is called "modulation."
Pushing the lever away from yourself while moving it to the left or right will apply both effects simultaneously.


Pitch bend


Modulation

## MEMO

The pitch bend range can be specified separately for each patch. Refer to "Pitch Bend Range Up/Down" (p. 101).
In Performance mode you can make this setting individually for each part (p. 141).

## Assigning Functions to [S1] [S2]

You can assign various performance-related functions to [S1] and [S2]. When you turn [S1] or [S2] on/off, the assigned function will be switched or turned on/off.

## MEMO

When Split or Dual are selected (in Performance mode), these switches will perform the function assigned to the currently selected part (the current part). The part indicated by ${ }^{[\mathrm{KHOE}}$ is the part for which [S1] [S2] will operate.

1. Hold down [SHIFT] and press [S1] or [S2].

A screen like the following will appear.

2. Use [ $\boldsymbol{\Delta}][\boldsymbol{\nabla}]$ to select the desired parameter.
"Switch 1" makes settings for [S1], and "Switch 2" makes settings for [S2].
3. Use the VALUE dial or [DEC] [INC] to specify the setting. For details on the parameters and values that you can assign, refer to "[3 (S1/S2)]" (p. 136) in Performance mode, and refer to "Switch 1" (p. 149) in Patch mode.
4. Press [EXIT] to return to the previous screen.

## MEMO

In Performance mode, the [S1] [S2] settings are saved as performance settings. If you want to keep these settings, press
[WRITE] to save them in the performance (p. 133)

## MEMO

In Patch mode, the [S1] [S2] settings are saved as system settings. If you want to keep these settings, press [7 (WRITE)].

## Controlling Portamento

In step 3 of the above procedure, assign "PORTAMENTO" to "Switch 1" or "Switch 2."
Turning [S1] or [S2] on/off will turn portamento on/off.
This is particularly effective when used with synth bass sounds.

## Playing Monophonically

In step 3 of the above procedure, assign "MONO/POLY" to "Switch 1" or "Switch 2."
Turning [S1] or [S2] on/off will switch between monophonic and polyphonic playing.
This is particularly effective when used with synth bass sounds.

## Simulating a Guitarist's Double-bending

In step 3 above, set "Switch 1 " or "Switch 2 " to "BEND MODE."
When you turn [S1] or [S2] on/off, the "BEND MODE" setting
"CATCH+LAST" will turn on/off.
If "CATCH+LAST" is on, and you play a chord and use the pitch bend
lever, the pitch bend will apply only to the last-played note. For
example, if you play a chord in the order of "D" and "C," moving the
pitch bend lever toward the right will raise the pitch only of the "C"
note.
This is particularly effective when used with a guitar-type sound.

## Switching the Speed of the Organ Rotary Effect

If you want to use [S1] or [S2] to switch the speed of the rotary effect, make settings as follows.
Here we will explain how to use [S1] to control the effect. If you want to use [S2], simply read "Switch 2" where "Switch 1" appears.

## - In Patch mode

1. Assign the system setting "Switch 1 " to "SYS CTRL 1 SRC."
1) Hold down [SHIFT] and press [S1].

A setting screen will appear.
2) For "Switch 1 ," set "Assign" to "SYS CTRL 1 SRC."

In this example, we'll use "SYS CTRL 1 SRC."
2. Select the patch to which the effect is to be applied.

1) Press [PATCH] to access the PATCH PLAY screen.
2) Select a patch.

You'll probably want to select an organ-type sound.
3. Make effect settings.

1) Press [EDIT] and select "EFFECT EDIT."

The EFFECT ROUTING screen will appear.
2) Press [3 (MFX)].

The MFX screen will appear.
3) Choose " $21:$ ROTARY" as the MFX Type.
4) Press [4 (CTRL)].

The MFX CTRL screen will appear.
5) In the MFX CTRL screen, make the following settings.

- As the "Source," specify "SYS CTRL 1."
- As the "Destination," specify "Speed."
- Set the "Sens" value to the desired amount of effect.


## 4. Turning [S1] on/off will switch the speed of the rotary effect.

TIP
You can also use the above procedure to make settings for other effects; for example, you could change the amount of drive for an overdrive effect.

## MEMO

If you want to keep these settings, save the system settings in System (p. 145) and save the effect settings in the patch (p. 97).

## NOTI

If you find it difficult to hear the effect, check the following settings.

- In the EFFECT ROUTING screen (p. 80) of the selected patch, make sure that the "Tone Output Level" is raised for tones whose "Tone Switch" is on, and that the "MFX Output Level" is high enough. If these settings are too low, raise them.
- In the EFFECT ROUTING screen (p. 80) of the selected patch, make sure that "PATCH OUT" is set to "MFX." If any other setting is selected, change it to "MFX."


## - In Performance mode

Before you continue with the following procedure, prepare the patch to which you want to apply the rotary effect. Make settings as described in steps 2 and 3 of "In Patch mode."

1. For the desired part of the performance, select the patch you prepared above.
As our example in this explanation, we'll use part 2 (or LOWER).
2. Assign the performance parameter "Switch 1 " to "SYS CTRL 1 SRC."

* Set the system control number (SYS CTRL) to match the value you specified for "Source" in step 3-5) of "In Patch mode."

1) Hold down [SHIFT] and press [S1].

A setting screen will appear.
2) For "Switch 1," set "Assign" to "SYS CTRL 1 SRC."
3) Press [EXIT] to access the PERFORM PLAY screen.
3. Make effect settings.

1) Press [EDIT] and select "EFFECT EDIT."

The EFFECT ROUTING screen will appear.
2) In the EFFECT ROUTING screen, make the following settings.

- Set the part number in the upper left to "PART 2 (or LOWER)."
- Below the part number, set "OUTPUT" to "MFX."
- Below "OUTPUT," set "MFX SEL" to "1."
- Set the "MFX1" Source to "P 2 (or LO)" (the part you selected in step 1). When you make this setting, the MFX Type will indicate " 21 : ROTARY."

3) Press [EXIT] several times to access the PERFORM PLAY screen.
4. Use [S1] to apply the effect.
1) In the PERFORM PLAY screen or PERFORM SELECT screen, select part 2 (or LOWER).
The [S1] effect will apply to the current part; select the part to which you want the effect to apply.
2) Turning [ S 1 ] on/off will switch the speed of the rotary effect.

## MEMO

If you want to keep these settings, save them in the performance (p. 133).

## Using the D Beam Controller to Modify the Sound

The D Beam controller can be used simply by waving your hand over it. It can be used to apply various effects, depending on the function that is assigned to it. On the JUNO-STAGE, the D Beam controller can be used not only to modify the sounds, but also to control the pitch of a monophonic (solo) synthesizer sound.

1. Press either the D BEAM [SOLO SYNTH], [ACTIVE EXPRESS], or [ASSIGNABLE] button to turn on the D Beam controller.

| Button | Explanation |
| :--- | :--- |
| [SOLO SYNTH] | Lets you use the D Beam controller as a <br> monophonic synthesizer. |
| [ACTIVE EXPRESS] | The D Beam controller will add the ideal <br> type of expression for each sound. |
| [ASSIGNABLE] | Operates the function assigned to the D <br> Beam controller. |

2. While you play the keyboard to produce sound, place your hand above the D Beam controller and move it slowly up and down.
An effect will be applied to the sound, depending on the function that is assigned to the D Beam controller.
3. To turn off the D Beam controller, once again press the button you pressed in step 1 so the indicator goes out.

## MEMO

If Performance mode is selected, the D Beam controller on/off setting is saved for each performance as part of the performance settings.

## The usable range of the $D$ Beam controller

The following diagram shows the usable range of the D Beam controller. Waving your hand outside this range will produce no effect.

## NOTE

The usable range of the D Beam controller will become extremely small when used under strong direct sunlight. If it does not function as you expect, adjust the sensitivity as appropriate for
 the brightness of your location.
$\rightarrow$ "D Beam Sens" (p. 152)

## Chapter 3. Versatile Performance Functions

## SOLO SYNTH

On the JUNO-STAGE you can play a monophonic synthesizer whose pitch is controlled by the D Beam controller.

1. Hold down [SHIFT] and press D BEAM [SOLO SYNTH].

A screen like the following appears.

2. Press [ $\Delta$ ] [ $\boldsymbol{]}$ to select the parameter.
3. Use the VALUE dial or [DEC] [INC] to make settings.

For details on the available parameters and values, refer to "[3 (SYNTH)]" (p. 152).
4. If you want to keep these settings, press [7 (WRITE)].

TIP
You can use the function keys shown in the bottom of the screen to access the D Beam assignable or active expression setting screens.
5. Press [EXIT] to return to the previous screen.

## MEMO

Setting for the Solo Synth are saved for system settings.

## ACTIVE EXPRESSION

You can use the D Beam controller to apply the ideal type of expression for each sound.

## MEMO

The way in which expression is applied will differ for each sound. For some sounds, the effect may be difficult to notice.

1. Hold down [SHIFT] and press D BEAM [ACTIVE EXPRESS].

A screen like the following appears.

2. Press [ $\mathbf{\Delta}$ ] [ $\boldsymbol{\nabla}$ ] to select the parameter.
3. Use the VALUE dial or [DEC] [INC] to make settings.

For details on the available parameters and values, refer to "[4 (ATV EXP)]" (p. 153).
4. If you want to keep these settings, press [7 (WRITE)].

TIP
You can use the function keys shown in the bottom of the screen to access the D Beam controller assignable or solo synth setting screens.
5. Press [EXIT] to return to the previous screen.

## MEMO

Setting for the Active Expression are saved for system settings.

## ASSIGNABLE

You can assign various functions to the D Beam controller and apply a wide range of effects to the sound in real time.

1. Hold down [SHIFT] and press D BEAM [ASSIGNABLE].

A screen like the following appears.

(Example screen in Patch mode)
2. Press $[\boldsymbol{\Delta}][\boldsymbol{]}$ to select the parameter.
3. Use the VALUE dial or [DEC] [INC] to make settings.

For details on the available parameters and values, refer to "[4 (DBASGN)]" (p. 136) in Performance mode, and refer to "[5 (ASSIGN)]" (p. 153) in Patch mode.

## TIP

You can use the function keys shown in the bottom of the screen to access the D Beam controller active expression or solo synth setting screens.
4. Press [EXIT] to return to the previous screen.

## MEMO

In Performance mode, the assignable settings are saved as settings of the performance. If you want to save these settings, press [WRITE] to save them in the performance (p. 133).

## MEMO

In Patch mode, the assignable settings are saved as system
settings. If you want to keep these settings, press [7 (WRITE)].

## Using the Knobs to Modify the Sound (SOUND MODIFY)

You can use the SOUND MODIFY knobs to modify the sound in real time.

## (MEMO

If you've selected a rhythm set in Patch mode, the ENVELOPE [ATTACK]/[RELEASE] knobs and the [CUTOFF]/[RESONANCE] knobs will affect each key (rhythm tone) individually.

## (MEMO)

The parameters affected by the SOUND MODIFY knobs will depend on whether you're in Patch mode or Performance mode (MASTER EQ is an exception). For details, refer to the explanation for the relevant section.

## MEMO

In Performance mode, these knobs will affect the current part the currently selected part). In the PERFORM PLAY screen or PART SELECT screen, the part for which KHOE is shown is the part affected

by the SOUND MODIFY knobs.

## NOTE

Depending on the settings of the patch, turning a knob might not affect the sound in some cases.

## Modifying How the Volume Changes (ENVELOPE [ATTACK]/[RELEASE] Knobs)

The "envelope" is the shape of the volume changes from when an instrument begins sounding until it decays to silence. On a keyboard instrument, the envelope specifies the way that the volume changes, starting when you press a key, and how it decays after you release the key.


[^0]On the JUNO-STAGE, you can use the two ENVELOPE knobs to adjust the A (Attack) and R (Release) times of the currently selected patch.

| Mode | Parameter | Value | Explanation |
| :---: | :---: | :---: | :---: |
| [ATTACK] knob |  |  |  |
| Performance (Each Part) | Attack Time Offset | -64-+63 | Adjusts the time from when you press the key until the sound reaches the maximum level. <br> Turning the knob toward the right will lengthen the attack time, and turning it toward the left will shorten the attack time |
| Patch (Patch) | Attack Time Offset | -63-+63 |  |
| Patch <br> (Rhythm Set) | A-Env Time 1 | 0-127 |  |
| [RELEASE] knob |  |  |  |
| Performance (Each Part) | Release <br> Time | -64-+63 | Adjusts the time from when you release the key until the sound is no longer heard. Turning the knob toward the right will lengthen the release time, and turning it toward the left will shorten the release time. <br> * In the case of a rhythm set, the setting window will show the currently selected key (for example, C4). |
| Patch (Patch) | Release <br> Time <br> Offset | -63-+63 |  |
| Patch <br> (Rhythm Set) | A-Env <br> Time 4 | 0-127 |  |

## Modifying the Tonal Character ([CUTOFF]/[RESONANCE] Knobs)

You can use these knobs to adjust the filter that cuts or boosts specific frequency regions of the sound.
These affect the following parameters of the currently selected patch.

| Mode | Parameter | Value | Explanation |
| :---: | :---: | :---: | :---: |
| [CUTOFF] knob |  |  |  |
| Performance (Each Part) | Cutoff Offset | -64-+63 | Adjusts the frequency (cutoff frequency) at which the filter begins to be applied. <br> Turning the knob toward the right will brighten the sound, and turning it toward the left will darken the sound. |
| Patch (Patch) | Cutoff Offset | -63-+63 |  |
| Patch <br> (Rhythm Set) | Cutoff Frequency | 0-127 |  |
| [RESONANCE] knob |  |  |  |
| Performance (Each Part) | Resonance Offset | -64-+63 | Boosts the sound in the vicinity of the cutoff frequency, adding a distinctive character to the sound. <br> Turning the knob toward the right will strengthen this character, and turning the knob toward the left will weaken it. |
| Patch (Patch) | Resonance Offset | -63-+63 |  |
| Patch <br> (Rhythm Set) | Resonance | 0-127 |  |

## Adjusting the Level of the Low and High Frequency Ranges (MASTER EQ [LOW]/[HIGH] Knobs)

You can use these knobs to adjust the levels of the Low and High Frequency ranges of the equalizer that is applied to the overall sound (MASTER EQ).

| Knob | Parameter | Value | Explanation |
| :--- | :--- | :--- | :--- |
| [LOW] | Low Gain | $-15-0-+15$ | Adjusts the low range sound. <br> Turning the knob toward the <br> right will boost the low range <br> sound, while turning it toward <br> the left will attenuate the low <br> range sound. |
| [HIGH] | High Gain | $-15-0-+15$ | Adjusts the high range sound. <br> Turning the knob toward the <br> right will boost the high range <br> sound, while turning it toward <br> the left will attenuate the high <br> range sound. |

## Adding Reverberation ([REVERB] Knob)

You can add reverb (reverberation) to the sounds that you play from the keyboard.
By adding reverb, you can recreate the pleasant acoustics that are typical of a performance in a concert hall or similar space.

| Mode | Parameter | Value | Explanation |
| :---: | :---: | :---: | :---: |
| [REVERB] knob |  |  |  |
| Performance | Reverb Send Level | 0-127 | Adjusts the amount of reverb. Turning the knob toward the right will deepen the reverb, and turning it toward the left will decrease the reverb. |
| Patch | Reverb Output Level | 0-127 |  |

## MEMO

This effect will be applied if "REVERB" is turned "ON" in the EFFECT SWITCH window (p. 79).

## Disabling the Knobs ([LOCK])

Turning on [LOCK] will disable the seven SOUND MODIFY knobs so that inadvertently moving these knobs during a performance will not change your settings.

1. Press [LOCK] so it's lit.

The Lock function will be turned on, and the SOUND MODIFY knobs will be disabled.
2. To cancel the Lock function, press [LOCK] so its illumination is turned off.

## (MEMO

If the Lock function is on, the value of the parameters will not change even if the knob positions are changed.

## Assigning a Function to the Pedal (Control Pedal)

You can assign various performance-related functions to a pedal that is connected to the rear panel CONTROL PEDAL jack.
Pedal such as expression pedals (sold separately), pedal switches (DP series; sold separately), or foot switches (sold separately) can be connected to the JUNO-STAGE.

1. Press [MENU].
2. Use [ $\boldsymbol{\Delta}][\boldsymbol{\nabla}$ ] to select " 1 . System," and press [ENTER]. The System Menu window will appear.
3. Press $[3$ (KBD/CTRL)].
4. Press [3 (PEDAL)].
5. Use [ $\boldsymbol{\Delta}][\boldsymbol{Z}]$ to select the "Control Pedal Assign."
6. Use the VALUE dial or [DEC] [INC] to select the desired value.

| Value | Explanation |
| :--- | :--- |
| CCOI-31, 33-95 | Controller numbers 1-31, 33-95 |
| BEND UP | The pitch will rise in semitone steps <br> (maximum 4 octaves) each time you <br> press the pedal. |
| BEND DOWN | The pitch will fall in semitone steps <br> (maximum 4 octaves) each time you <br> press the pedal. |
| AFTERTOUCH | Aftertouch |
| OCT UP | Each pedal press raises the key range <br> in octave steps (up to 3 octaves higher). |
| OCT DOWN | Each pedal press lowers the key range <br> in octave steps (up to 3 octaves lower). |
| START/STOP | The song or the rhythm pattern will <br> start/stop. |
| TAP TEMPO | Tap tempo (a tempo specified by the <br> interval at which you press the pedal). |
| PROGRAM UP | The next sound number will be selected. |.

7. If you want to keep your settings, press [7 (WRITE)].
8. Press [EXIT] to return to the previous screen.

## Playing Arpeggios ([ARPEGGIO])

## About Arpeggio Function

The JUNO-STAGE has an Arpeggio function that lets you produce arpeggios automatically; simply press some keys and a corresponding arpeggio will be played automatically.
You can select from various Arpeggio Styles to specify how arpeggios are produced. In addition to the factory-set arpeggio styles, you can also create and use your own original arpeggio styles.
The JUNO-STAGE provides 128 preset arpeggio styles and 128 user arpeggio styles. You are free to rewrite the user arpeggio styles that are provided as the factory settings.
Arpeggio settings are saved as part of each performance; they cannot be saved in a patch.
You can also enjoy performing an ensemble by using arpeggios in conjunction with rhythm patterns (p. 74).

## Playing by Using Arpeggios

## Turning Arpeggio On and Off

1. Press [ARPEGGIO] so it's lit.

The Arpeggio function will turn on.
The ARPEGGIO STYLE screen appears.


You can make arpeggio settings in this screen.
To exit the ARPEGGIO STYLE screen, press [EXIT].
2. Play a chord on the keyboard.

The JUNO-STAGE will play an arpeggio, according to the notes forming the chord you have just voiced.
3. To finish playing arpeggios, press [ARPEGGIO] again so it's distinguished.

## MEMO

If you're in Performance mode and the arpeggio does not sound when you play the keyboard with the Arpeggio function turned on, change the current part so it matches the part that's specified for "Part" (p. 61) in the ARPEGGIO STYLE screen, or turn on the Keyboard Switch (p. 134) for the part that's specified for "Part."

## Determining the Tempo for Arpeggio Performances

This sets the arpeggio tempo.

1. Press [TAP TEMPO].

The tempo setting window will open.
2. Press [TAP TEMPO] three or more times at the desired tempo.

The tempo will be set to the interval at which you pressed the button.

3. To close the setting window, press [7 (CLOSE)] or [EXIT].

When the tempo setting window is open, you can use the VALUE dial or [DEC] [INC] to directly change the tempo setting.

## Holding an Arpeggio

By using the following procedure, you can produce arpeggios even without continuing to press the keyboard.

1. Press [ARPEGGIO] to turn on the arpeggio.

The ARPEGGIO STYLE screen appears.
2. Press [2 (HOLD)] to add a check mark $(\mathcal{V})$.
3. Play a chord on the keyboard.
4. If you play a different chord or notes while the arpeggio is being held, the arpeggio will change accordingly.
5. To cancel Arpeggio Hold, press [2 (HOLD)] once again.

## When Using a Hold Pedal

If you play an arpeggio while pressing the hold pedal (p. 21), the arpeggio will continue to be played even if you release the chord.

1. Connect an optional pedal switch (DP series etc.) to the HOLD PEDAL jack.
2. Press [ARPEGGIO] to turn on the arpeggio.
3. Play a chord while pressing the hold pedal.
4. If you play a different chord or notes while the arpeggio is being held, the arpeggio will change accordingly.

## Using in Combination with the Chord Memory Function

When performing with the Arpeggio, you can also use it along with the Chord Memory function (p. 64). After first storing complex Chord Forms in memory, you can then call them up when Arpeggio function is on, and you can easily play complex arpeggio sounds just by pressing a single key.

## Arpeggio Settings

1. Press [ARPEGGIO] so it's lit. Alternatively, hold down [SHIFT] and press [ARPEGGIO].

The ARPEGGIO STYLE screen appears.
TIP
By holding down [SHIFT] and pressing [ARPEGGIO], you can access the ARPEGGIO STYLE screen without turning the arpeggio function on/off.
2. Press [ $\boldsymbol{\Delta}][\boldsymbol{]}$ ] to select the parameter.
3. Use the VALUE dial or [DEC] [INC] to make the setting.

| Parameter | Value | Explanation |
| :---: | :---: | :---: |
| (Arpeggio Style) | $\begin{aligned} & \hline \text { U001-128 } \\ & \text { (User), } \\ & \text { POO1-128 } \\ & \text { (Preset) } \end{aligned}$ | This selects the arpeggio's basic performance style. <br> The arpeggio styles are kept in preset memory and user memory. |
| Grid | $\begin{aligned} & 1 / 4,1 / 8, \\ & 1 / 8 \mathrm{~L}, 1 / 8 \mathrm{H}, \\ & 1 / 12,1 / 16, \\ & 1 / 16 \mathrm{~L}, 1 / 16 \mathrm{H}, \\ & 1 / 24 \end{aligned}$ | This sets the particular note division and resolution in a "single grid" used in creating the arpeggio in an Arpeggio Style, and how much of a "shuffle" syncopation is to be to applied (none/weak/strong) to it (grid type). <br> 1/4: Quarter note (one grid section = one beat) <br> 1/8: Eighth note (two grid sections = one beat) <br> 1/8L: Eighth note shuffle Light (two grid sections = one beat, with a light shuffle) <br> 1/8H: Eighth note shuffle Heavy (two grid sections = one beat, with a heavy shuffle) <br> 1/12: Eighth note triplet (three grid sections = one beat) <br> 1/16: Sixteenth note (four grid sections = one beat) <br> 1/16L: Sixteenth note shuffle Light (four grid sections = one beat, with a light shuffle) <br> 1/16H: Sixteenth note shuffle Heavy (four grid sections = one beat, with a heavy shuffle) <br> $\mathbf{1 / 2 4}$ : Sixteenth note triplet (six grid sections = one beat) <br> * Grid settings are shared with the rhythm pattern. |
| Duration | 30-120\%, Full | This determines whether the sounds are played staccato (short and clipped), or tenuto (fully drawn out). <br> 30-120: For example, when set to "30," the length of the note in a grid (or when a series of grids is connected with ties, the final grid) is $30 \%$ of the full length of the note set in the grid type. <br> Full: Even if the linked grid is not connected with a tie, the same note continues to sound until the point at which the next new sound is specified. <br> * Duration settings are shared with the rhythm pattern. |
| Motif | (See p. 62.) | Refer to "Selecting Ascending/Descending Variations (Motif)" (p. 62). |
| Velocity | REAL, 1-127 | Specifies the loudness of the notes that you play. <br> REAL: If you want the velocity value of each note to depend on how strongly you play the keyboard, set this parameter to REAL. <br> 1-127: If you want each note to have a fixed velocity regardless of how strongly you play the keyboard, set this parameter to the desired value. |
| Oct Range | -3-+3 | This adds an effect that shifts arpeggios one cycle at a time in octave units (octave range). You can set the shift range upwards or downwards (up to three octaves up or down). |
| Accent | 0-100 | When you play arpeggios, the velocity of each arpeggiated note is determined by the velocity of the notes programmed within the arpeggio style. You can adjust the amount ("spread") of this dynamic variation. With a setting of "100," the arpeggiated notes will have the velocities that are programmed by the arpeggio style. With a setting of " 0, " all arpeggiated notes will be sounded at a fixed velocity. |
| Part <br> (Displayed in Performance mode) | Partl-16 | Here's how to specify the part that will use the arpeggio in Performance mode. You can specify only one part for playing arpeggios. <br> If a rhythm set is assigned to a part in Performance mode, you can play a rhythm set along with the arpeggios. <br> * The part you select here functions for both the arpeggio and the chord memory functions. |

4. When you have made the setting, press [5 (EXIT)] or [EXIT].

## About Arpeggio Styles

An Arpeggio Style is a series of data for basic arpeggio patterns and chord styles recorded in the form of a grid consisting of a maximum of 32 steps $\times 16$ pitches. Each grid contains one of the following kinds of data.

- ON: Note On (with velocity data)
- TIE: Tie (hold of the previous note)
- REST: Rest (no sound played)

The keys that are pressed along with the sequence in which they are pressed is referenced to the "lowest-pitched key during input."


## Selecting Ascending/Descending Variations (Motif)

This selects the method used to play sounds (motif) when you have a greater number of notes than programmed for the Arpeggio Style.

* When the number of keys played is less than the number of notes in the Style, the highest-pitched of the pressed keys is played by default.

| Value: | Explanation |
| :--- | :--- |
| Up (L) | Only the lowest of the keys pressed is sounded each <br> time, and the notes play in order from the lowest of <br> the pressed keys. |
| Up (L\&H) | Notes from both the lowest and highest pressed keys <br> are sounded each time, and the notes play in order <br> from the lowest of the pressed keys. |
| Up (U | The notes play in order from the lowest of the <br> pressed keys. No one note is played every time. |
| Down (L) | Only the lowest of the keys pressed is sounded each <br> time, and the notes play in order from the highest of <br> the pressed keys. |
| Down (L\&H) | Notes from both the lowest and highest pressed keys <br> are sounded each time, and the notes play in order <br> from the highest of the pressed keys. |
| Down ( $\quad$ | The notes play in order from the highest of the <br> pressed keys. No note is played every time. |
| U/D (L) | Notes will be sounded from the lowest to the highest <br> key you press and then back down to the lowest key, <br> with only the lowest key sounded each time. |
| U/D (L\&H) | Notes from both the lowest and highest pressed keys <br> are sounded each time, and the notes play in order <br> from the lowest of the pressed keys and then back <br> again in the reverse order. |
| U/D ( $)$ | The notes play in order from the lowest of the <br> pressed keys, and then back again in the reverse <br> order. No note is played every time. |
| Rand (L) | Notes will be sounded randomly for the keys you <br> press, with only the lowest key sounded each time. |
| Rand ( $)$ | Only the lowest of the keys pressed is sounded each <br> time, the notes you press will be sounded randomly. <br> No note will sound each time. |
| Pressing iust one key will play a phrase based on the <br> pitch of that key. If you press more than one key, the <br> key you press last will be used. |  |

## <Example>

Action of a Style starting from the lowest note, " $1-2-3-2$ " when the keys "C-D-E-F-G" are played

- When "UP (L)" is selected as the motif:

C-D-E-D $\rightarrow$ C-E-F-E $\rightarrow$ C-F-G-F $(\rightarrow$ repeated $)$

- When "UP $\left(\_\right)$" is selected as the motif: C-D-E-D $\rightarrow$ D-E-F-E $\rightarrow$ E-F-G-F $(\rightarrow$ repeated $)$
- When "UP\&DOWN (L\&H)" is selected as the motif: C-D-G-D $\rightarrow$ C-E-G-E $\rightarrow$ C-F-G-F $\rightarrow$ C-E-G-E $(\rightarrow$ repeated $)$


## Creating an Arpeggio Style

In addition to using the built-in arpeggio styles, you are free to create your own.
Broadly speaking, there are two ways to create an arpeggio style.

## Step-recording from the Keyboard

In this method, you use the keyboard to step-record your arpeggio.
Each time you input a note, you will advance to the next step. This method is convenient when you want to create an arpeggio from scratch using a Style that contains no data.

## MEMO

If you want to create "from scratch," you'll need to initialize the Style. In the ARPEGGIO STYLE EDIT screen, hold down [SHIFT] and press [5 (INIT)]. A message will ask whether you want to initialize; press [7 (EXEC)] to execute initialization.

1. Press [ARPEGGIO] so it's lit. Alternatively, hold down [SHIFT] and press [ARPEGGIO].
TIP
When you hold down [SHIFT] and press [ARPEGGIO], the ARPEGGIO STYLE screen will appear regardless of whether the arpeggio function is on or off.
2. Press [6 (EDIT)].

The ARPEGGIO STYLE EDIT screen appears.

3. Press [2 (SETUP)].

The Arpeggio Setup window appears.
4. Use the cursor buttons to move the cursor to the parameter that you want to edit.
5. Use the VALUE dial or [DEC] [INC] to set the value.

| Indication | Value | Explanation |
| :---: | :---: | :---: |
| End Step | 1-32 | Specifies the number of steps. |
| Input Velocity | $\begin{aligned} & \text { REAL, } \\ & 1-127 \end{aligned}$ | Specifies the velocity (strength) of the notes. Choose "REAL" if you want the velocity to be the velocity at which you actually struck the key. Otherwise, you can specify the velocity you like. <br> Some typical values are: <br> $p$ (piano) $=60$, <br> mf (mezzo forte) $=90$, <br> $f($ forte) $=120$. |

6. Press [7 (CLOSE)] to close the Arpeggio Setup window.

## Chapter 3. Versatile Performance Functions

7. Press [7 (STP REC)] to add a check mark ( $\checkmark$ ).

Now you're ready to step-record.

- To move to the desired input location, press cursor buttons.
- To input notes, play the keyboard.
- To input a tie, press [3 (TIE)].
- To input a rest, press [4 (REST)].
- To erase the note, hold down [SHIFT] and press [7 (CLR NOTE)].
- To erase all notes at the current step, hold down [SHIFT] and press [6 (CLR STEP)].
- By pressing [5 (PREVU)] to add a check mark ( $\mathcal{V}$ ) you can listen to the style that you're entering.


## MEMO

A maximum of sixteen note numbers (pitches) can be used in a single style.
8. When you have finished, press [6 (EXIT)].

## Entry Using the VALUE Dial and Buttons

With this method, you use the cursor to specify the step and pitch to input, and use the VALUE dial or [DEC] [INC] to enter the values. This method is convenient when you need to edit or modify a style that's already been input.

1. In the ARPEGGIO STYLE EDIT screen, press [7 (STP REC)] to clear the check mark $(\mathcal{V})$.
Proceed as follows to input the steps.

- Use the cursor buttons to specify the step and pitch to input.
* When using this method to input, you can't use the keyboard to specify pitches. (You won't be entering notes as you did in Step Recording.)
- Use the VALUE dial or [DEC] [INC] to enter the velocity value. You can enter a tie by turning the VALUE dial all the way to the right (or by pressing [ INC ] to raise the value all the way).
- You can also enter a tie by pressing [3 (TIE)].
- To enter a rest, press [4 (REST)].
- If you press [5 (PREVU)] to display the check mark ( $\boldsymbol{V}$ ), you'll be able to hear the pattern you're inputting.


## MEMO

A maximum of sixteen different note numbers (pitches) can be used in a single style.
2. When you've finishing inputting, press [6 (EXIT)].

You will return to the ARPEGGIO STYLE screen.

## Saving an Arpeggio Style You've Created (WRITE)

An arpeggio style you've created is temporary, and will be lost when you turn off the power or select a different style. If you want to keep a style you've created, you must save it in the JUNO-STAGE's user memory.
MEMO
In Performance mode, the arpeggio parameters (Arpeggio Style, Grid, Motif, Duration, etc.) can be saved for each performance (p. 133). These parameters cannot be saved in a patch.

1. When you've finished creating an arpeggio style in the ARPEGGIO STYLE EDIT screen, press [EXIT] to access the ARPEGGIO STYLE screen.
2. Press [7 (WRITE)].

The ARPEGGIO STYLE NAME screen will appear.

3. Assign a name to the arpeggio style.

## MEMO

For details on assigning a name, refer to p. 44.
4. When you've finished assigning the name, press [7 (WRITE)]. A screen in which you can specify the save destination will appear.
5. Use the VALUE dial, [DEC] [INC], or [ $\Delta$ ] [ $\nabla$ ] to specify the save destination.
6. Press [7 (WRITE)].

A confirmation message will appear.
If you decide to cancel, press [6 (CANCEL)].
7. Press [7 (EXEC)] to save the arpeggio style.

## NOTE

Never turn off the power while data is being saved.

## Using the Chord Memory Function ([CHORD MEMORY])

About the Chord Memory Function<br>Chord Memory is a function that allows you to play chords based on pre-programmed Chord Forms, just by pressing a single key on the keyboard. The JUNO-STAGE can store 64 preset chord forms and 64 user chord forms. If you wish, you can overwrite any of the 64 user (factory set) chord forms.<br>The chord memory function operates on the arpeggio part in Performance mode. If a rhythm set is selected for that part, you can also use this to play rhythms.

## NOTE

When you use the Chord Memory function with a tone for which the Mono/Poly Parameters ( p .101 ) is Mono, only one sound in the chord is played. When using the Chord Memory function to turn Poly the Mono/Poly Parameters.

## Performing with the Chord Memory Function

## Turning Chord Memory Function On and Off

1. Press [CHORD MEMORY] so it's lit.

The Chord Memory function will turn on.
The CHORD MEMORY screen will appear.

(Example screen in Performance mode)
In this screen you can select a chord form and make settings for the Rolled Chord function.
To exit the CHORD MEMORY screen, press [5 (EXIT)] or [EXIT].
2. Play the keyboard.

A chord will sound according to the currently selected chord form.
When you press the C 4 key (Middle C ), the chord is played using the exact chord structure recorded in the Chord Form. This is referenced to the C 4 key; parallel chords are played by pressing other keys.
3. To finish playing chords, press [CHORD MEMORY] again to turn it off.

## (MEMO)

In Performance mode, the Chord Memory function applies to the part played by the arpeggio. In the CHORD MEMORY screen this is shown as "Arpeggio Part (part number)." To change the part that will use the Chord Memory function, go to the ARPEGGIO STYLE screen (p. 61) and change the "Part" setting.

## Selecting Chord Forms

Changing the chord form will change the notes in the chord.

1. Press [CHORD MEMORY] so it's lit. Alternatively, hold down [SHIFT] and press [CHORD MEMORY].
The CHORD MEMORY screen appears.
TIP
By holding down [SHIFT] and pressing [CHORD MEMORY], you can access the CHORD MEMORY screen without turning the chord memory function on/off.
2. Use the VALUE dial or [DEC] [INC] to select a Chord Form number. U01-64: User
P01-64: Preset
The notes of the chord will be displayed.
To exit the CHORD MEMORY screen, press [5 (EXIT)] or [EXIT].

## Sounding a Chord in the Order of Its Notes (Rolled Chord)

This causes the notes within a chord to be sounded consecutively, rather than simultaneously. Since the playback speed will change according to the force with which you play the keyboard, you can vary your playing dynamics to create a realistic simulation of playing a guitar.

1. Press [CHORD MEMORY] so it's lit. Alternatively, hold down [SHIFT] and press [CHORD MEMORY].
The CHORD MEMORY screen appears.

## TIP

By holding down [SHIFT] and pressing [CHORD MEMORY], you can access the CHORD MEMORY screen without turning the chord memory function on/off.
2. Press [2 (ROLL)] to add a check mark (V).

With this setting, the notes of the chord will be sounded consecutively when you play the keyboard.

## Changing the Order in Which Notes Are Sounded

You can change the order in which the notes of a chord are sounded.

1. In the CHORD MEMORY screen, use [ $\Delta][\boldsymbol{Z}$ ] to move the cursor to "Rolled Chord Type."
2. Use the VALUE dial or [DEC] [INC] to change a value.

UP: $\quad$ Notes will be sounded in order from bottom to top.
DOWN: Notes will be sounded in order from top to bottom.
ALTERNATE: The order in which the notes are sounded will change each time you play the keyboard.

## Using in Combination with the Arpeggio Function

When performing with the Chord Form function, you can also use it along with the Arpeggio function (p.60). After first storing complex Chord Forms in memory, you can then call them up when Arpeggio is on, and you can easily create complex arpeggio sounds just by pressing a single key.

## Creating Your Own Chord Forms

The instrument already provides a large number of chord forms from which you can select. However, you are not limited to these, since you can freely create your own chord forms.

1. Press [CHORD MEMORY] so it's lit. Alternatively, hold down [SHIFT] and press [CHORD MEMORY].
The CHORD MEMORY screen appears.
TIIP
By holding down [SHIFT] and pressing [CHORD MEMORY], you can access the CHORD MEMORY screen without turning the chord memory function on/off.
2. Use the VALUE dial or [DEC] [INC] to select a chord form.
3. Press [6 (EDIT)].

The CHORD MEMORY EDIT screen shown below will appear.

4. Use the keyboard to input the chord that you want to play. When you press a key, the note will be added in the screen.

- If you input a note by mistake, press [4 (DELETE)]. You can also erase a note you input by pressing the same key.
- If you want to erase all notes, press [3 (ALL DEL)].
- You can press [2 (PREVIEW)] to hear the chord that you are inputting.

5. When you have finished, press [6 (EXIT)].

You will return to the CHORD MEMORY screen.

## Saving the Chord Forms You Have Created (WRITE)

The Chord Forms you create are temporary; they are deleted as soon as you turn off the power or select some other Chord Form. If you want to keep a Chord Form you have made, save it to the JUNOSTAGE's user memory.

## MEMO

In Performance mode, you can save chord forms for each performance (p. 133). Chord forms cannot be saved in patches.

1. In the CHORD MEMORY EDIT screen, create a chord form.
2. Press [7 (WRITE)].

The CHORD NAME screen appears.

3. Assign a name to the Chord Form.
cf.
For details on assigning names, refer to p. 44.
4. When you have finished inputting the name, press [7 (WRITE)].

A screen will appear, allowing you to select the write-destination Chord Form.
5. Use the VALUE dial, [DEC] [INC], or [ $\mathbf{\Delta}][\nabla$ ] to select the write destination.
6. Press [7 (WRITE)].

A message will ask you for confirmation.
To cancel, press [6 (CANCEL)].
7. To save the Chord Form, press [7 (EXEC)].

## NOTE

Never switch off the JUNO-STAGE while data is being saved.

## Using the V-LINK ([V-LINK])

## What is V-LINK?

V-LINK ( V-L/WKK ) is a function that allows music and images to be performed together. By using MIDI to connect two or more V-LINK compatible devices, you can easily enjoy performing a wide range of visual effects that are linked to the expressive elements of a music performance.
For example if you use the JUNO-STAGE in conjunction with Edirol motion dive .tokyo Performance Package, you'll be able to do the following things.

- Operate the JUNO-STAGE to make the necessary settings for performing with motion dive .tokyo Performance Package.
- Use the JUNO-STAGE's keyboard to switch images in motion dive .tokyo Performance Package.
- Use the JUNO-STAGE's knob to control the brightness and hue of the image.


## Connection Example

Connect the JUNO-STAGE's MIDI OUT connector to your V-LINK compatible device.
We will use Edirol motion dive .tokyo Performance Package as an example.

## NOTE

Before connecting this unit to other devices, turn off the power to all units. This will help prevent malfunctions and/or damage to speakers or other devices.


MIDI OUT


## Turning the V-LINK ON/OFF

1. Press [V-LINK] so it's lit.

The V-LINK screen appears, and the V-LINK setting will be on.


Operations on the JUNO-STAGE
By operating the JUNO-STAGE's keyboard and knobs, you can control the image along with your performance on the JUNOSTAGE.

| Button/Knob/Keyboard | Explanation |
| :--- | :--- |
| [5 (CLIP)] (Clip Reset) | Turns the image off (solid black). |
| [6 (ALL)] (All Reset) | Resets the effect applied to the <br> image, and restores all settings <br> such as brightness and hue to their <br> default values. |
| [7 (SETUP)] | Accesses the V-LINK SETUP screen. |
| Black keys | Switch tabs. |
| White keys | Switch clips. |
| [CUTOFF] knob | Controls VISUAL PLUG-IN <br> CONTROL. |
| [RESONANCE] knob | Controls COLOR EQ (Back). |
| D BEAM controller | Controls the parameter specified in <br> V-LINK setup. |

* When you turn V-LINK on, the settings in V-LINK setup will take priority for D Beam controller operation.

2. With the V-LINK screen shown, press [V-LINK] again.

The V-LINK button will go dark, and the V-LINK setting will be off.

## Chapter 3. Versatile Performance Functions

## V-LINK Settings (V-LINK SETUP)

1. Press [V-LINK] to access the V-LINK screen.
2. Press [7 (SETUP)].

The V-LINK SETUP screen appears.

3. Use [ $\Delta$ ] [ $]$ to move the cursor to the parameter you want to edit.
4. Use the VALUE dial or [DEC] [INC] to set the value.

| Parameter | Value | Explanation |  |
| :---: | :---: | :---: | :---: |
| Note Tx Channel A | 1-16 | Controls the V-LINK device. Specify the MIDI channel. (*) |  |
| Note Tx Channel B |  |  |  |
| Note Tx Channel C |  |  |  |
| D BEAM | Assigns a V-LINK function to the D Beam controller. |  |  |
|  | OFF | The operation selected by D BEAM buttons will occur regardless of whether V-LINK is on or off. |  |
|  | ColorEQ Fore | CC01 (Modulation) | Used with motion dive .tokyo Performance Package |
|  | ColorEQ Back | CC71 (Resonance) |  |
|  | Scratch SW | CC03 |  |
|  | Speed Knob | CC08 (Balance) |  |
|  | Total Fader | CC10 (Panpot) |  |
|  | Cross Fader | CC11 (Expression) |  |
|  | BPM Sync SW | CC64 (Hold) |  |
|  | Clip Loop SW | CC65 (Portamento) |  |
|  | Assign Knob | CC72 (Release) |  |
|  | Fade Time SW | CC73 (Attack) |  |
|  | Visual Knob | CC74 (Cutoff) |  |
|  | AB SW | CC81 (General-6) |  |
|  | Tap SW | CC83 (General-8) |  |
|  | Total Select | CC85 |  |
|  | FX Select | CC86 |  |
|  | Play Pos | CC91 (Reverb) |  |
|  | LoopStartPos | CC92 (Tremolo) |  |
|  | Loop End Pos | CC93 (Chorus) |  |
|  | LayerModeSel | CC94 (Celeste) |  |
|  | Dissolve Time | CC73 (Attack) | Used with the DV-7PR and similar devices. |
|  | Color Cb Ctrl | CC01 (Modulation) |  |
|  | Color Cr Ctrl | CC71 (Resonance) |  |
|  | Brightness Ctrl | CC74 (Cutoff) |  |
|  | VFX1 Ctrl | CC72 (Release) |  |
|  | VFX2 Ctrl | CC91 (Reverb) |  |
|  | VFX3 Ctrl | CC92 (Tremolo) |  |
|  | VFX4 Ctrl | CC93 (Chorus) |  |
|  | Fade Ctrl | CCl0 (Panpot) |  |

*: On V-LINK compatible devices such as the Edirol DV-7PR/P-1, only Note Tx Channel A is used.
In motion dive .tokyo Performance Package, the Note Tx Channel corresponds as follows.
A: The MIDI channel that controls section A
B: The MIDI channel that controls section B
C: The MIDI channel that controls the MIDI note plug-in
5. If you want to keep your settings, press [7 (WRITE)].
6. Press [6 (EXIT)] or [EXIT] to return to the previous screen.

## Chapter 4. Using the Song Player

The JUNO-STAGE's "SONG PLAYER" has the following two functions. To switch between these two functions, turn [RHYTHM PATTERN] on (the Rhythm Pattern function) or off (the SONG PLAYER function). You can play along on the keyboard to the accompaniment of the music played back by the Song Player.

## Song Player (p. 68)

This plays back songs (audio files or SMF data) saved on USB memory. You can play back songs in an order specified by a "playlist."

## TERM

## Playlist:

When playing back multiple songs on the JUNO-STAGE, you can create a list to specify the order in which the songs will be played.

## TERM

## Song list:

This refers to the list of the songs specified in the playlist.

## Rhythm Pattern (p. 74)

This plays back rhythm patterns for a wide variety of musical styles.

## NOTE

You can't use the song player and rhythm patterns at the same time.

## Playing Back Music Files (SONG PLAYER)

The following illustration shows the basic procedure for using JUNOSTAGE's song player to play music files.

1 Copy your data to USB Memory.


2 Connect your USB Memory to the JUNO-STAGE.


## MEMO

Please use USB memory sold by Roland. We cannot guarantee operation if other products are used.

## NOTE

- Connect your USB memory after you've turned the JUNOSTAGE's power on.
- Never disconnect the USB memory while the power is turned on.
- If there is a large number of songs, it may take ten minutes or more for the data to be loaded from USB memory.


## Creating a Playlist

On your computer, start up the included "Playlist Editor" software and create a playlist. When you want to use the JUNO-STAGE to play backing tracks (accompaniment), it's convenient to create a playlist beforehand to specify the order in which the tracks should be played.
For details on how to create a playlist, refer to the
"PlaylistEditorManualE.pdf" that's installed together with "Playlist Editor."

## NOTE

- You'll need to use the included "Playlist Editor" to create playlists. You can't create playlists on the JUNO-STAGE itself.
- You can play back individual songs without creating a playlist. In this case, you'll need to place the SMF or audio files in the root directory of your USB memory.
- Only audio files of a compatible sampling frequency can be played (p. 69). When adding audio files to your playlist, we recommend that you keep their sampling frequency consistent.

Chapter 4. Using the Song Player

## SMF/Audio Files That Can Be Played

| SMF |  |  |
| :---: | :---: | :---: |
|  | Format | 0 or 1 <br> * For SMF format 1, there are limitations on the tracks that can be played. |
|  | File size | Maximum of approximately 240 KB (this will change somewhat depending on the content of the SMF) |
|  | System exclusive | Packet size must be 512 or less |
| Audio files |  |  |
| WAV/ AIFF | Sampling frequencies | 44.1 kHz |
|  | Bit depth | 8/16/24-bit |
| MP3 | Format | MPEG-1 audio layer 3 |
|  | Sampling frequency | 44.1 kHz |
|  | Bit rate | $\begin{aligned} & \text { 32/40/48/56/64/80/96/112/ } \\ & 128 / 160 / 192 / 224 / 256 / 320 \mathrm{kbps}, \\ & \text { VBR (Variable Bit Rate) } \end{aligned}$ |

## Selecting and Playing a Song ([SONG LIST])

## NOTE

- Performance data from the SMF playback will not be transmitted from the USB MIDI connector.
- Use the JUNO-STAGE in Performance mode when playing SMF.
- If you want to play the keyboard while SMF plays back, first select the performance that you want to play on the keyboard, and then begin playback. Do not switch performances while the SMF is playing.
- If you play back SMF while editing a performance or patch, the contents of the temporary area will be overwritten, and the data you were editing will be lost. If you want to keep the data you were editing, write it before you play back the SMF (p. 97,p. 133).
- You can't perform Write operations or use Utility functions (p. 155) while playing a song.
- Only audio files with a sampling frequency of 44.1 kHz can be played.
- The JUNO-STAGE can handle a maximum of 999 songs or playlists. (The maximum number that can be handled by Playlist Editor is also 999.)

1. Connect the USB memory containing your playlists and songs to the JUNO-STAGE.
2. Press [SONG LIST].

The button's indicator will light, and the SONG SELECT screen will appear.


## NOTE

If 囷 is shown at the left of the playlist's name, you can't change the settings of the songs in that playlist.
3. Use the VALUE dial or [DEC] [INC] to select the song that you want to play.
4. Press [PLAY].

The selected song will play.
Press [EXIT] to exit the SONG SELECT screen.
5. To stop song playback, press [STOP].

The next time you press [PLAY], playback will resume from the point at which you stopped.

## Moving the Playback Location

You can use the following buttons to move the playback location.

| [ $1<$ ] | Returns to the beginning of the song. If you press this at the beginning of a song, you'll move to the beginning of the preceding song. |
| :---: | :---: |
| [ $4<$ ] | Rewinds the song. |
| $[\rightarrow]$ | Fast-forwards the song. |
| [ I] | Moves to the next song. |
| [PLAY] | Plays the song. |
| [STOP] | Stops the song playback. |
| NOTE |  |
| If you sw than the PLAY, P seconds | ch the song to be played while you're in a screen other ONG SELECT screen (e.g., while you're in PATCH FORM PLAY, or PART SELECT), it may take several playback begins. |

## Adjusting the Volume of the Song Player

1. Use LEVEL [ $\boldsymbol{\|}$ ][ $\boldsymbol{\Delta}$ ] to adjust the volume.

The volume of the Song Player will change.
Value: 0-127

## MEMO

Adjusting this setting will also change the "Song Player Level"
setting in the System settings "CLICK/PLAYER" (p. 151).

## MEMO

If you want to adjust the volume of an individual song, refer to
"SONG LEVEL EDIT Screen" (p. 71).

## Changing the Tempo of the Song (SMF)

You can change the playback tempo of SMF songs.

1. Select the song.
2. Press [TAP TEMPO].

The tempo setting window will open.
3. Press [TAP TEMPO] three or more times at the desired tempo.

The tempo setting window will open, and the tempo will be set to the interval at which you pressed the button.
4. To close the setting window, press [7 (CLOSE)] or [EXIT].

TIP
When the tempo setting window is open, you can use the VALUE dial or [DEC] [INC] to directly change the tempo setting.

## NOTE

Even if an audio file is selected, the tempo setting window will open and the value will be modified, but the tempo of the song will not change.

## SONG SELECT Screen



Pressing [SONG LIST] will access the SONG SELECT screen.
The [2]-[7] buttons located below the display will execute the functions shown in the bottom line of the screen.
Press [SONG LIST] once again to turn off its illumination, and you'll exit the SONG SELECT screen.

| Function Button | Meaning |
| :--- | :--- |
| [2 (PLAYLIST)] | Displays the PLAYLIST SELECT screen (p. 71). |
| [3 (SNG INFO)] | Displays information about the currently <br> selected song. <br> $\rightarrow$ "SONG INFORMATION Screen" (p. 70) |
| [4 (SNG EDIT)] | Adjusts the volume, etc. of the currently selected <br> song. <br> $\rightarrow$ "SONG LEVEL EDIT Screen" (p. 71) |
| [5 (CHANGE)] | Changes the playback order of the currently <br> selected song (p. 72). |
| [6 (DELETE)] | Deletes the currently selected song from the <br> playlist (p. 72). |
| [7 (WRITE)] | Saves the edited playlist (p. 73). |

## SONG INFORMATION Screen



Use $[\longrightarrow][\square]$ to switch the screen.
Press [6 (EXIT)] to return to the SONG SELECT screen.

| Indication | Meaning |
| :--- | :--- |
| Title | Song name |
| Artist | Artist name |
| Meas/Time <br> (measure/time) | Measure in the song (for SMF) / <br> Time in the song (for an audio file) |
| File Name | File name |
| File Type | Type of file (SMF/WAV/AIFF/MP3) |
| Sampling Rate | Sampling rate <br> Shown if the file type is WAV/AIFF/MP3. |
| File Size | Size of the file |
| Memo | Comment, etc. |

## SONG LEVEL EDIT Screen

For an SMF song


## For an audio file song



Adjusts the volume of each song.
Press [6 (EXIT)] to return to the SONG SELECT screen.

## MEMO

If you want to keep the volume setting you've edited, you'll need to save it (p. 73). If you select another playlist without saving your setting, the setting will return to its original state.

| Parameter | Values | Explanation |
| :--- | :--- | :--- |
| Level Adjust | $-12-0-+12$ | Adjusts the volume in a range of <br> $-12-0-+12$ relative to the <br> original volume (the volume of the <br> song in USB memory) as 0. |
| Part 1-16 Level | $0-127$ | If the song's file type is SMF, you <br> san adjust the volume of each <br> part 1-16. <br> Use the cursor buttons to move the <br> cursor to a part number, and use <br> the VALUE dial or [DEC] [INC] to <br> adjust the volume of that part. |

## Selecting and Playing a Playlist

Perform the following steps after performing steps 1-3 of "Selecting and Playing a Song ([SONG LIST])" (p. 69).
4. Press [2 (PLAYLIST)].

The PLAYLIST SELECT screen will appear.

5. Use the VALUE dial or [DEC] [INC] to select the playlist that you want to play.
6. Press [PLAY].

The songs in the selected playlist will play in the specified order.
Press [EXIT] to return to the SONG SELECT screen.
7. To stop song playback, press [STOP].

The next time you press [PLAY], playback will resume from the location at which you stopped.

PLAYLIST SELECT Screen


In the SONG SELECT screen (p. 70), pressing [2 (PLAYLIST)] will take you to the PLAYLIST SELECT screen.
The [2]-[7] buttons located below the display will execute the functions shown in the bottom line of the screen.
Press [EXIT] to return to the SONG SELECT screen.
MEMO
An "*" is shown if the playlist has been modified. If you want to keep the changes you made, you'll need to save them (p. 73).

| Function Bution | Meaning |
| :--- | :--- |
| [2 (SELECT)] | Selects the playlist and displays the SONG <br> SELECT screen (p. 70). |
| [3 (P INFO)] | Displays information about the currently <br> selected playlist. <br> $\rightarrow$ "PLAYLIST INFORMATION Screen" (p. 72) |
| [7 (WRITE)] | Saves the edited playlist (p. 73). |

## PLAYLIST INFORMATION Screen

| FLAYLIST INFORMATION <br> Name <br> NewP1 ast ist 1 <br> Playback Mode Chain Play Refeat Al1 |  |
| :---: | :---: |
| Use [ ] [ ] to switch the screen. |  |
| Use [ $\boldsymbol{\nabla}$ ] [ $\boldsymbol{\Delta}$ ] to move the cursor. |  |
| Pressing [6 (EXIT)] will take you back to the SONG SELECT screen. |  |
| Indication | Meaning |
| Name | Playlist name |
| Playback Mode | Specifies how the songs will play. <br> Chain Play <br> If you move the cursor to this item and press [ENTER] to add a check mark ( $\boldsymbol{V}$ ), Chain Play will be turned on. <br> If this is on, the songs in the playlist will play consecutively. <br> When the last song finishes playing, playback will stop. <br> Repeat All <br> If you move the cursor to this item and press [ENTER] to add a check mark ( $\mathcal{V}$ ), Repeat All will be turned on. <br> If you turn Repeat All on while Chain Play is on, the instrument will play all songs until the last song in the playlist has been played, then it will return to the first song and continue playing repeatedly. <br> * This item is not shown for playlists that have a目 indication at the left of their playlist name. <br> MEMO <br> If you want to keep the changes you made, you'll need to save them (p. 73). |
| Total Time | The total time (minutes: seconds) of the songs in the playlist <br> * This item is not shown for playlists that have a目 indication at the left of their playlist name. |
| Total Meas (total measures) | The total number of measures in the songs of the playlist. <br> * This item is not shown for playlists that have a indication at the left of their playlist name. |
| Memo | Comment, etc. |

## Changing the Song Order

Here's how to change the order of the currently selected song.
In the SONG SELECT screen (p. 70), press [5 (CHANGE)] to access the Change Order window.


1. Turn the VALUE dial to specify the desired order of the currently selected song.
2. When you've specified the desired position in the playback order, press [ENTER].
The song order will be changed, and you will return to the SONG SELECT screen.

## [NOTI

If you modify the contents of a playlist, an "*" will be shown. If you want to keep the changes you made, you must save them (p. 73).

## Deleting a Song From the Playlist

Here's how to delete the currently selected song from the playlist.
In the SONG SELECT screen (p. 70), press [6 (DELETE)] to open the following window.


1. To delete the song from the playlist, press [7 (EXEC)].

If you decide to cancel this operation, press [6 (CANCEL)].
When the song has been deleted from the playlist, you will return to the SONG SELECT screen.

## NOTE

If you modify the contents of a playlist, an "*" will be shown. If you want to keep the changes you made, you must save them (p. 73).

## Saving the Settings of the Playlist (WRITE)

Here's how to save the settings of the currently selected playlist.
In the SONG SELECT screen (p. 70), press [7 (WRITE)] to open the following window.

| SONG SELECT $\quad$ NewPlaylist1 |  |
| :---: | :---: |
| naluma | cekre |
| Message from JUNO-STAGE |  |
| Playlist write, Are You Sure? |  |
| CANCEL EXEC |  |

1. To save the playlist, press [7 (EXEC)].

If you decide to cancel, press [6 (CANCEL)].
You will return to the SONG SELECT screen.

## NOTE

It may take several seconds for the data to be saved.

## NOTH

Never turn off the power while data is being saved.

## Performing Along With a Song ([C. CANCEL/MINUS ONE])

If you use [C. CANCEL/MINUS ONE] when playing back an SMF song, the specified part will be muted (silenced); if you use it when playing back an audio file, the sounds located in the center will be minimized.
This allows you to mute a specific part of a song and play it yourself, or to minimize the vocal or melody of a song while you perform that part.
Depending on the file type of the song, you'll be able to perform the following operations.

| Fle type | Function | Explanation |
| :--- | :--- | :--- |
| SMF | Minus-One | Mutes the specified part. For <br> details on specifying the part to be <br> muted, refer to "Detailed Settings <br> for Minus-One (Minus One <br> Setting)" (p. 154). |
| Audio files | Center cancel | Diminishes the volume of sounds <br> that are located in the center (such <br> as the vocal or the melody <br> instrument). <br> * For some songs, the vocal might <br> not be minimized successfully. |

1. Press [C. CANCEL/MINUS ONE] so it's lit.

When you play back the song, the specified part will be muted if the song is an SMF. If the song is an audio file, the sounds that are located in the center will be diminished in volume.
2. To turn off Minus-One or Center Cancel, press [C. CANCEL/MINUS ONE] so it's extinguished.

## Connecting a Portable Audio Device (EXT INPUT jack)

You can connect an MP3 player or other audio device to the JUNOSTAGE's EXT INPUT jack, and play back songs from it.
If you turn on [C. CANCEL/MINUS ONE], the Center Cancel will be applied to the playback of the device connected to the EXT INPUT jack.

## MEMO

For details on connections, refer to "Connecting a Portable Audio Device" (p. 21).

## Playing Rhythm Patterns ([RHYTHM PATIERN])

## What is a rhythm pattern?

The JUNO-STAGE contains 256 preset rhythm patterns. Simply by pressing the function buttons ([2]-[7]) you can play a wide variety of rhythm patterns. In addition to using these built-in preset rhythm patterns, you can also create your own.

## What is a rhythm group?

A collection of six rhythm patterns is called a "rhythm group." The rhythm set used by that group is also remembered as part of these settings.

## Playing Rhythm Patterns

1. Press [RHYTHM PATTERN] so it's lit.

The RHYTHM GROUP screen will appear.

2. Press [2 (PAD 1)]-[7 (PAD 6)].

The rhythm pattern assigned to the button you pressed will begin playing. The indicator of the currently playing rhythm pattern will blink.

## MEMO

You can make settings in RHYTHM GROUP EDIT (p. 77) to specify which pattern or rhythm set will be played by each button.
3. To stop the pattern playback, press the blinking button or [STOP]. To exit the RHYTHM GROUP screen, press [EXIT].

## Selecting a Rhythm Pattern

Use the following buttons to select a rhythm pattern to play.

| [ ] | Selects the previous rhythm group. |
| :--- | :--- |
| $[\square]$ | Selects the previous rhythm pattern within the same <br> rhythm group. |
| [ ] | Selects the next rhythm pattern within the same rhythm <br> group. |

## Adjusting the Volume of the Rhythm Pattern

## 1. Use LEVEL [ $\boldsymbol{\nabla}$ ] [ $\boldsymbol{\Delta}$ ] to adjust the volume.

The volume of the rhythm pattern will change.

## MEMO

Changing this setting will also affect the rhythm pattern's Velocity (p. 75).

## MEMO

In Performance mode, this setting is saved for each performance.

## Changing the Tempo of the Rhythm Pattern

Here's how to change the tempo of the rhythm pattern.

1. Press [TAP TEMPO].

The tempo setting window will open.
2. Press [TAP TEMPO] three or more times at the desired tempo.

The tempo will be set to the interval at which you pressed the button.

3. To close the setting window, press [7 (CLOSE)] or [EXIT].

TIP
When the tempo setting window is open, you can use the VALUE dial or [DEC] [INC] to directly change the tempo setting.

## Selecting a Rhythm Group/Rhythm Set

1. Press [RHYTHM PATTERN] so it's lit.

The RHYTHM GROUP screen will appear.

2. Use the cursor buttons to move the cursor to the rhythm group.
3. Use the VALUE dial or [DEC] [INC] to select a rhythm group. This selects the basic playing style of the rhythm group.
U01-32: User
P01-26: Preset
When you select a rhythm group, the most suitable rhythm set will be selected.
4. Use the cursor buttons to move the cursor to the rhythm set.
5. Use the VALUE dial or [DEC] [INC] to select a rhythm set.

USER001-032: User
PRSTOO1-032: Preset
GM001-009: $\quad$ Preset (GM)
XP-A 001-: Expansion board
XP-B 001-: Expansion board

Chapter 4. Using the Song Player

## Editing a Rhythm Pattern

## RHYTHM PATTERN Screen



From the RHYTHM GROUP screen, hold down [SHIFT] and press [3 (RHY PTN)] to access the RHYTHM PATTERN screen.
Use the cursor buttons to move the cursor to the parameter you want to edit, and use the VALUE dial or [DEC] [INC] to edit its value.
The [2]-[7] buttons located below the display will execute the functions shown in the bottom line of the screen.
Press [2 (RHY GRP)] or [EXIT] to return to the RHYTHM GROUP screen.

| Parameter | Values | Explanation |
| :---: | :---: | :---: |
| (Rhythm Pattern) | U001-256 (user), P001-256 (preset) | This selects the rhythm's basic playing style |
| Grid | $\begin{aligned} & 1 / 4, \\ & 1 / 8, \\ & 1 / 8 \mathrm{~L}, \\ & 1 / 8 \mathrm{H}, \\ & 1 / 12, \\ & 1 / 16, \\ & 1 / 16 \mathrm{~L}, \\ & 1 / 16 \mathrm{H}, \\ & 1 / 24 \end{aligned}$ | This specifies the time signature of the rhythm pattern and the amount of "shuffle" <br> This specifies the note value considered as "one grid section," and the amount of "shuffle" (none, weak, or strong) <br> 1/4: Quarter note (one grid section = one beat) <br> 1/8: Eighth note (two grid sections = one beat) 1/8L: Eighth note shuffle Light (two grid sections = one beat, with a light shuffle) <br> 1/8H: Eighth note shuffle Heavy (two grid sections = one beat, with a heavy shuffle) <br> 1/12: Eighth note triplet (three grid sections = one beat) <br> 1/16: Sixteenth note (four grid sections = one beat) 1/16L: Sixteenth note shuffle Light (four grid sections = one beat, with a light shuffle) <br> 1/16H: Sixteenth note shuffle Heavy (four grid sections = one beat, with a heavy shuffle) <br> 1/24: Sixteenth note triplet (six grid sections = one beat) <br> * The Grid setting is shared with the arpeggio setting (p. 61). |


| Parameter | Values | Explanation |
| :---: | :---: | :---: |
| Duration | $\begin{aligned} & 30-120 \% \text {, } \\ & \text { Full } \end{aligned}$ | This specifies the duration of each note in the rhythm pattern. <br> You can specify whether each note will have a short duration for a staccato feel, or an extended duration for a tenuto feel. <br> 30-120: For example, if you set this to "30," the duration of a note in the grid (or if notes in the grid are connected by a tie, the duration of the last note) will be $30 \%$ of the note value specified by the grid type. <br> Full: Even if consecutive grid sections are not connected by a tie, the note will continue to sound until the next occurrence of the same note. <br> * The Duration setting is shared with the arpeggio setting (p. 61). <br> * This will have no effect if Tone Env Mode (p. 124) is set to "NO-SUS." |
| Velocity | 1-127 | This specifies the loudness of the notes in the rhythm pattern. |
| Accent | 0-100 | This specifies the strength of the accents in the rhythm pattern. <br> If this is set to "100," accents will be added to the notes according to the velocities specified for the notes in the rhythm pattern. If this is set to " 0, " all notes will be sounded at a fixed velocity. |

## Function Button Operations

| Function Button | Content |
| :--- | :--- |
| [2 (RHY GRP)] | Displays the RHYTHM GROUP screen (p. 77). |
| [3 (RHY PTN)] | (The current page) |
| [5 (PREVU)] | Each time you press this button, the check mark <br> will be added or removed. When you add a <br> check mark, the selected rhythm pattern will <br> play. |
| [6 (PTN EDIT)] | Allows you to edit a rhythm pattern. <br> $\rightarrow$ RHYTHM PATTERN EDIT screen (p. 76) |
| [7 (WRITE)] | Saves the rhythm pattern (p. 78). |

## Creating a Rhythm Pattern

In addition to using the preset rhythm patterns that are provided, you can freely create your own rhythm patterns.
You can create a rhythm pattern either by step-recording from the keyboard or by using the VALUE dial and buttons to enter data. It's convenient to enter notes from the keyboard if you're creating a new rhythm pattern from scratch rather than creating one based on an existing pattern. Conversely, it's convenient to use the dial or buttons to enter notes if you're editing an existing rhythm pattern.

## Initializing a Rhythm Pattern

If you're creating a rhythm pattern from scratch (rather than starting with an existing rhythm pattern), you'll begin by initializing a rhythm pattern.

1. In the RHYTHM PATTERN screen, press [6 (PTN EDIT)].

The RHYTHM PATTERN EDIT screen will appear.

2. Hold down [SHIFT] and press [5 (INIT)].

A confirmation message will appear.
Initialization will be cancelled if you press [6 (CANCEL)].
3. Press [7 (EXEC)].

The rhythm pattern will be initialized.

## Step-recording from the Keyboard

1. In the RHYTHM PATTERN EDIT screen, press [2 (SETUP)].

The Rhythm Setup window will open.
2. Use the cursor buttons to move the cursor to the parameter you want to edit.
3. Use the VALUE dial or [DEC] [INC] to set the value.

| Indication | Values | Explanation |
| :--- | :--- | :--- |
| End Step | $1-32$ | Specifies the number of steps. |
| Input |  |  |
| Velocity | REAL, <br> $1-127$ | Specifies the velocity of the notes. <br> Choose "REAL" if you want to enter <br> the velocity at which you actually <br> pressed the key. Otherwise, specify <br> the desired velocity; <br> p (piano) = 60, <br> mf (mezzo forte) $=90$, <br> $f$ (forte) = 120. |

4. Press [7 (CLOSE)] to close the Rhythm Setup window.

You will return to the RHYTHM PATTERN EDIT screen.
5. Press [7 (STP REC)] to make the check mark $(\mathcal{V})$ appear.

Now you're ready to perform step recording.
Proceed with step recording as follows.

- Use cursor buttons to move to the location at which you want to enter a note.
- The tones of the rhythm set selected in the RHYTHM GROUP screen will be assigned to the keyboard. Use the keyboard to enter notes.
- Press [3 (TIE)] to enter a tie.
- Press [4 (REST)] to enter a rest.
- To delete a note, hold down [SHIFT] and press [7 (CLR NOTE)].
- To delete all notes at the current step, hold down [SHIFT] and press [6 (CLR STEP)].
- To preview the pattern you're inputting, press [5 (PREVU)] to display a check mark (V).


## MEMO

A maximum of sixteen rhythm tone can be used in one pattern.
6. When you're finished inputting, press [6 (EXIT)].

## Using the Dial and Buttons for Entry

In this method, you'll use the cursor buttons to specify the step and tone to be input, and use the VALUE dial or [DEC] [INC] to specify the velocity of the note.
This method is convenient when you're editing or modifying an existing pattern.

1. In the RHYTHM PATTERN EDIT screen, press [7 (STP REC)] to clear the check mark $(\mathcal{V})$.
Proceed with step recording as follows.

- Use cursor buttons to specify the step and tone that you want to enter.
* When using this method for entry, the keyboard can't be used to specify the tone. (Unlike the case when step-recording, the keyboard won't enter notes.)
- Use the VALUE dial or [DEC] [INC] to enter the velocity value. By turning the VALUE dial all the way to the right (or using [ INC] to raise the value all the way), you can enter a tie.
- You can also enter a tie by pressing [3 (TIE)].
- To enter a rest, press [4 (REST)].
- To preview the pattern you're inputting, press [5 (PREVU)] to display a check mark ( $\boldsymbol{V}$ ).


## MEMO

A maximum of sixteen rhythm tone can be used in one pattern.
2. When you're finished inputting, press [6 (EXIT)].

## Saving a Rhythm Pattern (WRITE)

The rhythm pattern you've created is temporary, and will be lost if you turn off the power or select a different pattern. If you want to keep the pattern you've created, save it in internal memory.

1. After creating a rhythm pattern in the RHYTHM PATTERN EDIT screen, press [EXIT] to access the RHYTHM PATTERN screen.
2. Press [7 (WRITE)].

The RHYTHM PATTERN NAME screen will appear.

3. Assign a name for the rhythm pattern.
cf.
For details on assigning a name, refer to p. 44.
4. When you've finished assigning the name, press [ 7 (WRITE)].

A screen in which you can specify the save destination will appear.
5. Use the VALUE dial, [DEC] [INC], or [ $\Delta$ ] [ $\boldsymbol{]}$ ] to select the save destination.
6. Press [7 (WRITE)].

A confirmation message will appear.
If you decide to cancel, press [6 (CANCEL)].
7. Press [7 (EXEC)] to save the data.

## NOTE

Never turn off the power while data is being saved.

## Creating a Rhythm Group

In addition to using the rhythm groups that are provided, you can create your own rhythm groups.

1. Press [RHYTHM PATTERN] so it's lit.

The RHYTHM GROUP screen will appear.
2. Use the cursor buttons to move the cursor to the rhythm group number.
3. Use the VALUE dial or [DEC] [INC] to select the rhythm group that you want to edit.
4. Hold down [SHIFT] and press [6 (GRP EDIT)].

The RHYTHM GROUP EDIT screen will appear.

5. Use $[\triangleleft][-]$ to select the rhythm pattern that you want to edit.
TIP
When the RHYTHM GROUP EDIT screen is displayed, you can use [ $\mathbf{l}$ ] [ ] to switch rhythm groups and [ $\ll$ ] [ ] to switch rhythm patterns.
6. Use [ $\boldsymbol{\Delta}][\boldsymbol{\nabla}]$ to select a parameter.
7. Use the VALUE dial or [DEC] [INC] to edit the value.

| Parameter | Values | Explanation |
| :--- | :--- | :--- |
| Pattern | U001-256, <br> P001-256 | Rhythm pattern that will <br> be played by the function <br> button |
| Rhythm Set | USER: 001-032, <br> PRST: 001-032, <br> GM: 001-009, <br> XP-A 001-, <br> XP-B 001- | Rhythm set that will be <br> used |

## MEMO

To audition the selected rhythm pattern, press [5 (PREVU)] to
display a check mark ( $\mathcal{V}$ ).
To exit the RHYTHM GROUP EDIT screen, press [6 (EXIT)].

## Saving a Rhythm Group You've Created (WRITE)

A rhythm group you've created is temporary, and will be lost if you turn off the power or select another group. If you want to keep the rhythm group you've created, you must save it to internal user memory.

1. In the RHYTHM GROUP EDIT screen, create a rhythm group.
2. In the RHYTHM GROUP EDIT screen, press [7 (WRITE)].

The RHYTHM GROUP NAME screen will appear.

## (MEMO)

You can also access the RHYTHM GROUP NAME screen from the RHYTHM GROUP screen by holding down [SHIFT] and pressing [7 (WRITE)].

3. Assign a name to the rhythm group.

Cf.
For details on assigning a name, refer to p. 44.
4. When you've finished assigning a name, press [ 7 (WRITE)].

A screen in which you can select the save destination will appear.
5. Use the VALUE dial, [DEC] [INC], or [ $\Delta$ ][ $\overline{]}$ ] to select the save destination.
6. Press [7 (WRITE)].

A confirmation message will appear.
If you decide to cancel, press [ 6 (CANCEL)].
7. Press $[7$ (EXEC)] to save the data.

## NOTE

Never turn off the power while data is being saved.

## MEMO

The rhythm group setting can be saved as part of each
performance. Press [WRITE] to save the setting in the
performance (p. 133).

## Listening to a Click in Time with the Tempo (SONG/CLICK OUT jack)

When playing back an SMF song, you can use headphones connected to the SONG/CLICK OUT jack on the rear panel to monitor a click sound.


If you're playing back an audio file (rather than an SMF song), only the sound of the song will be output.


Mixer etc.
Monitor speakers (powerd)

This is convenient when someone will be playing along on the drums while using the JUNO-STAGE's song player to play back a song.

## MEMO

You can make detailed settings for the volume and tone of the click sound that is output from the SONG/CLICK OUT jack, and also specify what will be output from the SONG/CLICK OUT jack. For details, refer to "[2 (CLICKOUT)]" (p. 151).

By holding down [SHIFT] and pressing [TAP TEMPO] you can access a screen where you can make settings for the click sound. For details on the settings, refer to "System Menu [5 (CLICK/ PLAYER)]" (p. 151).

## Chapter 5. Applying Effects to the Sound

## Applying Effects

## How Effects are Handled in Each Mode

## Patch mode (p. 80)

In Patch mode, you can apply multi-effects (MFX), chorus, and reverb to each patch or rhythm set; the same effect will be applied to each tone.

By adjusting the amount of signal that is sent from each tone to each effect, you can control the depth of the effect for each tone.
The patch or rhythm set's effect settings that you edit will be lost when you select a different patch or rhythm set. If you want to keep your edited settings, press [WRITE] to save the patch or rhythm set settings as a user patch (p. 97, p. 123).

## Performance mode (p. 82)

In Performance mode, you can apply three multi-effects ((MFX1, MFX2, MFX3), one chorus, and one reverb to each performance.
The three multi-effects, chorus, and reverb can each operate according to the effect settings of the performance, or according to the effect settings of the patch or rhythm set assigned to the part you specify. In addition, the three multi-effects can not only be used individually but also as a combination of multi-effects.

The effect settings of a performance you edit will be lost when you select a different performance. If you want to keep your edited settings, press [WRITE] to save the performance settings as a user performance (p. 133).

## cf.

"About the Effects" (p. 40) in "Chapter 1. Overview."

## Turning Effects On/Off (Effect Switch)

The JUNO-STAGE's onboard effects can be switched on/off as a whole. Turn these OFF when you want to listen to the unprocessed sound as you create a sound, or if you want to use an external effects processor instead of the built-in effects.

## NOTE

The effect on/off settings cannot be saved.

1. Press [EDIT].
2. Press [6 (EFFECT EDIT)], or use the VALUE dial or [ 4 ] ] to select "EFFECT EDIT" and then press [ENTER].
The EFFECT ROUTING screen will appear.
3. Press [7(SWITCH)].

The EFFECT SWITCH window will appear.

(Example screen in Performance mode)
4. Press $[2$ (MFX)]-[6 (REVERB)] to turn each effect on/off.

The effect will turn on/off each time you press the button.
5. To close the setting window, press [7 (CLOSE)] or [EXIT]. You will return to the EFFECT ROUTING screen.

## Making Effect Settings

1. In the appropriate mode, select the patch or performance to which you want to apply effects.
2. Press [EDIT].
3. Press [6 (EFFECT EDIT)], or use the VALUE dial or [ $\downarrow$ ][ ] to select "EFFECT EDIT" and then press [ENTER].
The EFFECT ROUTING screen will appear.
4. Press [2 (ROUTING)]-[6 (REVERB)] to select the effect for which you want to make settings.
If you're in Performance mode and you've selected [3 (MFX)],
you can additionally press [2 (MFX1)]-[4 (MFX3)] to select the effect that you want to edit.

| MFX1 [ UP] 01 : EQURLIZER |  |  |
| :---: | :---: | :---: |
| 显 | Low Frea | 400[Hz] |
|  | Low Gain | -3[dE] |
| \%s\% | Mida Frea | 1000[Hz] |
|  | Midi Gain | 0[dE] |
|  |  |  |
| (Example of MFX1 screen in Performance mode) |  |  |

5. With the cursor located at the top line of the screen, use the VALUE dial or [DEC] [INC] to select the desired effect type.
6. Use the cursor buttons to move the cursor to the parameter that you want to edit.
7. Use the VALUE dial or [DEC] [INC] to edit the value.
8. When you've finished editing, press [EXIT].

Chapter 5. Applying Effects to the Sound

## Applying Effects in Patch Mode

In Patch mode you can use one multi-effect (MFX), one chorus, and one reverb.

## Signal Flow and Parameters (EFFECT ROUTING)

Here you can make overall settings for effects, such as the output destination and level of the various signals.


## cf.

For details on how to make settings, refer to "Making Effect Settings" (p. 79).

| Parameter |  | Range | Explanation |
| :---: | :---: | :---: | :---: |
| $(1)$ | Tone Select (Rhythm Key Select) | $\begin{aligned} & \hline 1-4 \\ & \text { (AO-C8) } \end{aligned}$ | The tone (rhythm tone) to edit <br> If you've selected a rhythm set, this will be Rhythm Key Select. |
| (2) | Tone Output Level | 0-127 | Level of signal sent from each tone to the destination specified by Output Assign ( 6) |
| (3) | Tone Chorus Send Level | 0-127 | Level of signal sent from each tone to the chorus |
| 4 | Tone Reverb Send Level | 0-127 | Level of signal sent from each tone to the reverb |
| 5 | MFX Type | 0-79 | Type of multi-effect to use (choose one of 79 types) <br> For details on each multi-effect, refer to "Multi-Effects Parameters (MFX1-3, MFX)" (p. 163). |
|  | Patch Output Assign (Rhythm Output Assign) | $\begin{aligned} & \text { MFX, } \\ & \mathrm{L}+\mathrm{R}, \\ & \mathrm{~L}_{1} \\ & \mathrm{R}, \\ & \text { TONE } \end{aligned}$ | Specifies how the unprocessed sound of the patch (rhythm set) will be output <br> If you've selected a rhythm set, this will be Rhythm Output Assign. <br> MFX: Output in stereo via the multi-effect. Chorus and reverb can also be applied after the multieffect. <br> L+R: Output in stereo from the OUTPUT jacks without passing through the multi-effect L: Output in mono from the OUTPUT L jack without passing through the multi-effect R: Output in mono from the OUTPUT R jack without passing through the multi-effect TONE: Output according to the settings of each tone |
| 6 | Tone OUTPUT Assign | $\begin{aligned} & \text { MFX, } \\ & L+R, \\ & L, \\ & R \end{aligned}$ | Specifies how the unprocessed sound of each tone will be output <br> MFX: Output in stereo via the multi-effect. Chorus and reverb can also be applied after the multieffect. <br> L+R: Output in stereo from the OUTPUT jacks without passing through the multi-effect <br> L: Output in mono from the OUTPUT L jack without passing through the multi-effect <br> R: Output in mono from the OUTPUT R jack without passing through the multi-effect <br> * The setting you specify here is valid only if Patch Output Assign is set to "TONE." <br> * If Structure (p. 99) is set to TYPE 02-10, the settings for tone 1 (3) will follow the settings of tone 2 (4). (This is because the outputs of tones 1 and 2 are combined into tone 2 , and the outputs of tones 3 and 4 are combined into tone 4.) |
| 7 | MFX Output Level | 0-127 | Volume of the sound that has been processed by the multi-effect |
| 8 | MFX Chorus Send Level | 0-127 | Amount of chorus applied to the sound that has been processed by the multi-effect |
| (9) | MFX Reverb Send Level | 0-127 | Amount of reverb applied to the sound that has been processed by the multi-effect |
| 10 | Chorus Type | 0-3 | Type of chorus <br> 0 (OFF): Chorus/delay will not be used <br> 1 (CHORUS): Chorus <br> 2 (DELAY): Delay <br> 3 (GM2 CHO): GM2 chorus |


| Parameter |  | Range | Explanation |
| :---: | :---: | :---: | :---: |
| $(11$ | Reverb Type | 0-5 | Type of reverb <br> 0 (OFF): Reverb will not be used <br> 1 (REVERB): Basic reverb <br> 2 (SRV ROOM): Reverb that simulates the reverberation of a room in greater detail <br> 3 (SRV HALL): Reverb that simulates the reverberation of a hall in greater detail <br> 4 (SRV PLATE): Simulation of a plate echo (a reverb device that uses a metal plate) <br> 5 (GM2 REV): GM2 reverb |
| (12) | Chorus Output Select | MAIN, <br> REV, <br> $M+R$ | Output destination of the sound that has been processed by the chorus <br> MAIN: Output in stereo to the OUTPUT jacks <br> REV: Output in mono to reverb <br> M+R: Output in stereo to the OUTPUT jacks and in mono to the reverb |
|  | Chorus Level | 0-127 | Volume of the sound that has been processed by the chorus |
| $(13$ | Reverb Level | 0-127 | Volume of the sound that has been processed by the reverb |

Chapter 5. Applying Effects to the Sound

## Applying Effects in Performance Mode

In Performance mode you can use three multi-effects (MFX1, MFX2, MFX3), one chorus, and one reverb. The three multi-effects, chorus, and reverb can each use the effect settings of the performance, or the effect settings of the patch or rhythm set assigned to the specified part.
In addition, the three multi-effects can not only be used individually but also as a combination of multi-effects.

## Signal Flow and Parameters (EFFECT ROUTING)

Here you can make overall settings for effects, such as the output destination and level of the various signals.


## cf.

For details on how to make settings, refer to "Making Effect Settings" (p. 79).

* The parameters listed below in 7, 9-11 can be edited for each of the three multi-effects (MFX1-MFX3).

| Parameter |  | Range | Explanation |
| :---: | :---: | :---: | :---: |
| (1) | Part Select | UPPER (PART 1), LOWER (PART 2), PART 3-16 | The part for which to make settings |
| 2 | Part Output Assign | $\begin{aligned} & \text { MFX, } \\ & \text { L+R, } \\ & \mathrm{L}, \\ & \mathrm{R}, \\ & \text { PAT } \end{aligned}$ | Specifies how the unprocessed sound of each part will be output <br> MFX: Output in stereo via the multi-effect. Chorus and reverb can also be applied after the multieffect. <br> L+R: Output in stereo from the OUTPUT jacks without passing through the multi-effect <br> L: Output in mono from the OUTPUT L jack without passing through the multi-effect <br> R: Output in mono from the OUTPUT R jack without passing through the multi-effect <br> PAT: Output according to the settings of the patch or rhythm set that's assigned to the part |
| (3) | Part Output MFX Select | 1-3 | Multi-effect used by the part (choose one of MFX 1-3) |
| (4) | Part Output Level | 0-127 | Level of signal sent to the destination specified by Part Output Assign |
| (5) | Part Chorus Send Level | 0-127 | Level of signal sent from each part to the chorus |
| 6 | Part Reverb Send Level | 0-127 | Level of signal sent from each part to the reverb |
| 7 | MFX Source | PRF, UP (P1), LO (P2), P3-P16 | Multi-effect parameter settings used by the performance <br> PRF: Use the multi-effect settings of the performance <br> UP (P1)-P16: Use the multi-effect settings of the patch or rhythm set assigned to the specified part |
|  | MFX Type | 0-79 | Type of multi-effect to use (choose one of 79 types) <br> For details on each multi-effect, refer to "Multi-Effects Parameters (MFX1-3, MFX)" (p. 163). |
| 8 | MFX Structure | 1-16 | How MFX 1-3 will be combined (p. 86) |
| (9) | MFX Output Level | 0-127 | Volume of the sound that has been processed by the multi-effect |
| 10 | MFX Chorus Send Level | 0-127 | Amount of chorus applied to the sound that has been processed by the multi-effect |
| $(11)$ | MFX Reverb Send Level | 0-127 | Amount of reverb applied to the sound that has been processed by the multi-effect |


| Parameter |  | Range | Explanation |
| :---: | :---: | :---: | :---: |
| 12 | Chorus Source | PRF, UP (PI), <br> LO (P2), <br> P3-P16 | Chorus parameter settings used by the performance <br> PRF: Use the chorus settings of the performance <br> UP (PI)-P16: Use the chorus settings of the patch or rhythm set assigned to the specified part |
|  | Chorus Type | 0-3 | Type of chorus <br> 0 (OFF): Chorus/delay will not be used <br> 1 (CHORUS): Chorus <br> 2 (DELAY): Delay <br> 3 (GM2 CHO): GM2 chorus |
| 13 | Reverb Source | PRF, UP (PI), <br> LO (P2), P3-P16 | Reverb parameter settings used by the performance <br> PRF: Use the reverb settings of the performance <br> UP (P1)-P16: Use the reverb settings of the patch or rhythm set assigned to the specified part |
|  | Reverb Type | 0-5 | Type of reverb <br> 0 (OFF): Reverb will not be used <br> 1 (REVERB): Basic reverb <br> 2 (SRV ROOM): Reverb that simulates the reverberation of a room in greater detail <br> 3 (SRV HALL): Reverb that simulates the reverberation of a hall in greater detail <br> 4 (SRV PLATE): Simulation of a plate echo (a reverb device that uses a metal plate) <br> 5 (GM2 REV): GM2 reverb |
| 14 | Chorus Output Select | MAIN, <br> REV, <br> $M+R$ | Output destination of the sound that has been processed by the chorus <br> MAIN: Output in stereo to the OUTPUT jacks <br> REV: Output in mono to reverb <br> $M+\mathbf{R}$ : Output in stereo to the OUTPUT jacks and in mono to the reverb |
|  | Chorus Level | 0-127 | Volume of the sound that has been processed by the chorus |
| $(15$ | Reverb Level | 0-127 | Volume of the sound that has been processed by the reverb |

## If you've specified a part number as the MFX Source, Chorus Source, or Reverb Source

If you specify a part number as a Source so that the settings of the patch or rhythm set will be used, those settings will be shown in the effect setting screen of the performance, and can be edited.
If you want to keep the changes you made, press [WRITE] to save the settings of the patch or rhythm set (p. 97, p. 123). Then you must also save the settings of the performance (p. 133).

| FPX [ UP] $01:$ ERUALIZER |  |  |
| :---: | :---: | :---: |
| Fi.tivatimem | Low Frea | 400[Hz] |
| ¢8\%\%\% | Low Gain | -3[6B] |
| cramis | Midi Freg | $1000[\mathrm{~Hz}]$ : |
|  | Mid1 Gain | O[dB] |

From the EFFECT ROUTING screen (p. 82), press [3 (MFX)] to access the MFX screen. Use the cursor buttons to move the cursor to the parameter that you want to edit, and use the VALUE dial or [DEC] [INC] to choose the desired value.

| Parameter | Range | Explanation |
| :--- | :--- | :--- |
| (MFX Type) | 00: THRU- <br> 79: VOCODER | Selects the type of multi-effect used by MFX. <br> Choose "OO: THRU" if you don't want to apply a multi-effect. |
| Parameters for each <br> MFX type | Edit the parameters of the MFX type you've selected. Refer to "Multi-Effects Parameters (MFX1-3, MFX)" (p. 163). |  |

## Controlling a Multi-Effect via MIDI (MFX 1-3 CTRL)



In the MFX screen (p. 84) (or the MFX STRUCTURE screen (p. 86), press [4 (CTRL)] if you're in Patch mode or [6 (CTRL)] if you're in Performance mode. The MFX CTRL screen will appear.
Use the cursor buttons to move the cursor to the parameter you want to edit, and use the VALUE dial or [DEC] [INC] to specify the value.
In Performance mode, pressing [6 (CTRL)] one or more times in the MFX CTRL screen allows you to select the multi-effect (MFX1, MFX2, or MFX3) that you want to edit.

## Multi-Effect Control

In order to control the multi-effect's volume or delay time from an external MIDI device, you would normally need to transmit system exclusive messages (MIDI messages that are specific to the JUNO-STAGE). However, system exclusive messages are more complex to set up, and require a larger amount of data to be transmitted.
For this reason, the JUNO-STAGE allows you to use control changes and other common MIDI messages to control the most important multi-effect parameters.
For example, you might use the pitch bend lever to control the degree of distortion, or use keyboard touch to change the delay time. The parameters that can be controlled in this way are predetermined for each type of multi-effect; such parameters are indicated by a "\#" in the parameter lists in "Multi-Effects Parameters (MFX1-3, MFX)" (p. 163).
"Multi-effect control" is the capability of using MIDI messages in this way to control multi-effect parameters in real time. You can specify up to four multi-effect control assignments for each MFX 1-3.
In order to use multi-effect control, you'll need to specify which MIDI message (Source) will control which parameter (Destination) by what amount (Sens).
TIP
As a substitute for multi-effect control, you can also use matrix control ( p .110 ) to control important multi-effect parameters in real time.

| Parameter | Range | Explanation |
| :--- | :--- | :--- |
| OFF, |  |  |
| Source (1-4) |  |  |
| (Control Source) | CCO1-31, <br> CC33-95, <br> PITCH BEND, <br> AFTERTOUCH, <br> SYS CTRL 1-4 | Specifies the MIDI message that will control the corresponding MFX control parameter. <br> OFF: MFX will not be used. <br> CCO1-31: Controller number 1-31 <br> CC33-95: Controller number 33-95 |
| PITCH BEND: Pitch bend |  |  |
| AFTERTOUCH: Aftertouch |  |  |
| SYS CTRL 1-4: Use the controller that is assigned by the System setting Sys Ctrl 1-4 Source |  |  |
| (p. 148). |  |  |

## MEMO

A patch or rhythm set contains parameters that specify whether pitch bend, controller number 11 (expression), and controller number 64 (hold 1) will be received for each tone or rhythm tone ( $\mathrm{p} .112, \mathrm{p} .124$ ). If these settings are "ON," receiving that MIDI message will not only change the setting of the assigned destination parameter, but will also apply the corresponding pitch bend, expression, or hold 1 effect. Leave them "OFF" if you only want to control the multi-effect parameter.

## MEMO

A performance contains parameters that specify whether specific MIDI messages will be received for each MIDI channel (p. 138). If you want to use multi-effect control, make sure that reception is enabled for the corresponding MIDI message. If MIDI messages cannot be received, multieffect control will not work.

Chapter 5. Applying Effects to the Sound

## Specifying How Multi-Effects are Combined (MFX STRUCTURE)

Here you can specify how MFX 1-3 will be combined.

## MEMO

This parameter does not exist in Patch mode.


In the MFX screen (p. 84) or MFX CTRL screen (p. 84), press [5 (STRUCT)] to access the MFX STRUCTURE screen.

Use the cursor buttons to move the cursor to the parameter that you want to edit, and use the VALUE dial or [DEC] [INC] to set the value.

| Parameter | Range | Explanation |
| :--- | :--- | :--- |
| MFX Structure | TYPE01-TYPE 16 | Specifies how MFX 1-3 will be combined |
| MFX1-3 | $00($ THRU $)-79$ | Specifies the multi-effect type for each MFX 1-3 |

## Chorus Settings (CHORUS)



From the EFFECT ROUTING screen (p. 80, p. 82), press [4 (CHORUS)] to access the CHORUS screen.

Use the cursor buttons to move the cursor to the parameter that you want to edit, and use the VALUE dial or [DEC] [INC] to set the value.

| Parameter | Range | Explanation |
| :--- | :--- | :--- |
| (Chorus Type) | 00:OFF- <br> 03:GM2 CHORUS | Selects the type of chorus. <br> Choose "O0: OFF" if you don't want to apply chorus. |
| Parameters for each <br> chorus type | Set the parameters of the selected chorus type. <br> Refer to "Chorus Parameters" (p. 190). |  |

## Reverb Settings (REVERB)



From the EFFECT ROUTING screen (p. 80, p. 82), press [5 (REVERB)] to access the REVERB screen.

Use the cursor buttons to move the cursor to the parameter that you want to edit, and use the VALUE dial or [DEC] [INC] to set the value.

| Parameter | Range | Explanation |
| :--- | :--- | :--- |
| (Reverb Type) | 00:OFF- <br> 05:GM2 REVERB | Selects the type of reverb. <br> Choose "00: OFF" if you don't want to apply reverb. <br> Parameters for each <br> reverb typeSet the parameters of the selected reverb type. <br> Refer to "Reverb Parameters" (p. 191). |

## Chapter 6. Performing with a Microphone

## Connecting a Mic



## NOTE

Depending on the position of the microphone relative to the speakers, you may experience acoustic feedback (a whine or howl). If this occurs, take the following actions.

- Change the direction of the microphone
- Move the microphone farther away from the speakers
- Lower the volume


## Adjusting the Volume of the Mic

1. Turn the [MIC VOLUME] knob to adjust the mic volume.

## Applying Reverb to the Mic

## 1. Press the MIC IN [REVERB] so it's lit.

## MEMO

You can make detailed settings for the reverb that is applied to the mic. Refer to "Detailed Settings for the MIC INPUT (MIC Input Setting)" (p. 154).

## Using a Condenser Mic

If you want to connect a condenser mic that requires phantom power to be supplied, you'll need to change the phantom power setting as follows.

## NOTH

- You must leave this setting "OFF" unless you are connecting a condenser mic that requires phantom power. Supplying phantom power to a dynamic mic will cause malfunctions. Refer to the owner's manual of your mic for details on its requirements.
- This setting cannot be saved. Phantom power will be "OFF" each time the JUNO-STAGE is powered up.

1. Turn the [VOLUME] knob toward the left to the "MIN" position.
2. Press [MENU].

The Top Menu window will appear.
3. Use [ $\Delta$ ][ $\nabla$ ] to select "2. Mic Input Setting," and press [ENTER].
4. Use the cursor buttons to move the cursor to "Phantom Power."
5. Use the VALUE dial or [DEC] [INC] to turn the setting "ON."

## Using the Vocoder

The JUNO-STAGE uses MFX to simulate a vocoder.

1. Press [PATCH] so it's lit.

You'll be in Patch mode.
2. Select "PRST 1027 VOCODER Ens" as the patch.

For details on how to select a patch, refer to "Selecting Patches in Patch Mode" (p. 45).
3. While you play the keyboard, vocalize into the mic.

## NOTE

The vocoder is applied to the sound from the mic. There will be no sound if you only play the keyboard without vocalizing into the mic.

## MEMO

Even for patch other than PRST1027, you can apply the vocoder effect by selecting "79: VOCODER" as the effect.

## Changing the Vocoder Settings

1. Select "PRST 1027 VOCODER Ens" as the patch.
2. Press [EDIT].
3. Press [6 (EFFECT EDIT)] or use the VALUE dial to select "EFFECT EDIT," then press [ENTER].
4. Press [3 (MFX)].

The MFX screen will appear. In this case, "79: VOCODER" will be selected for MFX.
5. Use the cursor buttons to select the parameter you want to edit.
6. Use the VALUE dial or [DEC] [INC] to edit the value.

| Parameter | Values | Explanation |
| :--- | :--- | :--- |
| Mic Sens | $0-127$ | Adjusts the input sensitivity of the <br> mic. |
| Synth Level | $0-127$ | Adjusts the input level of the <br> instrument. |
| Mic Mix | $0-127$ | Adjusts the amount of sound from the <br> mic added to the vocoder's output. |
| Level | $0-127$ | Adjusts the volume level of the sound <br> that has passed through the vocoder. |

## MEMO

If you want to keep the edited settings, save the patch as a user patch. For details, refer to "Saving a Patch You've Created ([WRITE])" (p. 97).

TIP
To access the MIC INPUT setting screen (p. 154), hold down [SHIFT] and press MIC IN [REVERB]. If you set "MIC Mode" to "VOCODER ONLY" in the MIC INPUT setting screen, the sound of the mic will be output only when you've selected "79:
VOCODER" as the effect.
This is convenient when you want to avoid outputting unwanted sound from the mic, for example when you're performing live.

## Chapter 7. Connecting an External MIDI Device

## About MIDI

MIDI (Musical Instrument Digital Interface) is a standard specification that allows musical data to be transferred between electronic musical instruments and computers. If a MIDI cable is connected between devices equipped with MIDI connectors, you'll be able to play multiple devices from a single MIDI keyboard, perform ensembles using multiple MIDI instruments, program the settings to change automatically as the song progresses, and more.

## About MIDI Connectors

The JUNO-STAGE is equipped with the following two types of MIDI connectors, each of which has the following role.


## MIDI IN Connector

This connector receives MIDI messages that are sent from an external MIDI device. When the JUNO-STAGE receives MIDI messages, it can respond by playing notes, switching sounds, etc.

## MIDI OUT Connector

This connector transmits MIDI messages to an external MIDI device. Use it when you want to control an external MIDI device.

## MIDI Channels and Mulifiimbral Sound Generators

MIDI is able to transmit multiple streams of performance data over a single MIDI cable. This is made possible thanks to the concept of MIDI channels. MIDI channels allow a receiving device to pay attention only to the messages that are intended for it, and not to messages intended for another device. In some ways, MIDI channels are similar to television channels. By changing the reception channel of a television set, you can view the programs that are being broadcast by different stations. This is because the television set is choosing only the desired data from the variety of data that is being broadcast. In the same way, MIDI also allows a device to distinguish and use only the incoming data that is being transmitted to it.

The cable from the antenna carries the TV


The TV is set to the channel of the station you wish to watch.
There are sixteen MIDI channels: 1-16. Normally, you'll set the receiving device to receive only the channels that it needs to receive.

## Example:

Set the transmitting device to transmit on channel 1 and channel 2 , set sound module A to receive only channel 1, and set sound module B to receive only channel 2 . With this setup, you could create an ensemble in which sound module $A$ is playing a guitar sound while sound module $B$ is playing a bass sound.


You'll be able to use up to sixteen channels when using the JUNOSTAGE as a sound module. Sound modules that can receive multiple channels of data simultaneously and play different sounds on each channel are called multitimbral sound modules.

GM
GM (General MIDI) is a set of recommendations that allows the MIDI capabilities of sound modules to be standardized across manufacturers. Sound modules or music data that meet the GM standard carry the GM logo ( $\begin{aligned} & \text { GENERA } \\ & \text { l }\end{aligned}$ ). Music data with the GM logo can be played back on any sound module carrying the GM logo, and will produce essentially the same musical performance.

## GM2

GM2 ( $\stackrel{\text { GENERAL }}{\|\|\|} 2$ ) is a set of recommendations that is upwardly compatible with the original GM recommendations, and allows a higher level of musical expression and compatibility. It covers issues that were not covered by the original GM recommendations, such as ways in which sounds can be edited and how effects should be handled. It also expands the sounds that are available. Sound modules that are compatible with GM2 will correctly play back music data that carries either the GM or GM2 logo. The original GM, which does not include the GM2 enhancements, is sometimes called "GM1" in order to distinguish it from the newer set of recommendations.

## Using the JUNO-STAGE as a Master Keyboard (MIDI Controller Mode)

You can connect external MIDI devices to the JUNO-STAGE's MIDI OUT connector, and use the JUNO-STAGE to control the connected MIDI devices.

## Connection Example



1. Press [MIDI CONTROLLER] so it's lit.

The MIDI CONTROLLER screen will appear, and the JUNOSTAGE will be in MIDI Controller mode.
When you press one of the [0]-[9] buttons, the program change message assigned to that button will be transmitted.
You can turn the SOUND MODIFY knobs to transmit control change messages.
2. To exit MIDI controller mode, press [MIDI CONTROLLER] to turn off the button's illumination.

## NOTE

The D Beam controller and [S1] [S2] will not operate when you're in MIDI controller mode.

## Specifying the Transmit Channel

Set the JUNO-STAGE's transmit channel so it matches the channel your external MIDI device is using for reception.

1. In the MIDI CONTROLLER screen, use the cursor buttons to move the cursor to the "MIDI Ch" value.
2. Use the VALUE dial or [DEC] [INC] to edit the value.

Range: 1-16

## MEMO

For details on how to set the receive channel of your external MIDI device, refer to its owner's manual.

## Detailed Settings in MIDI Controller Mode



MEMO
You can set the keyboard to Split (p. 51) or Dual (p. 51) modes even in MIDI controller mode. When you play the keyboard, the performance data from the Upper and Lower parts will be transmitted on the MIDI channels assigned for each. Operations of the [0]-[9] buttons or the SOUND MODIFY knobs are sent to the MIDI channel of the part indicated by

## MEMO

The note numbers transmitted in MIDI controller mode are determined by the key you press, the transpose setting (p. 52), and the octave shift setting (p. 52) you specify in MIDI controller mode.
MEMO
You can use the arpeggio (p. 60) and chord memory (p. 64) functions even when you're in MIDI Controller mode.

1. In the MIDI CONTROLLER screen, use the cursor buttons to select the parameter that you want to edit.
2. Use the VALUE dial or [DEC] [INC] to edit the value.

| Parameter | Explanation | Range |
| :---: | :---: | :---: |
| Local Sw | Specifies whether MIDI messages will be sent to the JUNO-STAGE's own internal sound generator when you operate the JUNO-STAGE. | OFF, ON |
| MIDI Ch | Specifies the channel on which MIDI messages will be transmitted. | 1-16 |
| Button | Selects the number of the button for which you'll assign an MSB, LSB, and PC. | 0-9 |
| PC | Program Change number that is transmitted | 1-128 |
| MSB | MSB that is transmitted | 0-127, OFF <br> (If you specify "OFF," the LSB will also be OFF.) |
| LSB | LSB that is transmitted | 0-127, OFF (IFMSB is "OFF," this will also be "OFF" automatically.) |
| Knob | Selects the SOUND MODIFY knob for which you'll make a controller assignment. | ATTACK, RELEASE, EQ LOW, EQ HIGH, REVERB, CUTOFF, RESONANCE |
| (Control Change) | Specifies the controller assignment for the selected SOUND MODIFY knob. | $\begin{aligned} & \text { CCO1-31, } \\ & \text { CC33-95, } \\ & \text { PITCH BEND, } \\ & \text { AFTERTOUCH } \end{aligned}$ |

3. To save your settings, press [WRITE].

## Playing the JUNO-STAGE from an External MIDI Device

## Example Connections with an External MIDI Device



## Setting the Receive Channel

You'll need to match your external MIDI device's transmit channel with the JUNO-STAGE's receive channel.

Here we'll explain how to make settings for playing the JUNO-STAGE in Patch mode.

1. Press the [MENU].
2. Use [ $\Delta$ ] [ $\overline{\text { ] to select " } 1 . \text { System" and press the [ENTER]. }}$
3. Press [4 (MIDI/SYNC)].
4. Press [2 (General)].
5. Use [ $\Delta$ ][ $\nabla$ ] to select "Kbd Patch Rx/Tx Channel."
6. Use the VALUE dial or [DEC] [INC] to set the value. Range: 1-16

## Selting the Program Change Receive Switch

Here's how to turn on the receive switch for program change and bank select messages. With the factory settings, both are turned "ON."

1. Press [MENU].
2. Use [ $\Delta][\nabla]$ to select " 1 . System" and press [ENTER].
3. Press [4 (MIDI/SYNC)].
4. Press [4(RX)].
5. Use the cursor buttons to select "Receive Program Change" or "Receive Bank Select."
6. Use the VALUE dial or [DEC] [INC] to turn each of these "ON."
7. To save your settings, press [WRITE].

If you decide not to save the changes you made, press [EXIT] to return to the previous screen.

## MEMO

For details on these settings, refer to "[4 (RX)]" (p. 151).
MEMO
For details on how to set the transmit channel of your external MIDI device, refer to its owner's manual.

## MEMO

If you're using the JUNO-STAGE in Performance mode, you'll also need to make settings in the MIDI FILTER screen to specify the "Rx (Receive Switch)," "PC (Receive Program Change)," and "BS (Receive Bank Select)" setting for each part (p. 138), in addition to the settings described above.

## Synchronizing with an External MIDI Device

Connection Example


1. Press the [MENU].
2. Use [ $\Delta$ ] [ $\nabla$ ] to select "1. System" and press the [ENTER].
3. Press [4 (MIDI/SYNC)].
4. Press [5 (SYNC)].
5. Use the cursor buttons to select the parameter you want to edit.
6. Use the VALUE dial or [DEC] [INC] to edit the value.
$\left.\begin{array}{l|l|l}\hline \text { Parameter } & \text { Range } & \begin{array}{l}\text { Explanation }\end{array} \\ \hline \text { Sync } & \begin{array}{l}\text { Specifies the signal according to } \\ \text { which the JUNO-STAGE will operate. } \\ \text { MASTER: }\end{array} \\ \text { The JUNO-STAGE will be the master. } \\ \text { Choose this setting if you're using the } \\ \text { JUNO-STAGE on its own, without } \\ \text { Synchronizing to another device. } \\ \text { SLAVE, } \\ \text { REMOTE }\end{array} \quad \begin{array}{l}\text { She JUNO-STAGE will be a slave } \\ \text { device. Choose this setting if you } \\ \text { want the JUNO-STAGE to operate } \\ \text { according to MIDI Clock messages } \\ \text { received from an external device. } \\ \text { REMOTE: } \\ \text { The JUNO-STAGE will obey Play, } \\ \text { Continue, and Stop MIDI messages } \\ \text { received from an external device, } \\ \text { but will operate according to its } \\ \text { own tempo setting. }\end{array}\right\}$
7. To save the settings, press [WRITE].

## Transmitting Synchronization Data

If you want an external MIDI device to synchronize to the operation of the JUNO-STAGE, make the following settings.

| Parameter | Value |
| :--- | :--- |
| Sync Mode | MASTER |
| Sync Output | ON |

Chapter 7. Connecting an External MIDI Device

## Exchanging MIDI Messages with Your Computer

If you use a commercially available USB cable to connect the JUNOSTAGE's rear panel USB MIDI connector to a USB connector on your computer, you'll be able to do the following things.

- SMF played back by MIDI-compatible soffware can be sounded by the JUNO-STAGE.
- MIDI messages can be exchanged between the JUNO-STAGE and your sequencer software, allowing you to carry out sophisticated music production and editing.


## Connection Example



## NOTE

For details on the operating requirements, refer to the Roland website.
You can reach this information from the Roland website
http://www.roland.com/

## NOTE

Depending on the type of your computer, this may not work correctly. For details on the operating systems that are supported, refer to the Roland website.

## Note

- Before making connections to other equipment, you must minimize the volume on all your equipment and turn off the power in order to avoid malfunction and/or damage to your speakers or other devices.
- Only MIDI data can be transmitted or received via USB.
- No USB cable is included. Please consult the dealer from whom you purchased the JUNO-STAGE.
- Power up the JUNO-STAGE before you start up the MIDI application on your computer. Do not turn the JUNO-STAGE's power on or off while the MIDI application is running.


## Installing the USB Driver

## MEMO

You'll need to install the USB driver if you want to use the software provided on the included CD-ROM.

The driver is provided on the included CD-ROM (JUNO-STAGE Editor
CD). You can also download it from the Roland website.

Roland website:
http://www.roland.com/
The correct driver and the installation procedure for it will depend on the system you're using. Please carefully read the Readme file on the CD-ROM before you proceed.

## What is the USB MIDI driver?

The USB MIDI driver is software that passes data between your computer application (e.g., sequencer software) and the JUNOSTAGE when your computer and the JUNO-STAGE are connected via a USB cable.
The USB driver passes data from your application to the JUNOSTAGE, and passes data from the JUNO-STAGE to your application.


## Specifying the USB Driver

Here's how to specify the USB driver that will be used when the JUNO-STAGE is connected to your computer via the USB MIDI connector.

## NOTE

If you want to change this setting, disconnect the USB cable before doing so.

1. Press [MENU].
2. Use [ $\Delta$ ] [ $\overline{1}$ to select " 1 . System" and press the [ENTER].
3. Press [2 (GENERAL)].
4. Press [2 (COMMON)].
5. Use the cursor buttons to move the cursor to "USB Driver."
6. Use the VALUE dial or [DEC] [INC] to specify the driver.

| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| USB Driver | VENDER | Choose this if you want to use a <br> USB driver from the included <br> CD-ROM or a USB driver <br> downloaded from the Roland <br> website. |
|  | GENERIC | Choose this if you want to use <br> the generic USB driver provided <br> by your computer's operating <br> system. |

A confirmation message will appear.
Press [7 (CLOSE)] to return to the previous screen.
7. Press the [7 (WRITE)] button.
8. Turn the power off, then on again.

## NOTE

If you change the "USB Driver" setting, you must turn the power off, then on again to ensure that the JUNO-STAGE will operate correctly.

## Using JUNO-STAGE Editor/ Librarian/Playlist Editor

The included JUNO-STAGE Editor/Librarian/Playlist Editor soffware will help you enjoy the full potential of the JUNO-STAGE.
JUNO-STAGE Editor lets you use your computer to edit the JUNOSTAGE's sounds and other settings. Parameters can be assigned to sliders and knobs in the screen of your computer, allowing you to edit efficiently in a graphical manner.
JUNO-STAGE Librarian is software that lets you manage the JUNOSTAGE's parameters as a library on your computer, allowing efficient management of patches, rhythm sets, and performances.
Playlist Editor is software that lets you create playlists for the Song Player (p. 68).

## Installing JUNO-STAGE Editor/Librarian/ Playlist Editor in Your Computer

Carefully read the Readme file in the "JUNO-STAGE Editor CD" CDROM included with the JUNO-STAGE, and install JUNO-STAGE Editor/Librarian/Playlist Editor as directed.

## Windows Users

Refer to "Readme_E.txt" on the "JUNO-STAGE Editor CD" CD-ROM

## Macintosh Users

Refer to "Readme_E.txt" on the "JUNO-STAGE Editor CD" CD-ROM

## Making Connections

1. Set the USB driver selection to "VENDER."

Refer to "Specifying the USB Driver" (p. 93).
2. Use a USB cable (sold separately) to connect the JUNO-STAGE to your computer.
Refer to the connection example (p. 92).

## Chapter 8. Detailed Editing for Patches

"Editing" is the process of modifying the values of the JUNO-STAGE's various settings (parameters). This chapter explains the procedure for patch editing, and how the patch parameters work.
The JUNO-STAGE's patches are organized into three groups: User, Preset, and GM. You can also install up to two wave expansion boards (SRX series; sold separately).
The following patch groups are available.

## USER

This is a group of rewritable patches inside the JUNO-STAGE. Patches you create can be saved in this group. When the JUNO-STAGE is shipped from the factory, this group already contains 256 patches.

## PRST (preset)

This is a group of non-rewritable patches inside the JUNO-STAGE. Although these patches cannot be rewritten, you are free to edit the settings of the currently selected patch, and then save the modified settings in the user patch group.

## GM (GM2)

This is a group of non-rewritable patches that are compatible with GM2, a set of recommendations that allows compatibility across manufacturers and models. Although these patches cannot be rewritten, you are free to modify the settings of the currently selected patch, and then save the modified settings in the user patch group. This group contains 256 patches.

## XP-A, B <br> (wave expansion board installed in the EXP A or B slot)

These groups allow you to use patches on a wave expansion board installed in the EXP A or B slots. Although these patches cannot be rewritten, you are free to modify the settings of the currently selected patch, and then save the modified settings in the user patch group. The number of patches in each group will depend on the wave expansion board that is installed.

## NOTE

XP-A and B patches cannot be selected unless an SRX series wave expansion board (sold separately) is installed in the corresponding slot.

## How to Edit a Patch

You can create a new patch by editing an existing patch. A patch consists of up to four "tones." Before editing a patch, you should listen to each tone individually to familiarize yourself with the role it plays in creating the overall sound of the patch.

## Four tips when creating patches

- Choose a patch that's close to what you have in mind (p. 45)

If you're trying to create a new patch, it will be difficult to make progress if you simply select any old patch and start making changes blindly. It's important to start by selecting a patch that's close to what you have in mind.

- Decide which tones you'll use (p. 95)

When creating a patch, it's very important to decide which tones you're going to use. In the EDIT screen, use the Tone Switch $1-4$ settings to specify whether each tone will be heard (on) or silent (off). Turning off unneeded tones is also an important way to conserve polyphony.

- Check the structure setting (p. 99)

The Structure parameter is a very important one; it specifies how the four tones will be combined. Before you begin actually editing the tones, you must understand the relationship between the tones.

- Turn the effects off (p. 79)

The JUNO-STAGE contains a diverse array of effects, allowing you to process the sound in sophisticated ways. Effects have a major impact on the sound, and simply turning off the effects may produce an entirely different impression. Turning off the effects will allow you to hear the sound of the patch itself, which makes it easier to hear the result of the changes you make. In some cases, editing the effect settings may be enough to create the sound you want.

## Editing in a Graphic Display (ZOOM EDIT)

The ZOOM EDIT screen lets you edit using a graphic display of important parameters that are edited frequently.

## MEMO

For details on the parameters, refer to p. 98 and following.

1. In Patch mode or Performance mode, select the patch that you want to edit.
For details, refer to "Selecting Patches in Patch Mode" (p. 45) or "Selecting a Patch for Each Part" (p. 50).

## MEMO

If you want to create a patch from scratch rather than starting from an existing one, execute the Initialize operation (p.96).
2. Press [EDIT].
3. Press [3 (PATCH EDIT)], or use the VALUE dial to select "PATCH EDIT" and then press [ENTER].
The ZOOM EDIT screen will appear.

4. Use [2]-[5] to select the desired editing screen.

By pressing [6 (PAGE)] you can switch among the [2]-[5] screens.

| Button | Screen |
| :--- | :--- |
| [2 (PCH ENV)] | PITCH ENVELOPE (p. 105) |
| [3 (TVF PRM)] | TVF PARAMETER (p. 106) |
| [4 (TVF ENV)] | TVF ENVELOPE (p. 107) |
| [5 (TVA ENV)] | TVA ENVELOPE (p. 109) |
| [6 (PAGE $\downarrow)]$ [6 (PAGE $\uparrow$ )] |  |
| [2 (STRUCT)] | STRUCTURE (p. 99) |
| [3 (LFO 1)] | LFO 1 (p. 113) |
| [4 (LFO 2)] | LFO 2 (p. 113) |
| [5 (STEPLFO)] | STEP LFO (p. 115) |

5. Use the cursor buttons to select the parameter that you want to edit.
6. Press [TONE SWITCH/SELECT] so it's lit, and use TONE SELECT [1][4] to select the tone that you want to edit.

- To simultaneously edit the same parameter for multiple tones Simultaneously press TONE SELECT [1]-[4] corresponding to the tones that you want to edit, so they're lit in red.
- To switch tones on/off Press TONE SWITCH [1]-[4] to turn each tone on/off.

7. Use the VALUE dial or [DEC] [INC] to edit the value.

If you've selected more than one tone for editing, all of those tones will be set to the same value.

## MEMO

In PRO EDIT (p. 95) you can edit while preserving the relative
differences between tones.
8. Repeat steps $4-7$ to edit the patch as desired.
9. If you want to save the changes you've made, press [WRITE] (p. 97).

If you decide not to save the changes, press [EXIT] to exit the ZOOM EDIT screen.
If you exit the ZOOM EDIT screen without saving, an "*" will be displayed in the PATCH PLAY screen of Patch mode.

## NOTE

If you turn off the power or select a different sound when the "*" is displayed, the patch settings you edited will be lost.

## Viewing and Editing All Parameters (PRO EDIT)

This shows the parameters of ZOOM EDIT, and additionally allows you to edit in greater detail.

MEMO
For details on the parameters refer to p. 98 and following.

1. In Patch mode or Performance mode, select the patch that you want to edit.
For details, refer to "Selecting Patches in Patch Mode" (p. 45) or "Selecting a Patch for Each Part" (p. 50).

## MEMO

If you want to create a patch from scratch without using an existing patch, execute the Initialize operation (p. 96).
2. Press [EDIT].
3. Either press [3 (PATCH EDIT)] or use the VALUE dial to select "PATCH EDIT," and then press [ENTER].
The ZOOM EDIT screen will appear.
4. Press [7 (PRO EDIT)].

The PRO EDIT screen will appear.
5. Use [3 (GRP $\uparrow$ )] [4 (GRP $\downarrow$ )] to switch between parameter groups.

TIP
Alternatively, you can switch between parameter groups by pressing [2 (GRP LIST)] to access the Patch Pro Edit Menu window, then using the VALUE dial, [DEC] [INC], or [ $\boldsymbol{\Delta}$ ] [ $\boldsymbol{\nabla}$ ] to select the parameter group, and pressing [ENTER].
6. Use the cursor buttons to select a parameter.

7. Press [TONE SWITCH/SELECT] so it's lit, and use TONE SELECT [1][4] to select the tone that you want to edit.

- To edit the same parameter of multiple tones simultaneously Simultaneously press the TONE SELECT [1]-[4] buttons for the tones that you want to edit, so they're lit in red.
- To switch tones on/off

Press TONE SWITCH [1]-[4] to switch tones on/off. You'll be editing the tones for which a check mark $(\boldsymbol{V})$ is shown for the tone numbers in the upper right of the screen.
8. Use the VALUE dial or [DEC] [INC] to edit the value.

If you've selected more than one tone for editing, their values will change while their relative differences are preserved.
9. Repeat steps 5-8 to edit the parameters as desired.
10. If you want to save the modified settings, press [WRITE] (p. 97). If you decide not to save the changes you made, press [EXIT] to exit the PRO EDIT screen.
If you exit the PRO EDIT screen without saving, an "*" will be displayed in the PATCH PLAY screen of Patch mode.

## NOTE

If you turn off the power or select a different sound when the "*" is displayed, the patch settings you edited will be lost.

## Initializing a Patch

Here's how to return (initialize) the settings of the currently selected patch to their default values.

## NOTE

Initialization will affect only the currently selected patch. If you want to return all settings to their factory-set state, execute the Factory Reset operation (p. 155).

1. In Patch mode or Performance mode, select the user patch that you want to initialize.
For details, refer to "Selecting Patches in Patch Mode" (p. 45) or "Selecting a Patch for Each Part" (p. 50).
2. Press [EDIT].
3. Either press [3], or use the VALUE dial to select "PATCH EDIT" and press [ENTER].
The ZOOM EDIT screen will appear.
4. Hold down [SHIFT] and press [6 (INIT)].

A confirmation message will appear.
If you decide to cancel, press [6 (CANCEL)].
5. Press $[7$ (EXEC)] to initialize the patch.

## Copying Patch (Tone) Settings

Here's how to copy the tone settings of a desired patch to the currently selected patch.

1. In Patch mode or Performance mode, select the copy-destination user patch.
For details, refer to "Selecting Patches in Patch Mode" (p. 45) or "Selecting a Patch for Each Part" (p. 50).
2. Press [EDIT].
3. Either press [3], or use the VALUE dial to select "PATCH EDIT" and press [ENTER].
The ZOOM EDIT screen will appear.
4. Hold down [SHIFT] and press [7 (TONE CPY)].

The Patch Tone Copy window will appear.

5. Use the cursor buttons to move the cursor, and use the VALUE dial or [DEC] [INC] to select the desired "Source (copy-source)" group, number, and tone.
If you press [5 (COMPR)] to apply a check mark ( $\mathcal{V})$, you'll be able to play the copy-source patch (Compare function).
6. Use the cursor buttons to move the cursor, and select the "Destination (copy-destination)" tone.
7. Press [7 (EXEC)].

A confirmation message will appear.
If you decide to cancel, press [6 (CANCEL)].
8. Press [7 (EXEC)] to execute the copy.

## Compare function

When copying patch tones or saving patches, it's often convenient to use the Compare function.
If you want to hear the copy-source (or save-destination) patch, press [5 (COMPR)] to apply a check mark ( $\mathcal{V}$ ); now you can use the keyboard to play the copy-source (or save-destination) patch.

* The patch may sound slightly different than normal when played via the Compare function.


## Saving a Patch You've Creałed (IWRIIE)

Changes you make are temporary, and will be lost when you turn off the power or select another patch. If you want to keep the patch you modified, you must save it to internal user memory.
When you edit the settings of a patch in Patch mode, an "*" will be shown in the PATCH PLAY screen.
If you've edited a patch in Performance mode, you should also save the performance after saving the patch (p. 133).

## NOTE

When you save, the data that previously occupied the save destination will be overwritten.

## 1. Edit a patch.

## 2. Press [WRITE].

The PATCH NAME screen will appear.
If you're in Performance mode, the WRITE MENU screen will appear. Pressing [3 (PAT/RHY)] will access the PATCH NAME screen.

## FATCH NAME, STEP 1/1Z <br> USER : 009 F <br> Har dRock0RG1 <br> TYPE 1 DELETE $/$ INSERT $/$ CANCEL $\mid$ WRITE

3. Assign a name to the patch.

For details on assigning a name, refer to p. 44.
4. When you've finished assigning a name, press [ 7 (WRITE)].

A screen allowing you to select the save destination will appear.
5. Use the VALUE dial, [DEC] [INC], or [ $\Delta$ ] [ $\boldsymbol{\nabla}$ ] to select the savedestination patch number.
If you press [5 (COMPR)] to apply a check mark (V), you'll be able to play the save-destination patch (Compare function).
6. Press [7 (WRITE)].

A confirmation message will appear.
If you decide to cancel, press [6 (CANCEL)].
7. Press [7 (EXEC)] to save the patch.

## NOTE

Never turn off the power while data is being saved.

## Note when selecting a waveform

The JUNO-STAGE uses complex PCM waveforms as the basis for its sounds. For this reason, you should be aware that if you specify a waveform that is very different than the original waveform, the result may not be what you expect.
The JUNO-STAGE's internal waveforms can be categorized into the following two types.

## One-shot:

These are sounds with a short decay time. One-shot waveforms contain the entire duration of the sound from the attack until it decays to silence. Some of these waveforms capture a complete sound such as a percussion instrument, but there are also many attack component sounds such as the hammer strike of a piano or the fret noise of a guitar.
Loop:
These are sounds with a long decay, or sustaining sounds. Looped waveforms will repeatedly play a portion of a sound once it has reached a relatively stable state. These sounds also include numerous component sounds, such as a vibrating piano string or a resonating pipe.
The following illustration shows an example of a sound created by combining a one-shot waveform with a loop waveform. (This example is of an electric organ.)


Note when selecting a one-shot waveform
It's not possible to use the envelope settings to give a one-shot waveform a longer decay than the original waveform contains, or to make it a sustaining sound. Even if you made this type of envelope setting, you would be trying to bring out something that doesn't exist in the original waveform.

## Note when selecting a looped waveform

Many acoustic instruments such as piano or sax are marked by a sudden change in timbre at the very beginning of the sound, and this rapid change is what gives the instrument its distinctive character. When using these waveforms, it's best to use the complex tonal changes in the attack portion of the sound without attempting to modify them; use the envelope only to modify the decay portion of the sound as desired. If you use the envelope to modify the attack as well, the envelope settings will be affected by the attack of the waveform itself, and you may not get the result you intend.


Chapter 8. Detailed Editing for Patches

## Functions of Patch Parameters

Settings Common to the Entire Patch

## GENERAL

| Explanation |
| :--- | :--- | :--- |

## Stretched Tuning



Low note range
High note range

## Changing How a Tone is Sounded (Structure)

| Parameter | Value |
| :--- | :--- |
| Struct 1 \& 2, 3 \& 4 <br> (Structure Type) <br> ZOOM Struct 182, 3\&4 |  |
| Type 01 | TYPE 01-TYPE 10 |
| TONE 1 (3) WG | TVF |
| TONE 2 (4) WG | TVF |

With this type, tones 1 and 2 (or 3 and 4) are independent. Use this type when you want to preserve PCM sounds or create and combine sounds for each tone.


This type mixes the sound of tone $1(3)$ and tone $2(4)$, applies a filter, and then applies a booster to distort the waveform.


This type uses a ring modulator to create new overtones, and combines the two filters. The tone 1 (3) TVA will control the volume balance of the two tones, adjusting the depth of ring modulator.


This type applies a filter to tone 1 (3) and ring-modulates it with tone 2 (4) to create new overtones.


This type passes the filtered sound of each tone through a ring modulator to create new overtones. The tone 1 (3) TVA will control the volume balance of the two tones, adjusting the depth of ring modulator.



This type stacks the two filters together to intensify the characteristics of the filters. The TVA for tone 1 (or 3) controls the volume balance between the two tones.


This type applies a booster to distort the waveform, and then combines the two filters. The TVA for tone 1 (or 3) controls the volume balance between the two tones and adjusts booster level.


This type uses a ring modulator to create new overtones, and in addition mixes in the sound of tone $2(4)$ and stacks the two filters. Since the ringmodulated sound can be mixed with tone 2 (4), tone 1 (3) TVA can adjust the amount of the ring-modulated sound.


This type sends the filtered tone 1 (3) and tone 2 (4) through a ring modulator, and then mixes in the sound of tone 2 (4) and applies a filter to the result.


This type passes the filtered sound of each tone through a ring modulator to create new overtones, and also mixes in the sound of tone 2 (4). Since the ring-modulated sound can be mixed with tone 2 (4), tone 1 (3) TVA can adjust the amount of the ring-modulated sound.

[^1]Chapter 8. Detailed Editing for Patches

| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Booster 1\&2,3\&4 <br> (Booster Gain) | $0,+6$, | Specifies the amount of boost that is applied (when the structure type is TYPE 03 or TYPE 04) <br> The booster distorts the sound by boosting the input signal, producing the distortion <br> effect that is often used with an electric guitar. Increasing this value will produce <br> stronger distortion. |
| ZOOM Booster 1\&2,3\&4 | $+12,+18$ |  |

## Booster

The Booster is used to distort the incoming signal.


In addition to using this to create distortion, you can use the waveform (WG1) of one of the tones as an LFO which shifts the other waveform (WG2) upward or downward to create modulation similar to PWM (pulse width modulation). This parameter works best when you use it in conjunction with the Wave Gain parameter (p. 103).


## Ring Modulator

A ring modulator multiplies the waveforms of two tones with each other, generating many new overtones (in harmonic partials) which were not present in either waveform (Unless one of the waveforms is a sine wave, evenly-spaced frequency components will not usually be generated.). As the pitch difference between the two waveforms changes the harmonic structure, the result will be an unpitched metallic sound. This function is
 suitable for creating metallic sounds such as bells.

## MODIFY

These values are added to the parameter values of each tone.

| Parameter | Value | Description |
| :--- | :--- | :--- |
| Cutoff Offset | $-63-+63$ | Cutoff Frequency (p. 106) |
| Resonance Offset | $-63-+63$ | Resonance (p. 106) |
| Attack Time Offset | $-63-+63$ | F-Env Time 1, A-Env Time 1 (p. 107, p. 109) |
| Release Time Offset | $-63-+63$ | F-Env Time 4, A-Env Time 4 (p. 107, p. 109) |
| Velocity Sens Offset | $-63-+63$ | Cutoff V-Sens, Level V-Sens (p. 107, p. 108) |

## PORTAMENTO

Portamento is an effect which smoothly changes the pitch from the first-played key to the next-played key.

Portamento Start: PITCH


Portamento Start: NOTE


| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Portamento Switch | OFF, ON | Specifies whether the portamento effect will be applied (ON) or not (OFF). |
| Portamento Mode | NORMAL, <br> LEGATO | NORMAL: Portamento will always be applied. <br> LEGATO: Portamento will be applied only when you play legato. |
| Portamento Type | RATE, TIME | RATE: Speed of pitch change is uniform (the time required for the pitch change will correspond to <br> the distance of the pitch change) <br> TIME: The time it takes will be constant, regardless of how far apart in pitch the notes are. |
| Portamento Start | PITCH, NOTE | PITCH: Starts a new portamento when another key is pressed while the pitch is changing. <br> NOTE: Portamento will begin anew from the pitch where the current change would end. |
| Portamento Time | $0-127$ | Specifies the time over which the pitch will change. |

CONTROL

| Parameter | MONO, POLY | MONO: Only the last-played note will sound. This setting is effective when playing a solo <br> instrument patch such as sax or flute. <br> POLY: Two or more notes can be played simultaneously. |
| :--- | :--- | :--- |
| Mono/Poly | OFF, ON | ON: Pressing a key while continuing to press a previous key causes the note to change pitch to the <br> pitch of the most recently pressed key, sounding all the while. This is effective when you wish to <br> simulate the hammering-on and pulling-off techniques used by a guitarist. <br> * Legato Switch is valid when the Mono/Poly parameter is set to "MONO." |
| Legato Retrigger | OFF, ON | Off: When one key is held down and another key is then pressed, only the pitch changes, without <br> the attack of the latter key being played. Set this to "OFF" when performing wind and string <br> phrases or when using modulation with the mono synth keyboard sound. <br> ON: Normally you will leave this parameter "ON." <br> * Legato Retrigger is valid when the Mono/Poly is set to "MONO" and the Legato Switch is set <br> to "ON." |
| Pitch Bend Range Up | $0-+48$ | Degree of pitch change in semitones when the Pitch Bend lever is all the way right (in semitones) |

Chapter 8. Detailed Editing for Patches

## KEY RANGE

You can use the note number to control the way each Tone is played.


| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Key Fade Lower | $0-127$ | Determines what will happen to the tone's level when a note that's lower than Key Range Lower <br> is played. <br> If you don't want the tone to sound at all, set this parameter to " $0 . "$ |
| Key Range Lower | C--(Upper) | Specifies the lowest note that the tone will sound for each tone. |
| Key Range Upper | (Lower)-G9 | Specifies the highest note that the tone will sound for each tone. |
| Key Fade Upper | $0-127$ | Determines what will happen to the tone's level when a note that's higher than Key Range <br> Upper is played. <br> If you don't want the tone to sound at all, set this parameter to " $0 . "$ |

## VELOCITY RANGE

You can use the force with which keys are played to control the way each Tone is played.


| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Tone Mix Velo Control | OFF, ON, <br> RANDOM, <br> CYCLE | Determines whether a different tone is played (ON) or not (OFF) depending on the force with <br> which the key is played (velocity). <br> RANDOM: The patch's constituent tones will sound randomly, regardless of any Velocity <br> messages. <br> CYCLE: The patch's constituent tones will sound consecutively, regardless of any Velocity <br> messages. |
| Control Switch | $0-127$ | Use the Matrix Control (p. 110) to enable (ON), or disable (OFF) sounding of different tones. |
| Velo Fade Lower | Determines what will happen to the tone's level when the tone is played at a velocity lower <br> than Velo Range Lower. <br> If you don't want the tone to sound at all, set this parameter to "O." |  |
| Velo Range Lower | (Lower)-127 | Specifies the lowest velocity at which the tone will sound. |
| Velo Range Upper | Specifies the highest velocity at which the tone will sound. |  |
| Velo Fade Upper | Determines what will happen to the tone's level when the tone is played at a velocity greater <br> than Velo Range Upper. <br> If you don't want the tone to sound at all, set this parameter to " $0 . "$ |  |

## MEMO

When using the Matrix Control to have different tones played, set the lowest value (Lower) and highest value (Upper) of the value of the MIDI message used.

## NOTE

Instead of using Velocity, you can also have tones substituted using the Matrix Control. However, the keyboard velocity and the Matrix Control cannot be used simultaneously to make different tones to sound. When using the Matrix Control to switch tones, set the Tone Mix Velo Control parameter to "OFF."

Chapter 8. Detailed Editing for Patches

## Modifying Waveforms/Pitch/Pitch Envelope

## WAVE PARAMETER

Parameter marked with a " $\star$ " can be controlled using specified MIDI message
(Matrix Control, p. 110)

| Parameter | Value | Explanation |
| :---: | :---: | :---: |
| Wave Group | INT, EXP | Group for the waveform that is to be the basis of the tone <br> INT: Waveforms stored in internal <br> EXP: Waveform stored in a Wave Expansion Board (SRX series) installed in EXP slots |
| Wave Bank | A, B | When the Wave Group is EXP <br> A, B: Wave expansion board slots |
| Wave No. L (Mono) Wave No. R | -, 1- | Basic waveform for a tone (The upper limit will depend on the Wave Group and Wave Bank.) When in monaural mode, only the left side (L) is specified. When in stereo, the right side $(\mathrm{R})$ is also specified. <br> If you want to select a left/right pair of Waves, select the left (L) Wave number, and then hold down [SHIFT] and press [5 (STEREO)] to add a check mark ( $\mathcal{V}$ ); the right ( $R$ ) (Wave) will be recalled. |
| Wave Gain | $-6,0,+6,+12$ | Gain (amplification) of the waveform <br> The value changes in 6 dB (decibel) steps-an increase of 6 dB doubles the waveform's gain. <br> * If you intend to use the Booster to distort the waveform's sound, set this parameter to its maximum value ( p .100 ). |
| Wave Tempo Sync | OFF, ON | When you wish to synchronize a Phrase Loop to the clock (tempo), set this to "ON." <br> * This is valid only when a separately sold wave expansion board is installed, and a waveform that indicates a tempo (BPM) is selected. <br> If a waveform from a wave expansion board is selected for the tone, turning the Wave Tempo Sync parameter "ON" will cause pitch-related settings and FXM-related settings to be ignored. <br> * When this parameter is set to "ON," set the Tone Delay Time parameter (p. 111) to "0." |
| FXM Switch | OFF, ON | This sets whether FXM will be used (ON) or not (OFF). |
| FXM Color | 1-4 | How FXM will perform frequency modulation <br> Higher settings result in a grainier sound, while lower settings result in a more metallic sound. |
| FXM Depth $\star$ | 0-16 | Depth of the modulation produced by FXM |

## Phrase Loop

Phrase loop refers to the repeated playback of a phrase that's been pulled out of a song (e.g., by using a sampler). One technique involving the use of Phrase Loops is the excerpting of a Phrase from a pre-existing song in a certain genre, for example dance music, and then creating a new song with that Phrase used as the basic motif. This is referred to as "Break Beats."

## FXM

FXM (Frequency Cross Modulation) uses a specified waveform to apply frequency modulation to the currently selected waveform, creating complex overtones. This is useful for creating dramatic sounds or sound effects.

Chapter 8. Detailed Editing for Patches

## WAVE PITCH

Parameter ma
(Matrix Control, p. 110)

| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Tone Coarse Tune $\star$ | $-48-+48$ | $-50-+50$ |
| Tone Fine Tune $\star$ | $0-1200$ | Pitch of the tone's sound (in semitones, $+/-4$ octaves) |
| Rand Pitch Depth | $-200-+200$ | $-63-+63$ |
| Pitch Keyfollow of the tone's sound (in 1-cent steps; one cent is $1 / 100$ th of a semitone) |  |  |
| P-Env V-Sens | Width of random pitch deviation that will occur each time a key is pressed (in 1 I-cent steps) <br> If you do not want the pitch to change randomly, set this to " $0 . "$ |  |
| P-Env T1 V-Sens | Amount of pitch change that will occur when you play a key one octave higher <br> If you want the pitch to rise one octave as on a conventional keyboard, set this to " $+100 . "$ <br> If you want the pitch to rise two octaves, set this to " $+200 . "$ |  |
| P-Env T4 V-Sens | Keyboard playing dynamics can be used to control the depth of the pitch envelope. <br> If you want the pitch envelope to have more effect for strongly played notes, set this <br> parameter to a positive (+) value. |  |
| P-Env Time KF | This allows keyboard dynamics to affect the T1 of the Pitch envelope. <br> If you want T1 to be speeded up for strongly played notes, set this parameter to a positive <br> (+) value. |  |
| (Time Keyfollow) | Use this parameter when you want key release speed to affect the T4 value of the Pitch <br> envelope. <br> If you want T4 to be speeded up for quickly released notes, set this parameter to a positive <br> (+) value. |  |



## WAVE PITCH ENV

Parameters indicated by (ZOOM) ) can be edited via ZOOM EDIT (p. 94).
Parameter marked with a " $\star$ " can be controlled using specified MIDI messages.
(Matrix Control, p. 110)

| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| P-Env Depth <br> ZOOW Env Depth | $-12-+12$ | Depth of the Pitch envelope <br> Higher settings will cause the pitch envelope to produce greater change. Negative $(-)$ <br> settings will invert the shape of the envelope. |
| P-Env Time 1-4 $\star$ <br> ZOOW Time 1-4 | $0-127$ | Pitch envelope times (T1-T4) <br> Higher settings will result in a longer time until the next pitch is reached. |
| P-Env Level 0-4 <br> ZOOW Level 0-4 | $-63-+63$ | Pitch envelope levels (LO-L4) <br> Specify how the pitch will change at each point, relative to the pitch set with Coarse Tune <br> or Fine Tune. |

Pitch Envelope


Chapter 8. Detailed Editing for Patches

## Modifying the Brightness of a Sound with a Filter (TVF/TVF Envelope)

A filter cuts or boosts a specific frequency region to change a sound's brightness, thickness, or other qualities.

## TVF PARAMETER

Parameters indicated by (ZOOM) ) can be edited via ZOOM EDIT (p. 94).
Parameter marked with a " $\star$ " can be controlled using specified MIDI messages.
(Matrix Control, p. 110)

| Parameter | Value | Explanation |
| :---: | :---: | :---: |
| Filter Type ZOOM Filter Type | OFF, LPF, BPF, HPF, PKG, LPF2, LPF3 | Type of filter <br> OFF: No filter is used. <br> LPF: Low Pass Filter. This reduces the volume of all frequencies above the Cutoff Frequency in order to round off, or un-brighten the sound. <br> BPF: Band Pass Filter. This leaves only the frequencies in the region of the Cutoff Frequency, and cuts the rest. This can be useful when creating distinctive sounds. <br> HPF: High Pass Filter. This cuts the frequencies in the region below the Cutoff Frequency. This is suitable for creating percussive sounds emphasizing their higher tones. <br> PKG: Peaking Filter. This emphasizes the frequencies in the region of the Cutoff Frequency. You can use this to create wah-wah effects by employing an LFO to change the Cutoff Frequency cyclically. <br> LPF2: Low Pass Filter 2. Although frequency components above the Cutoff Frequency are cut, the sensitivity of this filter is half that of the LPF. This filter is good for use with simulated instrument sounds such as the acoustic piano. <br> LPF3: Low Pass Filter 3. Although frequency components above the Cutoff Frequency are cut, the sensitivity of this filter changes according to the Cutoff Frequency. While this filter is also good for use with simulated acoustic instrument sounds, the nuance it exhibits differs from that of the LPF2, even with the same TVF Envelope settings. <br> * If you set "LPF2" or "LPF3," the setting for the Resonance parameter will be ignored. |
| Cutoff Frequency $\star$ ZOOM Cutoff | 0-127 | Frequency at which the filter begins to have an effect on the waveform's frequency components |
| Resonance $\star$ ZOOM Resonance | 0-127 | Emphasizes the portion of the sound in the region of the cutoff frequency, adding character to the sound <br> * Excessively high settings can produce oscillation, causing the sound to distort. |
| Cutoff Keyfollow ZOOM Cutoff KFolw | -200-+200 | Use this parameter if you want the cutoff frequency to change according to the key that is pressed <br> Relative to the cutoff frequency at the C 4 key (center C ), positive ( + ) settings will cause the cutoff frequency to rise for notes higher than C4, and negative (-) settings will cause the cutoff frequency to fall for notes higher than C4. Larger settings will produce greater change. |



Cutoff frequency Cutoff Keyfollow
(Octave)


| Parameter | Value | Explanation |
| :---: | :---: | :---: |
| Cutoff V-Curve | FIX, 1-7 | Curve that determines how keyboard playing dynamics (velocity) will affect the cutoff frequency Set this to "FIX" if you don't want the Cutoff frequency to be affected by the keyboard velocity. |
| Cutoff V-Sens | -63-+63 | Use this parameter when changing the cutoff frequency to be applied as a result of changes in playing velocity. <br> If you want strongly played notes to raise the cutoff frequency, set this parameter to positive (+) settings. |
| Resonance V-Sens | -63-+63 | This allows keyboard velocity to modify the amount of Resonance. <br> If you want strongly played notes to have a greater Resonance effect, set this parameter to positive (+) settings. |
| F-Env V-Curve | FIX, 1-7 | Curve that determines how keyboard playing dynamics (velocity) will affect the TVF envelope Set this to "FIX" if you don't want the TVF Envelope to be affected by the keyboard velocity. <br> 5 |
| F-Env V-Sens | -63-+63 | Specifies how keyboard playing dynamics will affect the depth of the TVF envelope. <br> Positive (+) settings will cause the TVF envelope to have a greater effect for strongly played notes, and negative $(-)$ settings will cause the effect to be less. |
| F-Env Tl V-Sens | -63-+63 | This allows keyboard dynamics to affect the T1 of the TVF envelope. <br> If you want Tl to be speeded up for strongly played notes, set this parameter to a positive (+) value. |
| F-Env T4 V-Sens | -63-+63 | Use this parameter when you want key release speed to affect the T4 value of the TVF envelope. <br> If you want T 4 to be speeded up for quickly released notes, set this parameter to a positive (+) value. |

## TVF ENVELOPE

Parameters indicated by (ZOOM) can be edited via ZOOM EDIT (p. 94). Parameter marked with a " $\star$ " can be controlled using specified MIDI messages.
(Matrix Control, p. 110)

| Parameter | Value | Explanation <br> F-Env Depth <br> ZOOM Env Depth <br> $-63-+63$Depth of the TVF envelope <br> Higher settings will cause the TVF envelope to produce greater change. Negative (-) settings will invert <br> the shape of the envelope. |
| :--- | :--- | :--- |
| F-Env Time KF <br> (Time Keyfollow) | $-100-+100$ | Use this setting if you want the TVF envelope times (T2-T4) to be affected by the keyboard location. <br> Based on the TVF envelope times for the C4 key (center C), positive ( + ) settings will cause notes higher <br> than C4 to have increasingly shorter times. |
| F-Env Time 1-4 $\star$ <br> ZOOM Time 1-4 | $0-127$ | TVF envelope times (T1-T4) <br> Higher settings will lengthen the time until the next cutoff frequency level is reached. |
| F-Env Level 0-4 <br> ZOOM Level 0-4 | $0-127$ | TVF envelope levels (LO-L4) <br> Specify how the cutoff frequency will change at each point, relative to the Cutoff Frequency value. |



Chapter 8. Detailed Editing for Patches

## Adjusting the Volume (TVA/TVA Envelope)

## TVA PARAMETER

Parameter marked with a " $\star$ " can be controlled using specified MIDI messages.
(Matrix Control, p. 110)


| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Random Pan Depth | $0-63$ | Use this parameter when you want the stereo location to change randomly each time you press a key. <br> Higher settings will produce a greater amount of change. |
| Alter Pan Depth | L63-0-63R | This setting causes panning to be alternated between left and right each time a key is pressed. <br> Higher settings will produce a greater amount of change. " $L$ " or " $R$ " settings will reverse the order in <br> which the pan will alternate between left and right. For example if two tones are set to " $L$ " and " $R$ " <br> respectively, the panning of the two tones will alternate each time they are played. |

## TVA ENVELOPE

Parameters indicated by (ZOOM) can be edited via ZOOM EDIT (p. 94).
Parameter marked with a " $\star$ " can be controlled using specified MIDI messages.
(Matrix Control, p. 110)

| Parameter | Value | Explanation |
| :---: | :---: | :---: |
| A-Env Tl V-Sens | -63-+63 | This allows keyboard dynamics to affect the T1 of the TVA envelope. <br> If you want Time 1 to be speeded up for strongly played notes, set this parameter to a positive ( + ) value. If you want it to be slowed down, set this to a negative $(-)$ value. |
| A-Env T4 V-Sens | -63-+63 | Use this parameter when you want key release speed to affect the T4 value of the TVA envelope. If you want T 4 to be speeded up for quickly released notes, set this parameter to a positive (+) value. If you want it to be slowed down, set this to a negative $(-)$ value. |
| A-Env Time KF (Time Keyfollow) | -100-+100 | Use this setting if you want the TVA envelope times (T2-T4) to be affected by the keyboard location. Based on the TVA envelope times for the C4 key (center C), positive (+) settings will cause notes higher than C 4 to have increasingly shorter times, and negative ( - ) settings will cause them to have increasingly longer times. Larger settings will produce greater change. |
| A-Env Time 1-4 $\star$ ZOOM Time 1-4 | 0-127 | TVA envelope times (T1-T4) <br> Higher settings will lengthen the time until the next volume level is reached. |
| A-Env Level 1-3 ZOOM Level 1-3 | 0-127 | TVA envelope levels (Ll-L3) <br> Specify how the volume will change at each point, relative to the Tone Level value. |




Chapter 8. Detailed Editing for Patches

## Matrix Control Settings/Miscellaneous Settings

## MATRIX CTRLI-4

The function which allows you use MIDI messages to make changes in realtime to the tone parameters is called the Matrix Control. Up to four Matrix Controls can be used in a single patch.
To use the Matrix Control, specify which MIDI message (CTRL Source) will be used to control which parameter (CTRL Destination), and how greatly (CTRL Sens), and the tone to which the effect is applied (CTRL Switch).

| Parameter | Value | Explanation |
| :---: | :---: | :---: |
| CTRL 1-4 Source | OFF, <br> CCO1-31, 33-95, PITCH BEND, AFTERTOUCH, SYS CTRL1-4, VELOCITY, KEY FOLLOW, TEMPO, LFOI LFO2, PITCH ENV, TVF ENV, TVA ENV | MIDI message used to change the tone parameter with the Matrix Control <br> OFF: Matrix control will not be used. <br> CCO1-31, 33-95: Controller numbers 1-31, 33-95 <br> PITCH BEND: Pitch Bend <br> AFTERTOUCH: Aftertouch <br> SYS CTRLI-4: Controllers that are shared by the entire JUNO-STAGE (see TIP below) <br> VELOCITY: Pressure you press a key with <br> KEY FOLLOW: Keyboard position with C4 as 0 <br> TEMPO: The specified tempo of the JUNO-STAGE or the tempo of an external MIDI sequencer. <br> LFOI: LFO 1 <br> LFO2: LFO 2 <br> PITCH ENV: Pitch envelope <br> TVF ENV: TVF envelope <br> TVA ENV: TVA envelope |

## MEMO

VELOCITY and KEY FOLLOW correspond to Note messages.

## TIP

- Although there are no MIDI messages for LFO 1 through TVA Envelope, they can be used as Matrix Control. In this case, you can change the tone settings in realtime by playing patches.
- If you want to use common controllers for the entire JUNO-STAGE, select "SYS CTRL1"-"SYS CTRL4." MIDI messages used as System Control 14 are set with the System Ctrl 1-4 Source parameters (p. 148).


## NOTE

- If Rx Bender, Rx Expression, or Rx Hold-1 (p. 112) are "ON," incoming MIDI messages of these types will affect the Pitch Bend, Expression, or Hold 1 settings at the same time that they affect the target parameter (CTRL Destination). If you want these incoming messages to affect only the target parameter, turn these settings "OFF."
- There are parameters that let you specify whether specific MIDI messages will be received for each channel in a performance (p. 138). When a patch with Matrix Control settings is assigned to a part, confirm that any MIDI messages used for the Matrix Control will be received. If the JUNO-STAGE is set up such that reception of MIDI messages is disabled, then the Matrix Control will not function.

| Parameter | Value | Explanation |
| :---: | :---: | :---: |
| CTRL 1-4 <br> Destination 1-4 | OFF, PITCH, CUTOFF, RESONANCE, LEVEL, PAN, OUTPUT LEVEL, CHORUS SEND, REVERB SEND, LFOI/2 PITCH DEPTH, LFOI/2 TVF DEPTH, LFOI/2 TVA DEPTH, LFOI/2 PAN DEPTH, LFOI/2 RATE, PCH ENV A-TIME, PCH ENV D-TIME, PCH ENV R-TIME, TVF ENV A-TIME, TVF ENV D-TIME, TVF ENV R-TIME, TVA ENV A-TIME, TVA ENV D-TIME, TVA ENV R-TIME, TMT, FXM DEPTH, MFX CTRLI-4 | Tone parameters that are to be controlled when using the Matrix Control <br> Up to four parameters can be specified for each Matrix Control, and controlled simultaneously. <br> * In this manual, parameters that can be controlled using the Matrix Control are marked with a " $\star$." |

## Chapter 8. Detailed Editing for Patches

| Parameter | Value | Explanation |
| :---: | :---: | :---: |
| CTRL 1-4 <br> Sens 1-4 | -63-+63 | Amount of the Matrix Control's effect that is applied <br> - If you wish to modify the selected parameter in a positive (+) direction-i.e., a higher value, toward the right, or faster etc.- from its current setting, select a positive (+) value. <br> - If you wish to modify the selected parameter in a negative $(-)$ direction-i.e., a lower value, toward the left, or slower etc.-from its current setting, select a negative $H$ ) value. <br> - For either positive or negative settings, greater absolute values will allow greater amounts of change. Set this to " 0 " if you don't want to apply the effect. |
| CTRL 1-4 <br> Switch 1-4 | OFF, ON, REVS | Tone to which the effect is applied when using the Matrix Control <br> OFF: The effect will not be applied. <br> ON: The effect will be applied. <br> REVS: The effect will be applied in reverse. |

## MISC

## Tone Delay

This produces a time delay between the moment a key is pressed (or released), and the moment the tone actually begins to sound. You can also make settings that shift the timing at which each tone is sounded. This differs from the Delay in the internal effects, in that by changing the sound qualities of the delayed tones and changing the pitch for each tone, you can also perform arpeggio-like passages just by pressing one key.
You can also synchronize the tone delay time to the tempo of the JUNO-STAGE.

* If you are not going to use Tone Delay, set the Tone Delay Mode parameter to "NORM" and Delay Time parameter to "O."
* If "Struct $1 \& 2,3 \& 4^{\prime \prime}($ p. 99) is set to TYPE $02-10$, the settings for tone $1(3)$ will follow the settings of tone 2 (4). (This is because the outputs of tones 1 and 2 are combined into tone 2 , and the outputs of tones 3 and 4 are combined into tone 4 .)



## Chapter 8. Detailed Editing for Patches

| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Tone Env Mode | NSUS, SUST | When a loop waveform (p. 97) is selected, the sound will normally continue as long as the key is <br> pressed. If you want the sound to decay naturally even if the key remains pressed, set this to <br> "NSUS." <br> * If a one-shot type wave (p. 97) is selected, it will not sustain even if this parameter is set to <br> "SUST." |
| Rx Bender | OFF, ON | For each tone, specify whether MIDI Pitch Bend messages will be received (ON), or not (OFF). |
| Rx Expression | OFF, ON | For each tone, specify whether MIDI Expression messages will be received (ON), or not (OFF). |
| Rx Hold-1 | OFF, ON | For each tone, specify whether MIDI Hold-1 messages will be received (ON), or not (OFF). <br> * If "NSUS" is selected for Tone Env Mode parameter, this setting will have no effect. |
| Rx Pan Mode | CONT, K-ON | For each tone, specify how pan messages will be received. <br> CONT: Whenever Pan messages are received, the stereo position of the tone will be changed. <br> K-ON: The pan of the tone will be changed only when the next note is played. If pan message <br> is received while a note is sounding, the panning will not change until the next key is pressed. <br> * The channels cannot be set so as not to receive Pan messages. |
| Redamper Sw | OFF, ON | You can specify, on an individual tone basis, whether or not the sound will be held when a Hold <br> 1 message is received after a key is released, but before the sound has decayed to silence. <br> If you want to sustain the sound, set this "ON." This function is effective for piano sounds. <br> * In order to use this function, you must also set Rx Hold-l to "ON." |

## Chapter 8. Detailed Editing for Patches

## Modulating Sounds/Output Setting

An LFO (Low Frequency Oscillator) causes change over a cycle in a sound. Each tone has two LFOs (LFO1/LFO2), and these can be used to cyclically change the pitch, cutoff frequency and volume to create modulation-type effects such as vibrato, wah and tremolo. Both LFOs have the same parameters so only one explanation is needed.

## LFO 1-2

Parameters indicated by (ZOOM ) can be edited via ZOOM EDIT (p. 97). Parameter marked with a " $\star$ " can be controlled using specified MIDI messages.
(Matrix Control, p. 110)


Chapter 8. Detailed Editing for Patches

Parameters indicated by (ZOOM) ) can be edited via ZOOM EDIT (p. 97).
Parameter marked with a " $\star$ " can be controlled using specified MIDI messages.
(Matrix Control, p. 110)

| Parameter | Value | Explanation |
| :---: | :---: | :---: |
| Fade Mode ZOOM Fade Mode | $\begin{aligned} & \mathrm{ON}<, \mathrm{ON}>, \\ & \mathrm{OFF}<, \mathrm{OFF}> \end{aligned}$ | How the LFO will be applied <br> * Set this according to your purpose as described in "How to Apply the LFO" (below). |
| Fade Time ZOOM Fade | 0-127 | Time over which the LFO amplitude will reach the maximum (minimum) <br> * Set this according to your purpose as described in "How to Apply the LFO" (below). |
| Key Trigger | OFF, ON | Specifies whether the LFO cycle will be synchronized to begin when the key is pressed (ON) or not (OFF). |
| Pitch Depth $\star$ ZOOM Pitch Depth | -63-+63 | How deeply the LFO will affect pitch |
| TVF Depth $\star$ ZOOM Filter Depth | -63-+63 | How deeply the LFO will affect the cutoff frequency |
| TVA Depth $\star$ ZOOM Amp Depth | -63-+63 | How deeply the LFO will affect the volume |
| Pan Depth $\star$ ZOOM Pan Depth | -63-+63 | How deeply the LFO will affect the pan |

Positive ( + ) and negative ( - ) settings for the Depth parameters result in differing kinds of change in pitch and volume. For example, if you set the Depth parameter to a positive ( + ) value for one tone, and set another tone to the same numerical value, but make it negative $(-)$, the modulation phase for the two tones will be the reverse of each other. This allows you to shift back and forth between two different tones, or combine it with the Pan setting to cyclically change the location of the sound image.

* If "Struct $1 \& 2,3 \& 4$ " (p. 99) is set to TYPE $02-10$, the settings for tone $1(3)$ will follow the settings of tone 2 (4). (This is because the outputs of tones 1 and 2 are combined into tone 2 , and the outputs of tones 3 and 4 are combined into tone 4 .)


## How to Apply the LFO

## - Apply the LFO gradually after the key is pressed



Fade Mode: $\mathrm{ON}<$
Delay Time: Time from when the keyboard is played until the LFO begins to be applied
Fade Time: Time over which the LFO amplitude will reach the maximum after the Delay Time has elapsed

## - Apply the LFO immediately when the key is pressed, and then gradually begin to decrease the effect



Fade Mode: ON >
Delay Time: Time that the LFO will continue after the keyboard is played
Fade Time: Time over which the LFO amplitude will reach the minimum after the Delay Time has elapsed

## - Apply the LFO gradually after the key is released

Cutoff Frequency

## - Apply the LFO from when the key is pressed until it is released, and gradually begin to decrease the effect when the key is released



Fade Mode: OFF >
Delay Time: Time that the LFO will continue after the keyboard is released Fade Time: Time over which the LFO amplitude will reach the minimum after the Delay Time has elapsed

## STEP LFO

| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Step Type <br> ZOOM Step Type | TYP1, TYP2 | When generating an LFO waveform from the data specified in LFO Step 1-16, specify whether the level <br> will change abruptly at each step or will be connected linearly. <br> TYP1: stair-step change <br> TYP2: linear change |
| Step 1-16 <br> ZOOM Step 1-16 | $-36-+36$ | Specifies the data for the Step LFO. <br> If the LFO Pitch Depth is +63, each +1 unit of the step data corresponds to a pitch of +50 cents. |

OUTPUT

| Parameter | Value | Explanation |
| :---: | :---: | :---: |
| Patch Out Assign | $\begin{aligned} & \text { MFX, } \\ & L+R, \\ & L, R, \\ & \text { TONE } \end{aligned}$ | Specifies how the direct sound of each patch will be output. <br> MFX: Output in stereo through multi-effects. You can also apply chorus or reverb to the sound that passes through multi-effects. <br> L+R: Output in stereo to the OUTPUT jacks without passing through the multi-effect L: Output in mono to the OUTPUT L jack without passing through the multi-effect <br> R: Output in mono to the OUTPUT R jack without passing through the multi-effect <br> TONE: Outputs according to the settings for each tone. |
| Tone Out Assign | $\begin{aligned} & \text { MFX, } \\ & L+R, \\ & L, R, \end{aligned}$ | Specifies how the direct sound of each tone will be output. <br> MFX: Output in stereo through multi-effects. You can also apply chorus or reverb to the sound that passes through multi-effects. <br> L+R: Output in stereo to the OUTPUT jacks without passing through the multi-effect L: Output in mono to the OUTPUT L jack without passing through the multi-effect <br> R: Output in mono to the OUTPUT R jack without passing through the multi-effect <br> * If the Patch Out Assign is set to anything other than "TONE," these settings will be ignored. <br> * If "Struct $1 \& 2,3 \& 4$ " (p.99) is set to TYPE 02-10, the settings for tone 1 (3) will follow the settings of tone $2(4)$. (This is because the outputs of tones 1 and 2 are combined into tone 2 , and the outputs of tones 3 and 4 are combined into tone 4.) <br> * Sounds are output to chorus and reverb in mono at all times. <br> * The output destination of the signal after passing through the chorus is set with the Chorus Output Select. |
| Tone Out Level | 0-127 | Level of the signal that is sent to the output destination specified by Tone Output Assign |
| Send Level (Output = MFX) |  |  |
| Tone Chorus Send | 0-127 | Level of the signal sent to chorus for each tone if the tone is sent through MFX |
| Tone Reverb Send | 0-127 | Level of the signal sent to reverb for each tone if the tone is sent through MFX |
| Send Level (Output = non MFX) |  |  |
| Tone Chorus Send | 0-127 | Level of the signal sent to chorus for each tone if the tone is not sent through MFX |
| Tone Reverb Send | 0-127 | Level of the signal sent to reverb for each tone if the tone is not sent through MFX |

## Setting Effects for a Patch (Effects/MFX/MFX Control/Chorus/Reverb)

For details regarding effect settings, refer to the pages shown below.

- "Making Effect Settings" (p. 79)
- "Multi-Effect Settings (MFX 1-3)" (p. 84)
- "Chorus Settings (CHORUS)" (p. 86)
- "Reverb Settings (REVERB)" (p. 86)

Chapter 8. Detailed Editing for Patches

## Detailed Settings for Piano Mode

## MEMO

You should also take a look at the related information in "Playing in Piano Mode ([PIANO MODE])" (p. 25) in the Quick Start.
This chapter explains the more detailed settings that you can make in Piano mode.

## Keep in mind when using Piano mode

- Patch editing is done in Patch mode. Pressing [EDIT] will take you to Patch mode.
- If you wish to use a hold pedal, we recommend that you use a Roland DP-10. The DP-10 will allow you to adjust the resonance of the sound by the depth to which you press the pedal.


## The PIANO MODE Screen

When you press [PIANO MODE] so it's lit, the PIANO MODE screen will appear.
Use the cursor buttons to select a parameter, and use the VALUE dial or [DEC] [INC] to edit the value.
The [2]-[7] buttons located below the display will execute the functions shown in the bottom line of the screen.
If you press [PIANO MODE] so its illumination is turned off, or if you press [7 (EXIT)] or [EXIT], you will exit Piano mode and enter Patch mode.

## If you select [2 (AC.PIANO)]



| Indication | Content |
| :--- | :--- |
| Lid State | Adjusts the degree to which the lid is open (p. 117). |
| Resonance | On an acoustic piano, pressing the damper pedal will allow the strings of notes other than the keys you played to <br> resonate sympathetically, creating a rich and spacious resonance. This parameter adjusts the degree of resonance. |
| [3 (EL.PIANO)] | Selects settings for playing electric piano. |
| $[5$ (TOUCH)] | Adjusts the keyboard touch (p. 117). |
| $[6$ (LST)] | Displays a list of the patches you can select in Piano mode. $\rightarrow$ PIANO PATCH LIST screen |
| $[7$ (EXIT)] | Exits Piano mode. |

## If you select [3 (EL.PIANO)]



| Indication | Content |
| :--- | :--- |
| EFFECT | Makes effect settings (p. 118). The parameters you can edit will depend on the effect that is selected. |
| $[\mathbf{2}$ (AC.PIANO)] | Selects settings for playing acoustic piano. |
| $[5$ (TOUCH)] | Adjusts the keyboard touch (p. 117). |
| $[6$ (LST) $]$ | Displays a list of the patches you can select in Piano mode. $\rightarrow$ PIANO PATCH LIST screen |
| $[7$ (EXIT)] | Exits Piano mode. |

## PIANO PATCH LIST Screen

In the PIANO MODE screen, press [ 6 (LIST)] to access the PIANO PATCH LIST screen.
You can use [ < ] [ ] to choose "AC.PIANO" or "EL.PIANO."
Use the VALUE dial or [DEC] [INC] to select a patch.
The [2]-[7] buttons located below the display will execute the functions shown in the bottom line of the screen.
Press [EXIT] to return to the PIANO MODE screen.

| Indication | Content |
| :--- | :--- |
| [6 (SELECT)] | Confirms the patch you've selected in the list, and returns you to the PIANO MODE screen. <br> If you press [EXIT] instead of pressing [6 (SELECT)], you will return to the PIANO MODE screen without changing <br> the patch. |
| [7 (WRITE)] | Saves the settings (p. 119). |

## Adjusting the Keyboard Touch (Key Touch)

1. From the PIANO MODE screen, press [5 (TOUCH)].

The Key Touch Select window will appear.
2. Use the VALUE dial or [DEC] [INC] to adjust the touch sensitivity.

| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Key Touch Select | LIGHT | Light weight synthesizer keyboard like |
|  | MEDIUM | Standard |
|  | HEAVY | Acoustic piano simulation |

3. Press [7 (SELECT)].

The chosen Key Touch Select setting will be applied, and the window will close.
If you press [ 6 (CANCEL)] or [EXIT], the window will close without the current setting being changed.

## MEMO

This setting is shared by both "AC.PIANO" and "EL.PIANO."
MEMO
This setting is the "Keyboard Velocity Curve" system setting.

## Changing the degree to which the lid is open (Lid State)

1. In the PIANO MODE (AC.PIANO) screen, use [ $\boldsymbol{\Delta}$ ] [ $\overline{\text { ] }}$ ] to move the cursor to "Lid State."
2. Use the VALUE dial or [DEC] [INC] to adjust the degree to which the grand piano's lid is open.

| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Lid State | FULL OPEN, |  |
|  | OPEN HIGH, |  |
|  | OPEN MID, |  |
|  | OPEN LOW, |  |
|  | CLOSED, |  |
|  | FULL CLOSED |  |

Chapter 8. Detailed Editing for Patches

## Adjusting the Amount of Resonance (Resonance)

On an acoustic piano, pressing the damper pedal will allow the strings of notes other than the keys you played to resonate sympathetically, creating a rich and spacious resonance. This parameter adjusts the degree of resonance.

1. From the PIANO MODE (AC.PIANO) screen, use [ $\boldsymbol{\Delta}][\boldsymbol{\nabla}]$ to move the cursor to "Resonance."
2. Use the VALUE dial or [DEC] [INC] to adjust the amount of resonance.

| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Resonance | $0-127$ | Increasing this value will increase the amount of resonance. |

## Selecting an Effect for the Electric Piano (EFFECT)

Here you can select effects that are frequently used with an electric piano. The parameters that can be edited will depend on the effect you've selected.

1. In the PIANO MODE (EL.PIANO) screen, use the cursor buttons to move the cursor to the effect name (below "EFFECT").
2. Use the VALUE dial or [DEC] [INC] to change the effect.
3. Use the cursor buttons to select the parameter that you want to edit.
4. Use the VALUE dial or [DEC] [INC] to edit the value.

| Effect name/ <br> Parameter | Value | Explanation |
| :--- | :--- | :--- |
| THRU: No effect will be applied. |  |  |
| Tremolo: Cyclically modulates the volume. The sound will appear to waver. |  |  |
| Wave | TRI, SQR, SIN, SAW1, SAW2 | Type of modulation |
| Rate | $0.05-10.00$ | Frequency of modulation |
| Depth | $0-127$ | Depth of effect |

Chorus: Adds a three-dimensional spaciousness and depth to the sound.

| Rate | $0.05-10.00$ | Frequency of modulation |
| :--- | :--- | :--- |
| Depth | $0-127$ | Depth of modulation |
| Balance | D100:0W-D0:100W | Volume balance between the original sound (D) and <br> chorus sound (W) |

Phaser: Adds a twisting character to the sound.

| Manual | $0-127$ | Center frequency at which the sound is modulated |
| :--- | :--- | :--- |
| Rate | $0.05-10.00$ | Frequency of modulation |
| Depth | $0-127$ | Depth of modulation |
| Resonance | $0-127$ | Amount of feedback |

EQ: Adjusts the tone of the high, mid, and low frequency ranges.

| Low Gain | $-15[\mathrm{~dB}]-+15[\mathrm{~dB}]$ | Amount of boost/cut for the low frequency range |
| :--- | :--- | :--- |
| Mid1 Gain | $-15[\mathrm{~dB}]-+15[\mathrm{~dB}]$ | Amount of boost/cut for the mid- 1 frequency range |
| Mid2 Gain | $-15[\mathrm{~dB}]-+15[\mathrm{~dB}]$ | Amount of boost/cut for the mid-2 frequency range |
| High Gain | $-15[\mathrm{~dB}]-+15[\mathrm{~dB}]$ | Amount of boost/cut for the high frequency range |

Speaker: This simulates various speaker types as well as the settings for the microphone used to capture the sound from the speakers.

| Speaker | SMALL 1, SMALL 2, MIDDLE, JC-120, <br> BUILT-IN 1, BUILT-IN 2, BUIIT-IN 3, BUILT-IN 4, BUILT-IN 5, <br> BG STACK 1, BG STACK 2, <br> MS STACK 1, MS STACK 2, METAL STACK, <br> 2-STACK, 3-STACK | Type of speaker |
| :---: | :---: | :---: |
| Mic Level | 0-127 | Volume of the mic |
| Direct Level | 0-127 | Volume of the direct sound |

Type of speaker

## MEMO

These effect settings are only for Piano mode. The effect you've specified in Piano mode will be applied regardless of the effect settings of the patch you've selected.

## Saving Your Piano Mode Settings

## Saving a Parch Whose Settings You've Edited ([WRITE])

If you want to save a patch whose settings (Lid State, Resonance, EFFECT, etc.) you've edited in Piano mode, use [WRITE] to save the patch.
For details on saving a patch, refer to "Saving a Patch You've Created ([WRITE])" (p. 97).

## MEMO

The "EFFECT" settings are only for Piano mode. The effect you've specified in Piano mode will be applied regardless of the effect settings of the patch you've selected.

## Saving the Patch that will be Selected When You Press [PIANO MODE] (WRITE)

You can store the patch that will be selected first when you press [PIANO MODE] after the instrument's been powered up. This will also save the Key Touch setting (p. 117).

1. In the PIANO MODE screen, press [6 (LIST)].

The PIANO PATCH LIST screen will appear.
2. Use $[\rightarrow][-]$ to choose "AC.PIANO" or "EL.PIANO," and use the VALUE dial or [DEC] [INC] to select a patch.
3. Press [7 (WRITE)].

The patch selected in the list when you press [7 (WRITE)] will be the patch that is selected when you press [PIANO MODE] the next time you power up the JUNO-STAGE.

## NOTE

Never turn off the power while data is being saved.

## Chapter 9. Detailed Settings for a Rhythm Set

"Editing" is the process of modifying the values of the JUNO-STAGE's various settings (parameters). This chapter explains the procedure for editing a rhythm set, and describes the function of the rhythm set parameters.
Rhythm sets are selected from the patch group. This means that just as for patches, there will be three groups: user, preset, and GM. You also have the option of installing up to two wave expansion boards (SRX series; sold separately).
For more about patch groups, refer to "Chapter 8. Detailed Editing for Patches" (p. 94).

## Editing a Rhythm Set

You can create a new rhythm set by editing an existing rhythm set. A rhythm set is a collection of rhythm tones (percussion instrument sounds). To edit a rhythm set, you need to edit the settings of the rhythm tone assigned to each key.
The rhythm tone assigned to each key consists of up to four waves. The relationship between rhythm tones and waves is the same as the relationship between patches and tones.

## Editing in a Graphic Display (ZOOM EDIT)

The Zoom Edit screen lets you edit using a graphic display of important parameters that are edited frequently.

## MEMO

For details on the parameters, refer to p .124 and following.

1. In Patch mode or Performance mode, select the rhythm set that you want to edit.
For details, refer to "Selecting Patches in Patch Mode" (p. 45) or "Selecting a Patch for Each Part" (p. 50).

## (MEMO

If you want to create a rhythm set from scratch rather than starting from an existing one, execute the Initialize operation (p. 122).
2. Press [EDIT].
3. Press [3], or use the VALUE dial to select "RHYTHM EDIT" and then press [ENTER].
The Zoom Edit screen will appear.

4. Press a key to specify the rhythm tone (A0-C8) that you want to edit.
The specified key is shown in the upper right of the screen.
5. Press the $[2]-[5]$ buttons to select the desired editing screen.

| Button | Screen |
| :--- | :--- |
| [2 (PCH ENV)] | PITCH ENVELOPE (p. 126) |
| [3 (TVF PRM)] | TVF PARAMETER (p. 128) |
| $[4$ (TVF ENV)] | TVF ENVELOPE (p. 129) |
| $[5$ (TVA ENV)] | TVA ENVELOPE (p. 130) |

6. Use the cursor buttons to select the parameter that you want to edit.
7. Press [TONE SWITCH/SELECT] so it's lit, and use TONE SELECT [1][4] to select the wave that you want to edit.

- To simultaneously edit the same parameter for multiple waves Simultaneously press TONE SELECT [1]-[4] corresponding to the waves that you want to edit, so they're lit in red.
- To switch waves on/off

Press TONE SWITCH [1]-[4] to turn each wave on/off.
8. Use the VALUE dial or [DEC] [INC] to edit the value. If you've selected more than one wave for editing, all of these waves will be set to the same value.

## MEMO

In PRO EDIT (p. 121) you can edit while preserving the relative differences between waves.
9. Repeat steps $4-8$ to edit the rhythm set as desired.
10. If you want to save the changes you've made, press [WRITE] (p. 123).

If you decide not to save the changes, press [EXIT] to exit the ZOOM EDIT screen.

If you exit the ZOOM EDIT screen without saving, an "*" will be displayed in the PATCH PLAY screen of Patch mode.

## NOTE

If you turn off the power or select a different sound when the "*" is displayed, the patch settings you edited will be lost.

## Chapter 9. Detailed Settings for a Rhythm Set

## Viewing and Editing All Parameters (PRO EDIT)

This shows the parameters of ZOOM EDIT, and additionally allows you to edit in greater detail.

## MEMO

For details on the parameters refer to p. 124 and following.

1. In Patch mode or Performance mode, select the patch that you want to edit.
For details, refer to "Selecting Patches in Patch Mode" (p. 45) or "Selecting a Patch for Each Part" (p. 50).

## MEMO

If you want to create a patch from scratch without using an existing patch, execute the Initialize operation (p. 122).
2. Press [EDIT].
3. Either press [3] or use the VALUE dial to select "RHYTHM EDIT," and then press [ENTER].
The ZOOM EDIT screen will appear.
4. Press [7 (PRO EDIT)].

The PRO EDIT screen will appear.
5. Press a key to select the rhythm tone (AO-C8) that you want to edit.
6. Use [3 (GRP $\uparrow$ )] [4 (GRP $\downarrow$ )] to switch between parameter groups.

TIP
Alternatively, you can switch between parameter groups by pressing [2 (GRP LIST)] to access the Rhythm Pro Edit Menu window, then using the VALUE dial, [DEC] [INC], or [ $\boldsymbol{\Delta}$ ] [ $\boldsymbol{\nabla}$ ] to select the parameter group, and pressing [ENTER].
7. Use the cursor buttons to select a parameter.

8. Press [TONE SWITCH/SELECT] so it's lit, and use TONE SELECT [1][4] to select the wave that you want to edit.

- To edit the same parameter of multiple waves simultaneously Simultaneously press TONE SELECT [1]-[4] for the waves that you want to edit, so they're lit in red.
- To switch waves on/off

Press TONE SWITCH [1]-[4] to switch waves on/off. You'll be editing the waves for which a check mark $(\boldsymbol{V})$ is shown for the tone numbers in the upper right of the screen.
9. Use the VALUE dial or [DEC] [INC] to edit the value. If you've selected more than one wave for editing, their values will change while their relative differences are preserved.
10. Repeat steps 5-9 to edit the parameters as desired.
11. If you want to save the modified settings, press [WRITE] (p. 123). If you decide not to save the changes you made, press [EXIT] to exit the PRO EDIT screen.
If you exit the PRO EDIT screen without saving, an "*" will be displayed in the PATCH PLAY screen of Patch mode.

## NOTE

If you turn off the power or select a different sound when the "*" is displayed, the patch settings you edited will be lost.

## Initializing a Rhythm Set

Here's how to return (initialize) the settings of the currently selected patch (rhythm set) to their default values. It is also possible to initialize only a specific key (rhythm tone) of the currently selected rhythm set.

## NOTE

Initialization will affect only the currently selected rhythm set. If you want to return all settings to their factory-set state, execute the Factory Reset operation (p. 155).

1. In Patch mode or Performance mode, select the user patch that you want to initialize.
For details, refer to "Selecting Patches in Patch Mode" (p. 45) or "Selecting a Patch for Each Part" (p. 50).
2. Press [EDIT].
3. Either press [3], or use the VALUE dial to select "RHYTHM EDIT" and press [ENTER].
The ZOOM EDIT screen will appear.
4. If you want to initialize only a specific key, press that key to specify the key (A0-C8) that will be initialized.
The specified key is shown in the upper right of the screen.
5. Hold down [SHIFT] and press [6 (INIT)].

The Rhythm Initialize window will open.
6. Use [ $\Delta$ ] [ $\nabla$ ] to specify the initialization method.

| Value | Meaning |
| :--- | :--- |
| All | All keys of the rhythm set will be initialized. |
| Key | Only the key you specified in step 4 will be <br> initialized. |

7. Press [7 (SELECT)].

A confirmation message will appear.
If you decide to cancel, press [6 (CANCEL)].
8. Press [7 (EXEC)] to carry out the initialization.

## Copying Rhythm Set (Rhythm Tone) Settings

Here's how to copy the tone settings of a desired rhythm set to the currently selected patch.

1. In Patch mode or Performance mode, select the copy-destination user patch.
For details, refer to "Selecting Patches in Patch Mode" (p. 45) or "Selecting a Patch for Each Part" (p. 50).
2. Press [EDIT].
3. Either press [3], or use the VALUE dial to select "RHYTHM EDIT" and press [ENTER].
The ZOOM EDIT screen will appear.
4. Hold down [SHIFT] and press [7 (TONE CPY)].

The Rhythm Tone Copy window will appear.

5. Use the cursor buttons to move the cursor, and use the VALUE dial or [DEC] [INC] to select the "Source (copy-source)" group, number, and tone.
If you press [5 (COMPR)] to apply a check mark ( $\mathcal{V}$ ), you'll be able to play the copy-source rhythm set (Compare function).
6. Use the cursor buttons to move the cursor, and select the "Destination (copy-destination)" tone.
7. Press [7 (EXEC)].

A confirmation message will appear.
If you decide to cancel, press [6 (CANCEL)].
8. Press [7 (EXEC)] to execute the copy.

## Compare function

When copying or saving rhythm set tones, it's often convenient to use the Compare function.
If you want to hear the copy-source (or save-destination) rhythm set, press [5 (COMPR)] to apply a check mark $(\boldsymbol{V})$; now you can use the keyboard to play the copy-source (or save-destination) rhythm set.

* The rhythm set may sound slightly different than normal when played via the Compare function.


## Chapter 9. Detailed Settings for a Rhythm Set

## Saving a Rhythm Set You've Created ([WRITE])

Changes you make are temporary, and will be lost when you turn off the power or select another patch (rhythm set). If you want to keep the rhythm set you modified, you must save it to internal user memory.
When you edit the settings of a rhythm set in Patch mode, an "*" will be shown in the PATCH PLAY screen. If you've edited a patch in Performance mode, you should also save the performance after saving the patch (p. 133).

## NOTI

When you save, the data that previously occupied the save destination will be overwritten.

## 1. Edit a rhythm set.

2. Press [WRITE].

The RHYTHM SET NAME screen will appear.
If you're in Performance mode, the WRITE MENU screen will appear. Pressing [3 (PAT/RHY)] will access the RHYTHM SET NAME screen.

3. Assign a name to the rhythm set.

For details on assigning a name, refer to p. 44.
4. When you've finished assigning a name, press [7 (WRITE)].

A screen allowing you to select the save destination will appear.
5. Use the VALUE dial, [DEC] [INC], or [ $\Delta$ ] [ $\nabla$ ] to select the savedestination rhythm set number.
If you press [5 (COMPR)] to apply a check mark ( $\mathcal{V}$ ), you'll be able to play the save-destination rhythm set (Compare function).
6. Press [7 (WRITE)].

A confirmation message will appear.
If you decide to cancel, press [6 (CANCEL)].
7. Press [7 (EXEC)] to save the rhythm set.

## NOTE

Never turn off the power while data is being saved.

## Note when selecting a waveform

The JUNO-STAGE uses complex PCM waveforms as the basis for its sounds. For this reason, you should be aware that if you specify a waveform that is very different than the original waveform, the result may not be what you expect.
The JUNO-STAGE's internal waveforms can be categorized into the following two types.

## One-shot:

These are sounds with a short decay time. One-shot waveforms contain the entire duration of the sound from the attack until it decays to silence. Some of these waveforms capture a complete sound such as a percussion instrument, but there are also many attack component sounds such as the hammer strike of a piano or the fret noise of a guitar.

## Loop:

These are sounds with a long decay, or sustaining sounds. Looped waveforms will repeatedly play a portion of a sound once it has reached a relatively stable state. These sounds also include numerous component sounds such as a vibrating piano string or a resonating pipe.
The following illustration shows an example of a sound created by combining a one-shot waveform with a loop waveform. (This example is of an electric organ.)


Note when selecting a one-shot waveform
It's not possible to use the envelope settings to give a one-shot waveform a longer decay than the original waveform contains, or to make it a sustaining sound. Even if you made this type of envelope setting, you would be trying to bring out something that doesn't exist in the original waveform.
Note when selecting a looped waveform
Many acoustic instruments such as piano or sax are marked by a sudden change in timbre at the very beginning of the sound, and this rapid change is what gives the instrument its distinctive character. When using these waveforms, it's best to use the complex tonal changes in the attack portion of the sound without attempting to modify them; use the envelope only to modify the decay portion of the sound as desired. If you use the envelope to modify the attack as well, the envelope settings will be affected by the attack of the waveform itself, and you may not get the result you intend.


## Functions of Rhythm Set Parameters

## Settings Common to the Entire Rhythm Set

## GENERAL



CONTROL

| Varameter | MULTI, SINGLE | Explanation |
| :--- | :--- | :--- |
| Assign Type | Sets the way sounds are played when the same key is pressed a number of times. <br> MULTI: Layer the sound of the same keys. Even with continuous sounds where the sound plays <br> for an extended time, such as with crash cymbals, the sounds are layered, without previously <br> played sounds being eliminated. <br> SINGLE: Only one sound can be played at a time when the same key is pressed. With <br> continuous sounds where the sound plays for an extended time, the previous sound is stopped <br> when the following sound is played. |  |
| Mute Group | OFF, 1-31 | The Mute Group function allows you to designate two or more rhythm tones that are not allowed <br> to sound simultaneously. <br> On an actual acoustic drum set, an open hi-hat and a closed hi-hat sound can never occur <br> simultaneusly. Treproduce the reality of this situation, you can set up a Mute Group. Up to <br> 31 Mute Groups can be used. rhythm tones that are not belong to any such group should be <br> set to "OFF." |
| Tone Env Mode | NO-SUS, <br> SUSTAIN | When a loop waveform (p. 123) is selected, the sound will normally continue as long as the key is <br> pressed. If you want the sound to decay naturally even if the key remains pressed, set this to "NO-SUS." <br> * If a one-shot type wave (p. 123) is selected, it will not sustain even if this parameter is set to <br> "SUSTAIN." |
| Tone Pitch Bend Range | $0-48$ | Amount of pitch change in semitones (4 octaves) that will occur when the Pitch Bend Lever is moved <br> The amount of change when the lever is tilted is set to the same value for both left and right <br> sides. |
| One Shot Mode | OFF, ON | ON: The sound will play back until the end of the waveform (or the end of the envelope, whichever <br> comes first). |
| Relative Level | Adjusts the volume of the rhythm tone. <br> This parameter is set by the system exclusive message Key Based Controller. Normally, you can <br> leave it set to 0. |  |
| NOTE |  |  |
| If the rhythm tone level is set to 127, the volume cannot be raised any farther. |  |  |

## RECEIVE

| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Tone Receive Expression | OFF, ON | For each rhythm tone, specify whether MIDI Expression messages will be received (ON), or not (OFF). |
| Tone Receive Hold-1 | OFF, ON | For each rhythm tone, specify whether MIDI Hold-1 messages will be received (ON), or not (OFF). <br> * If "NO-SUS" is selected for Env Mode parameter, this setting will have no effect. |
| Toneceive Pan Mode | For each rhythm tone, specify how pan messages will be received. <br> CONTINUOUS: Whenever Pan messages are received, the stereo position of the tone will be <br> changed. <br> KEY-ON: The pan of the tone will be changed only when the next note is played. If a pan <br> Kessage is received while a note is sounding, the panning will not change until the next key is <br> pressed. <br> * The channels cannot be set so as not to receive Pan messages. |  |

## Modifying Waveforms/Pitch/Pitch Envelope

## WAVE PARAMETER

| Parameter | Value | Explanation |
| :---: | :---: | :---: |
| Wave Group | INT, EXP | Group containing the waveforms comprising the rhythm tone <br> INT: Waveforms stored in internal <br> EXP: Waveform stored in a Wave Expansion Board (SRX series) installed in EXP slots |
| Wave Bank | A, B | When the Wave Group is EXP <br> A, B: Wave expansion board slots |
| Wave No. L (Mono) Wave No. R | -, 1- | Waves comprising the rhythm tone (The upper limit will depend on the Wave Group and Wave Bank.) <br> When in monaural mode, only the left side $(L)$ is specified. When in stereo, the right side $(R)$ is also specified. <br> If you want to select a left/right pair of Waves, select the left (L) Wave number, and then hold down [SHIFT] and press [5 (STEREO)] to add a check mark (V); the right (R) (Wave) will be recalled. |
| Wave Gain | $\begin{aligned} & -6,0 \\ & +6,+12 \end{aligned}$ | Gain (amplification) of the waveform <br> The value changes in 6 dB (decibel) steps-an increase of 6 dB doubles the waveform's gain. |
| Wave Tempo Sync | OFF, ON | When you wish to synchronize a Phrase Loop to the clock (tempo), set this to "ON." <br> * This is valid only when a separately sold wave expansion board is installed, and a waveform that indicates a tempo (BPM) is selected. <br> If a waveform from a wave expansion board is selected for the tone, turning the Wave Tempo Sync parameter "ON" will cause pitch-related settings and FXM-related settings to be ignored. |
| FXM Switch | OFF, ON | This sets whether FXM will be used (ON) or not (OFF). |
| FXM Color | 1-4 | How FXM will perform frequency modulation <br> Higher settings result in a grainier sound, while lower settings result in a more metallic sound. |
| FXM Depth | 0-16 | Depth of the modulation produced by FXM |

## Phrase Loop

Phrase loop refers to the repeated playback of a phrase that's been pulled out of a song (e.g., by using a sampler). One technique involving the use of Phrase Loops is the excerpting of a Phrase from a pre-existing song in a certain genre, for example dance music, and then creating a new song with that Phrase used as the basic motif. This is referred to as "Break Beats."

## FXM

FXM (Frequency Cross Modulation) uses a specified waveform to apply frequency modulation to the currently selected waveform, creating complex overtones. This is useful for creating dramatic sounds or sound effects.

Chapter 9. Detailed Settings for a Rhythm Set

## WAVE PITCH

| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Tone Coarse Tune | $0(C-)-$ <br> 127 (G9) | Pitch at which a rhythm tone sounds <br> Set the coarse tuning for Waves comprising the rhythm tones with the Wave Coarse Tune <br> parameter (p. 127). |
| Tone Fine Tune | $-50-+50$ | Pitch of the rhythm tone's sound (in 1-cent steps; one cent is $1 / 100$ th of a semitone) <br> Set the fine tuning for Waves comprising the rhythm tones with the Wave Fine Tune parameter <br> (p. 127). |
| Tone Random Pitch Depth | $0-1200$ | Width of random pitch deviation that will occur each time a key is pressed (in 1-cent steps) <br> If you do not want the pitch to change randomly, set this to " $0 . "$ |

## WAVE PITCH ENV

Parameters indicated by (ZOOM) ) can be edited via ZOOM EDIT (p. 120).

| Parameter | Value | Explanation <br> P-Env Depth <br> ZOOM Env Depth <br> P-Env V-Sens <br> P-Env T1 V-Sens <br> $-63-+63$Depth of the Pitch Envelope <br> Higher settings will cause the pitch envelope to produce greater change. Negative ( - ( settings <br> will invert the shape of the envelope. |
| :--- | :--- | :--- |
| P-Env T4 V-Sens | $-63-+63$ | Keyboard playing dynamics can be used to control the depth of the pitch envelope. <br> If you want the pitch envelope to have more effect for strongly played notes, set this parameter <br> to a positive ( + ) value. |
| P-Env Time 1-4 <br> ZOOM Time 1-4 | This allows keyboard dynamics to affect the T1 of the Pitch envelope. <br> If you want T1 to be speeded up for strongly played notes, set this parameter to a positive ( + ) <br> value. |  |
| P-Env Level 0-4 <br> ZOOM Level 0-4 | Use this parameter when you want key release speed to affect the T4 value of the Pitch envelope. <br> If you want T4 to be speeded up for quickly released notes, set this parameter to a positive ( + ) <br> value. |  |

Pitch Envelope


## WAVE MIX Parameters

## WAVE MIX LV/PN

| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Wave Level | $0-127$ | Volume of the waveform |
| Wave Pan | L64-0-63R | Left/right position of the waveform |
| Wave Rnd Pan Sw | OFF, ON | Use this setting to cause the waveform's panning to change randomly each time a key is pressed <br> (ON) or not (OFF). <br> The range of the panning change is set by the Random Pan Depth parameter (p. 130). |
| Wave Alter Pan Sw | OFF, ON, REVS | This setting causes panning of the waveform to be alternated between left and right each time a <br> key is pressed. <br> Set this to "ON" to pan the wave according to the Alternate Pan Depth parameter (p. 130) <br> settings, or to "REVS" when you want the panning reversed. |

## WAVE MIX TUNE

| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Wave Coarse Tune | $-48-+48$ | Pitch of the waveform's sound (in semitones, $+/-4$ octaves) |
| Wave Fine Tune | $-50-+50$ | Pitch of the waveform's sound (in 1-cent steps; one cent is $1 / 100$ th of a semitone) |

## VELOCITY RANGE

You can use the force with which keys are played to control the way each waveform is played.


| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Velocity Control | $0-127$ | Determines whether a different waveform is played (ON) or not (OFF) depending on the force with <br> which the key is played (velocity). <br> RAN: The rhythm tone's constituent waveforms will sound randomly, regardless of any Velocity <br> messages. |
| Velo Fade Lower | $1-(U P P E R)$ | Determines what will happen to the waveform's level when the rhythm tone is played at a velocity <br> lower than Velo Range Lower. <br> If you don't want the waveform to sound at all, set this parameter to " $0 . "$ |
| Velo Range Lower | (LOWER)-127 | Specifies the lowest velocity at which the waveform will sound. |
| Velo Range Upper | $0-127$ | Specifies the highest velocity at which the waveform will sound. <br> Determines what will happen to the waveform's level when the rhythm tone is played at a velocity <br> greater than Velo Range Upper. <br> If you don't want the waveform to sound at all, set this parameter to " $0 . "$ |
| Velo Fade Upper |  |  |

## Modifying the Brightness of a Sound with a Filter (TVF/TVF Envelope)

A filter cuts or boosts a specific frequency region to change a sound's brightness, thickness, or other qualities.

## TVF PARAMETER

| Parameter | Value | Explanation |
| :---: | :---: | :---: |
| Filter Type ZOOM Filter Type | OFF, LPF, BPF, HPF, PKG, LPF2, LPF3 | Type of filter <br> OFF: No filter is used. <br> LPF: Low Pass Filter. This reduces the volume of all frequencies above the cutoff frequency in order to round off, or un-brighten the sound. <br> BPF: Band Pass Filter. This leaves only the frequencies in the region of the cutoff frequency, and cuts the rest. This can be useful when creating distinctive sounds. <br> HPF: High Pass Filter. This cuts the frequencies in the region below the cutoff frequency. This is suitable for creating percussive sounds emphasizing their higher tones. <br> PKG: Peaking Filter. This emphasizes the frequencies in the region of the cutoff frequency. You can use this to create wah-wah effects by employing an LFO to change the cutoff frequency cyclically. <br> LPF2: Low Pass Filter 2. Although frequency components above the cutoff frequency are cut, the sensitivity of this filter is half that of the LPF. This filter is good for use with simulated instrument sounds such as the acoustic piano. <br> LPF3: Low Pass Filter 3. Although frequency components above the cutoff frequency are cut, the sensitivity of this filter changes according to the cutoff frequency. While this filter is also good for use with simulated acoustic instrument sounds, the nuance it exhibits differs from that of the LPF2, even with the same TVF Envelope settings. <br> * If you set "LPF2" or "LPF3," the setting for the Resonance parameter will be ignored. |
| Cutoff Frequency ZOOM Cutoff | 0-127 | Frequency at which the filter begins to have an effect on the waveform's frequency components |
| Resonance <br> ZOOM Resonance | 0-127 | Emphasizes the portion of the sound in the region of the cutoff frequency, adding character to the sound. * Excessively high settings can produce oscillation, causing the sound to distort. |



| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Cutoff V-Curve | Curve that determines how keyboard playing dynamics (velocity) will affect the cutoff frequency <br> Set this to "FIX" if you don't want the cutoff frequency to be affected by the keyboard velocity. |  |
| Cutoff V-Sens | $-63-+63$ | Use this parameter when changing the cutoff frequency to be applied as a result of changes in <br> playing velocity. <br> Ifyou want strongly played notes to raise the cutoff frequency, set this parameter to positive (+) settings. |
| Resonance V-Sens | $-63-+63$ | This allows keyboard velocity to modify the amount of Resonance. <br> If you want strongly played notes to have a greater Resonance effect, set this parameter to <br> positive ( + ) settings. |

## TVF ENVELOPE

Parameters indicated by (ZOOM ) can be edited via ZOOM EDIT (p. 120).

| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| F-Env Depth <br> ZOOW Env Depth | $-63-+63$ | Depth of the TVF envelope <br> Higher settings will cause the TVF envelope to produce greater change. Negative $(-)$ settings <br> will invert the shape of the envelope. |
| F-Env V-Curve | Curve that determines how keyboard playing dynamics (velocity) will affect the TVF envelope <br> Set this to "FIX" if you don't want the TVF Envelope to be affected by the keyboard velocity. |  |
| F-Env V-Sens | $-63-+63$ | Specifies how keyboard playing dynamics will affect the depth of the TVF envelope. <br> Positive (+) settings will cause the TVF envelope to have a greater effect for strongly played <br> notes, and negative (-) settings will cause the effect to be less. |
| F-Env TI V-Sens | This allows keyboard dynamics to affect the T1 of the TVF envelope. <br> If you want T1 to be speeded up for strongly played notes, set this parameter to a positive (+) <br> value. |  |
| F-Env T4 V-Sens | Use this parameter when you want key release speed to affect the T4 value of the TVF envelope. <br> If you want T4 to be speeded up for quickly released notes, set this parameter to a positive ( + ) <br> value. |  |
| F-Env Time 1-4 <br> ZOOM Time 1-4 | TVF envelope times (T1-T4) <br> Higher settings will lengthen the time until the next cutoff frequency level is reached. |  |
| F-Env Level 0-4 <br> ZOOM Level 0-4 | $0-127$ | TVF envelope levels (LO-L4) <br> Specify how the cutoff frequency will change at each point, relative to the Cutoff Frequency <br> value. |

## TVF Envelope



Chapter 9. Detailed Settings for a Rhythm Set

## Adjusting the Volume (TVA/TVA Envelope)

## TVA PARAMETER

| Parameter | Value | Explanation |
| :---: | :---: | :---: |
| Tone Level | 0-127 | Volume of the rhythm tone <br> This setting is useful primarily for adjusting the volume balance between rhythm ones. |
| Level V-Curve | FIX, 1-7 | Curve that determines how keyboard playing dynamics (velocity) will affect the volume Set this to "FIX" if you don't want the volume of the tone to be affected by the keyboard velocity. |
| Level V-Sens | -63-+63 | Set this when you want the volume of the tone to change depending on keyboard playing dynamics. <br> Set this to a positive (+) value to have the changes in tone volume increase the more forcefully the keys are played; to make the tone play more softly as you play harder, set this to a negative H) value. |
| Tone Pan | L64-0-63R | Left/right position of the rhythm tone |
| Random Pan Depth | 0-63 | Use this parameter when you want the stereo location to change randomly each time you press a key. <br> Higher settings will produce a greater amount of change. |
| Alternate Pan Depth | L63-0-63R | This setting causes panning to be alternated between left and right each time a key is pressed. Higher settings will produce a greater amount of change. " $L$ " or " $R$ " settings will reverse the order in which the pan will alternate between left and right. For example if two rhythm tones are set to "L" and " $R$ " respectively, the panning of the two rhythm tones will alternate each time they are played. |

## TVA ENVELOPE

Parameters indicated by (ZOOM) ) can be edited via ZOOM EDIT (p. 120).

| Parameter | Value | Explanation |
| :---: | :---: | :---: |
| A-Env TI V-Sens | -63-+63 | This allows keyboard dynamics to affect the T1 of the TVA envelope. <br> If you want Time 1 to be speeded up for strongly played notes, set this parameter to a positive $(+)$ value. If you want it to be slowed down, set this to a negative $(-)$ value. |
| A-Env T4 V-Sens | -63-+63 | Use this parameter when you want key release speed to affect the T4 value of the TVA envelope. If you want T 4 to be speeded up for quickly released notes, set this parameter to a positive (+) value. If you want it to be slowed down, set this to a negative $(-)$ value. |
| A-Env Time 1-4 <br> ZOOM Time 1-4 | 0-127 | TVA envelope times (T1-T4) <br> Higher settings will lengthen the time until the next volume level is reached. |
| A-Env Level 1-3 ZOOM Level 1-3 | 0-127 | TVA envelope levels (L1-L3) <br> Specify how the volume will change at each point, relative to the Tone Level value. |

## TVA Envelope



## Chapter 9. Detailed Settings for a Rhythm Set

## Output Settings (OUTPUT)

| Parameter | Value | Explanation |
| :---: | :---: | :---: |
| Rhythm Out Assign | $\begin{aligned} & \text { MFX, } \\ & L+R, \\ & L, R, \\ & \text { TONE } \end{aligned}$ | Specifies for each rhythm set how the direct sound will be output. <br> MFX: Output in stereo through multi-effects. You can also apply chorus or reverb to the sound that passes through multi-effects. <br> L+R: Output in stereo to the OUTPUT jacks without passing through the multi-effect L: Output in mono to the OUTPUT L jack without passing through the multi-effect R: Output in mono to the OUTPUT R jack without passing through the multi-effect TONE: Outputs according to the settings for each rhythm tone. |
| Tone Out Assign | $\begin{aligned} & \text { MFX, } \\ & L+R, \\ & L, R \end{aligned}$ | Specifies how the direct sound of each rhythm tone will be output. <br> MFX: Output in stereo through multi-effects. You can also apply chorus or reverb to the sound that passes through multi-effects. <br> L+R: Output in stereo to the OUTPUT jacks without passing through the multi-effect L: Output in mono to the OUTPUT L jack without passing through the multi-effect <br> R: Output in mono to the OUTPUT R jack without passing through the multi-effect <br> * If the Rhythm Out Assign is set to anything other than "TONE," these settings will be ignored. <br> * Sounds are output to chorus and reverb in mono at all times. <br> * The output destination of the signal after passing through the chorus is set with the Chorus Output Select parameters (p. 81). |
| Tone Out Level | 0-127 | Level of the signal that is sent to the output destination specified by Tone Out Assign |
| Send Level (Output = MFX) |  |  |
| Tone Chorus Send | 0-127 | Level of the signal sent to chorus for each rhythm tone if the tone is sent through MFX |
| Tone Reverb Send | 0-127 | Level of the signal sent to reverb for each rhythm tone if the tone is sent through MFX |
| Send Level (Output = non MFX) |  |  |
| Tone Chorus Send | 0-127 | Level of the signal sent to chorus for each rhythm tone if the tone is not sent through MFX |
| Tone Reverb Send | 0-127 | Level of the signal sent to reverb for each rhythm tone if the tone is not sent through MFX |

## Setting Effects for a Rhythm Set (Effects/MFX/MFX Control/Chorus/Reverb)

For details regarding effect settings, refer to the pages shown below.

- "Making Effect Settings" (p. 79)
- "Multi-Effect Settings (MFX 1-3)" (p. 84)
- "Chorus Settings (CHORUS)" (p. 86)
- "Reverb Settings (REVERB)" (p. 86)


## Chapter 10. Detailed Editing for Performances

The JUNO-STAGE's performances are organized into two groups: User and Preset.

## USER

This is a group of rewritable performances inside the JUNO-STAGE. The performances you create can be saved in this group. When the JUNO-STAGE is shipped from the factory, this group already contains 64 performances.

## PRST (preset)

This is a group of non-rewritable performances inside the JUNOSTAGE. Although these performances cannot be rewritten, you are free to edit the settings of the currently selected performance, and then save the modified settings in the user performance group.

## How to Edit a Performance

A performance contains the patch (rhythm set) assignments for all of the parts, and includes settings such as volume and pan for each part. When you switch performances, the settings it contains for parts 1-16 will be called up, along with various other settings that determine how the JUNO-STAGE responds to your playing.

## 1. Press [PERFORM].

The PERFORM PLAY screen will appear.
2. Select the performance that you want to edit.

For details on how to select a performance, refer to "Selecting a Performance" (p. 49).
3. Use the function buttons to access the desired editing screen. For details, refer to the explanation of each screen.
4. Use the cursor buttons to select the parameter that you want to edit.
5. Use the VALUE dial or [DEC] [INC] to edit the value.
6. When you've finished editing, press [EXIT].

You will return to the PERFORM PLAY screen.
If you return to the PERFORM PLAY screen without saving the changes you made, an "*" will be displayed at the left of the performance group.
If you turn off the power or select a different sound when the "*" is displayed, the changes you made will be discarded. If you want to keep the changes, save the performance (p. 133).

## Initializing a Performance

Here's how to initialize the settings of the currently selected performance to their default values.

## NOTE

Initialization will affect only the currently selected performance. If you want to return all settings to their factory-set state, execute the Factory Reset operation (p. 155).

1. In the PERFORM PLAY screen, select the performance that you want to initialize.
2. Hold down [SHIFT] and press [7 (INIT)].

The Performance Initialize window will appear
3. Use [ $\Delta$ ] [ $\nabla$ ] to select the desired method of initialization.

| Setting | Content |
| :---: | :---: |
| Default | Initializes the settings of the currently selected performance to their default values. |
| Sound Control | Initializes the following part parameters. <br> Cutoff Offset, <br> Resonance Offset, <br> Attack Time Offset, <br> Release Time Offset, <br> Decay Time Offset, <br> Vibrato Rate, <br> Vibrato Depth, <br> Vibrato Delay |

4. Press [7 (SELECT)].

A confirmation message will appear.
If you decide to cancel, press [6 (CANCEL)].
5. Press $[7$ (EXEC)] to initialize the settings.

## Editing the Patch That's Assigned to a Part

When you use a patch (or rhythm set) in Performance mode, its effects and some other settings will be affected by the settings of the performance. To edit the patch (or rhythm set) in the context of these performance settings, proceed as follows.

1. Make sure that [PERFORM] is lit.
2. Press [EDIT].
3. Either press [3], or use the VALUE dial to select "PATCH EDIT" (or "RHYTHM EDIT") and press [ENTER].
Now you can edit the patch that's assigned to the currently selected part. For details on patch editing, refer to "Chapter 8. Detailed Editing for Patches" (p. 94) or "Chapter 9. Detailed Settings for a Rhythm Set" (p. 120).

## MEMO

After you've finished editing the patch, press [WRITE] to save the patch (p. 133).

## Saving a Performance You've Created (IWRIIE])

Changes you make are temporary, and will be lost when you turn off the power or select another performance. If you want to keep the performance you've edited, you must save it to internal user memory. If you've edited a performance, an "*" will be shown in the PERFORM PLAY screen.

## NOTE

When you save, the data that previously occupied the save destination will be overwritten.

1. Edit a performance.
2. Press [WRITE].

The WRITE MENU screen will appear.
3. Press [2 (PERF)].

Alternatively, you can use [ $\boldsymbol{\Delta}$ ] [ $\boldsymbol{\nabla}$ ] to select "Performance," and then press [ENTER].
The PERFORMANCE NAME screen will appear.
4. Assign a name to the performance.

For details on assigning a name, refer to p. 44.
5. When you've finished assigning a name, press [7 (WRITE)].

A screen allowing you to select the save destination will appear.
6. Use the VALUE dial, [DEC] [INC], or [ $\Delta$ ] [ $\nabla$ ] to select the savedestination performance number.
7. Press [7 (WRITE)].

A confirmation message will appear.
If you decide to cancel, press [6 (CANCEL)].
8. Press [7 (EXEC)] to save the performance.

## NOTE

Never turn off the power while data is being saved.

## If You've Edited a Patch or Rhythm Set Assigned to a Part of the Performance

If you've edited a patch or rhythm set assigned to a part of the performance and attempt to save the performance without having saved the edited patch or rhythm set, a message like the following will appear.


In this case, save the patch or rhythm set before you save the performance.

## Performance Edit Screens and Parameters

## PERFORM PLAY Screen



KBD SW CONTROL KEYRANG| MIDI MIXER PPRTOIEW

When you press [PERFORM], the PERFORM PLAY screen will appear.
Use the [2]-[7] buttons located below the display to execute the functions shown in the bottom line of the screen.

## NOTE

You can't use the function buttons if FAVORITE [ON/OFF] is on. If you want to use the function buttons, turn off FAVORITE [ON/OFF].

| Button | Content |
| :--- | :--- |
| [2 (KBD SW)] | Opens the Keyboard Switch window, where you can select the parts that will produce sound. |
| [3 (CONTROL)] | Accesses the CTRL SETTING (PERF) screen, where you can edit the controller settings (p. 135). |
| [4 (KEYRANG)] | Opens the Key Range window, where you can specify the key range for each part. |
| [5 (MIDI)] | Accesses the MIDI FILTER screen, where you can turn MIDI message reception on/off for each MIDI channel (p. 138). |
| $[6$ (MIXER)] | Accesses the PART MIXER screen, where you can edit the volume and panning (p. 139). |
| $[7$ (PARTVIEW)] | Accesses the PART VIEW screen, where you can view a list of each part's settings and edit them in detail (p. 140). |

## Selecting the Parts that will Produce Sound (Keyboard Switch)

Here's how to select the parts that will play a patch or rhythm set. Each part has a "keyboard switch" that determines whether it can be played from the keyboard.

1. In the PERFORM PLAY screen, press [2 (KBD SW)].

The Keyboard Switch window will open.

2. Use [ ] [ ] to select a part.
3. Use the VALUE dial, [DEC] [INC], or [ $\Delta$ ] [ $\nabla$ ] to select "ON" or "OFF."
When you play the keyboard, you'll hear the parts whose keyboard switch is "ON" and the part that is currently selected.
You can also use the following function buttons to turn this on/off.

- Pressing [4 (1-2 ON)] will turn part 1 and part 2 on.
- Pressing [5 (10 ON)] will turn part 10 on.
- Pressing [6 (ALL OFF)] will turn all parts off.

4. Repeat steps 2-3 to turn the Keyboard Switch "ON" for each part that you want to play from the keyboard.
5. Press [7 (CLOSE)].

The Keyboard Switch window will close.

## Specifying the Range of Each Part (Key Range)

In Performance mode you can specify the key range of each part, allowing you to divide the keyboard into as many as sixteen zones, and play a different sound in each.
The keyboard zone to which each part will respond is determined by the part's "key range" setting.

1. In the PERFORM PLAY screen, press [4 (KEYRANG)].

The Key Range window will open.

2. Use the cursor buttons to move the cursor to the part name, and use [ $<$ ] ] to select the part that you want to edit.
3. Use the cursor buttons or [4 (KBDSW)]-[6 (UPPER)] to select a parameter.
4. Use the VALUE dial or [DEC] [INC] to set the value.

| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| KBDSW | OFF, ON | Turns the sound of the part on/ <br> off |
| LOWER | C--(UPPER) | Specifies the lower limit of the <br> key range |
| UPPER | (LOWER)-G9 | Specifies the upper limit of the <br> key range |

5. When you've finished making settings, press [7 (CLOSE)].

The Key Range window will close.
TIP
By overlapping the key range of two or more parts, you can layer those parts so that they will sound together.

## Making Settings for the D Beam Controller and Other Controllers

You can assign a variety of functions to controllers such as the D Beam Controller and the buttons.

## CTRL SETTING (PERF) Screen



In the PERFORM PLAY screen, press [3 (CONTROL)] to access this screen.
Use the cursor buttons to select the parameter you want to edit, and use the VALUE dial or [DEC] [INC] to set its value.
The [2]-[7] buttons located below the display provide access to the edit screens indicated in the bottom line of the screen.
When you've finished making settings, press [EXIT] to return to the PERFORM PLAY screen.

## MEMO

For more about D Beam settings, refer also to "Using the D Beam Controller to Modify the Sound" (p. 56).

| Button | Content |
| :--- | :--- |
| [2 (TEMPO)] | Specifies the tempo of the performance. |
| [3 (S1/S2)] | Specifies the functions controlled by the [S1] and [S2] buttons. |
| [4 (DB ASGN)] | Specifies the function controlled by the D Beam controller. |
| [5 (DB EXP)] | Makes settings for when using the D Beam controller to control active expression. For details on these parameters, refer <br> to System settings "[4 (ATV EXP)]" (p. 153). <br> * These are system settings. To save them, press [7 (WRITE)] in the edit screen to save the system settings. |
| [6 (DB SYN)] | Makes settings for when using the D Beam controller as a monophonic synthesizer. For details on these parameters, <br> refer to System settings "[3 (SYNTH)]" (p. 152). <br> * These are system settings. To save them, press [7 (WRITE)] in the edit screen to save the system settings. |
| [7 (CTRL SW)] | Accesses the CONTROL SW (PERF) screen, where you can turn the controllers on/off for each part, and specify the <br> MIDI messages that they will transmit (p. 137). <br> * "[7 (CTRL SW)]" is not shown if [5 (DB EXP)] or [6 (DB SYN)] are selected. |

Chapter 10. Detailed Editing for Performances

## CTRL SETTING (PERF) Parameters

## [2 (TEMPO)]

| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Recommended <br> Tempo | $20-250$ | If the JUNO-STAGE's tempo is to change when you switch performances, this setting specifies the <br> tempo. In order to enable this setting, you must turn on the System setting "Tempo Override" (p. 151). | | [3 (S1/S2)] |
| :--- |
| Specifies the functions that will be controlled by the [S1] and [S2] buttons. |


| Parameter |  | Value |  | Explanation |  |
| :--- | :--- | :--- | :---: | :---: | :---: |
| Switch 1/Switch 2 |  |  |  |  |  |
| Assign | TRANSPOSE UP | Shift the pitch of the keyboard upward in semitone steps (a maximum of six semitones). |  |  |  |
|  | TRANSPOSE DOWN | Shift the pitch of the keyboard downward in semitone steps (a maximum of five semitones). |  |  |  |
|  | TAP TEMPO | Used to set the tempo to the interval at which you press the button. |  |  |  |
|  | MONO/POLY | Specify whether the patch will play polyphonically (POLY) or monophonically (MONO). |  |  |  |
|  | PORTAMENTO | Turn the Portamento on/off. |  |  |  |
|  | HOLD | Turn the Hold on/off. |  |  |  |
|  | MFX1-3 SW | Switch the multi-effects 1-3 on/off. |  |  |  |
|  | CHORUS SW | Switch the chorus on/off. |  |  |  |
|  | REVERB SW | Switch the reverb on/off. |  |  |  |
|  | SYS CTRL 1-4 SRC | Transmit the MIDI message specified by the System setting "Sys Ctrl 1-4 Source" (p. 148). |  |  |  |
|  | BEND MODE | Switches the bend mode (p. 146) |  |  |  |
| The mode will be "Normal" when the button is off, and "CATCH+LAST" when the button is on. |  |  |  |  |  |
|  | PART 1-16 KBD SW | Turns the keyboard switch (p. 134) on/off for the specified part |  |  |  |
| Type | LATCH | The on/off status will alternate each time you press the button. |  |  |  |
|  | MOMENTARY | The assigned function will turn on while you press the button, and will turn off when you release it. |  |  |  |

## [4 (DBASGN)]

Specifies the function that will be controlled by the D Beam controller when D BEAM [ASSIGNABLE] is on.

| Parameter | Value | Explanation |
| :---: | :---: | :---: |
| Type | CC01-31, 33-95 | Controller number 1-31, 33-95 |
|  | BEND UP | Control the pitch change specified by the Pitch Bend Range Up (p. 101) setting. |
|  | BEND DOWN | Control the pitch change specified by the Pitch Bend Range Down (p. 101) setting. |
|  | START/STOP | Start/stop the song or the rhythm pattern. |
|  | TAP TEMPO | Specity the tempo according to the interval at which you position your hand over the D Beam (tap tempo). |
|  | ARP GRID | Specify the time signature and swing of the arpeggio. |
|  | ARP DURATION | Specify the duration for each note of the arpeggio. |
|  | ARP MOTIF | Change the upward/downward variation of the arpeggio. |
|  | ARP OCTAVE UP | Shift the arpeggio's octave upward (maximum of three octaves) |
|  | ARP OCTAVE DOWN | Shift the arpeggio's octave downward (maximum of three octaves) |
|  | ARP STEP | Control the playback position of the arpeggio pattern. |
|  | AFTERTOUCH | Aftertouch |
| Range Min | 0-127 | Specifies the lower limit of the D Beam controller's range. <br> There will be no effect if the position of your hand above the $D$ Beam controller is higher than this setting. |
| Range Max | 0-127 | Specifies the upper limit of the $D$ Beam controller's range. <br> There will be no effect if the position of your hand above the $D$ Beam controller is lower than this setting. <br> * If Range Max is lower than Range Min, the range of variation will be vertically inverted. |

## [5 (DB EXP)]

Refer to the system setting "[4 (ATV EXP)]" (p. 153).

## [6 (DB SYN)]

Refer to the system setting "[3 (SYNTH)]" (p. 152).

## CONTROL SW (PERF) Screen



In the CTRL SETTING (PERF) screen, press [7 (CTRL SW)] to access this screen. Use the cursor buttons to select the parameter that you want to edit, and use the VALUE dial or [DEC] [INC] to set the value.
When you've finished editing, press [7 (EXIT)]. You will return to the CTRL SETTING (PERF) screen.

## [2 (CTRL SW)]

For each patch assigned to a part, you can specify whether certain MIDI messages will be transmitted (on) or not (off).

| Parameter | Value | Explanation |
| :---: | :---: | :---: |
| P.B | OFF, ON(V) | MIDI pitch bend message transmission on/off |
| Mod |  | MIDI modulation message transmission on/off |
| Hold |  | Transmission on/off for the control messages from a pedal connected to the HOLD PEDAL jack |
| Ctrl |  | Transmission on/off for the control messages from a pedal connected to the CONTROL PEDAL jack |
| S1 |  | Transmission on/off for the control messages from the [S1] button |
| S2 |  | Transmission on/off for the control messages from the [S2] button |
| D Beam |  | Transmission on/off for the control messages from the D Beam |

[3 (EXT)]
Specifies the MIDI message that will be transmitted for each part.

| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Bank Sel (MSB) | $0-127$, OFF | The MSB (control number 0) of the bank select number transmitted when you switch <br> performances. <br> Choose "OFF" if you don't want to transmit this message. <br> *This message is not transmitted from parts whose Keyboard Switch is off. |
| Bank Sel (LSB) | $0-127$ | The LSB (control number 32) of the bank select number transmitted when you switch <br> performances. <br> * This message is not transmitted from parts whose Keyboard Switch is off. |
| Prog | $1-128$, OFF | The program change number transmitted when you switch performances. <br> Choose "OFF" if you don't want to transmit this message. <br> * This message is not transmitted from parts whose Keyboard Switch is off. |
| Level | $0-127$, OFF | The value of the volume change transmitted when you switch performances. <br> * This message is not transmitted from parts whose Keyboard Switch is off. |
| Pan | L64-0-63R, OFF | The value of the pan message transmitted when you switch performances. <br> Choose "OFF" if you don't want to transmit this message. <br> * This message is not transmitted from parts whose Keyboard Switch is off. |

## Chapter 10. Detailed Editing for Performances

## Enabling/Disabling Reception of Messages for Each MIDI Channel (Part)

Parts 1-16 of a performance correspond to MIDI channels 1-16 of MIDI messages received from an external MIDI device.
For each channel you can specify whether MIDI message reception will be enabled (on) or disabled (off). You can also enable reception for only specific types of messages.

## MIDI FILTER Screen



## Adjusting Sound Settings Such as Volume or Pan (PART MIXER)

## PART MIXER Screen



In the PERFORM PLAY screen, press [6 (MIXER)] to access this screen.
Use the cursor buttons to select the parameter that you want to edit, and use the VALUE dial or [DEC] [INC] to set the value.

The [2]-[7] buttons located below the screen provide access to the editing screens indicated in the bottom line of the screen.
When you've finished editing, press [EXIT] to return to the PERFORM PLAY screen.

| Button | Content |  |
| :--- | :--- | :--- |
| [2 (LV\&PAN)] | Part volume (Level, p. 140) and PAN (left/right position) (Pan, p. 140) |  |
| [3 (CHO\&REV)] | Level of the signal sent from each part to chorus (Chorus, p. 141) and to reverb (Reverb, p. 141) |  |
| [4 (FILTER)] | KEY | Pach part's cutoff (Cutoff, p. 142) and resonance (Reso, p. 142) settings |
| [5 (KEY/OUT)] | KBD | Keyboard switch (p. 134) |
|  | RHY | Specifies the part that will play the rhythm pattern. |
|  | ARP | Arpeggio part (p. 61) |
|  | OUT | Output assign (Asgn, p. 141) |
| [7 (MUTE)] |  | Opens the Part Mute window, where you can silence (mute) specific parts. |

## Silencing Specific Parts (Mute)

When you're playing back a song from an external MIDI device connected to the JUNO-STAGE, you may wish to silence (mute) the playback of specific parts.
For example, you can mute the melody and use the remainder of the song for karaoke or for practicing that part yourself.

1. In the PART MIXER screen, press [7 (MUTE)].

The Part Mute window will open.
2. Use [ ] ] ] to select a part.
3. Use the VALUE dial, [DEC] [INC], or [ $\Delta$ ] [ $\nabla$ ] to turn muting "ON" or "OFF."
Parts whose mute setting is "ON" will not produce sound.
You can also use the following function buttons to turn the mute setting on/off.

- Pressing [4 (1-2 ON)] will turn part 1 and part 2 on.
- Pressing [5 (10 ON)] will turn part 10 on.
- Pressing [6 (ALL OFF)] will turn all parts off.

4. Press [7 (CLOSE)].

The Part Mute window will close.

## MEMO

Part muting does not turn off the part's MIDI reception switch; rather, it silences the part by minimizing its volume. This means that MIDI messages are being received by the part.

Chapter 10. Detailed Editing for Performances

## Detailed Settings for Each Part (PART VIEW)

The PART VIEW screen lets you view a list of the settings for the parts in Performance mode.
In the PART VIEW screen, you can view and edit the patch assigned to each part together with settings such as volume and pan for four parts at a time. This allows you to access more detailed settings that are not available in the PERFORM PLAY screen or the PART MIXER screen.

## PART VIEW Screen



In the PERFORM PLAY screen, press [7 (PARTVIEW)] to access this screen.
Use the cursor buttons to select a parameter, and use the VALUE dial or [DEC] [ INC$]$ to set its value.
The [2]-[6] buttons located below the display provide access to the editing screens indicated in the bottom line of the screen.
Pressing [7 (PAGE)] will switch the screens that are selected by the [2]-[6] buttons.
When you've finished editing, press [EXIT] to return to the PERFORM PLAY screen. For details on the parameters, refer to "Performance parameters," below.

## Performance Parameters

## [2 (PATCH)]

| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Type | Patch, Rhythm | Sets the assignment of a patch or rhythm set to each of the parts. |
| Group | USER, PRST, GM, | Selects the group to which the desired patch belongs. (* If Type is Patch) <br> USER: User <br> PRST: Preset <br> GM: General MIDI (GM2) <br> XP-A, XP-B: Wave Expansion Board |
| Number | $001-$ | Selects the desired patch or rhythm set by its number. |

## [3 (LV\&PAN)]

| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Level | $0-127$ | Volume of each part <br> This setting's main purpose is to adjust the volume balance between parts. |
| Pan | OFF, ON $(\boldsymbol{V})$ | Left/right position of each part <br> Specifies, for each part, whether or not the keyboard controller section will be connected to the <br> internal sound generator. |
| Solo | OFF, ON $(\boldsymbol{V})$ | Check " $\boldsymbol{V}^{\prime \prime}$ this setting if you want to hear the part by itself; this is called "soloing" the part. |
| Mute | Mutes $(\boldsymbol{V})$ or un-mutes (OFF) each part. <br> Use this setting when, for example, you want to use the instrument for karaoke by muting the <br> part playing the melody, or when you want to play something using a separate sound module. <br> * The Mute Switch parameter does not turn the part off, but sets the volume to minimum so that <br> no sound is heard. Therefore, MIDI messages are still received. |  |

## [4 (PITCH)]

| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Octave | $-3-+3$ | Pitch of the part's sound (in 1-octave units) <br> * Note that when a rhythm set is assigned to a part, you cannot modify this parameter. |
| Coarse | $-48-+48$ | Pitch of the part's sound (in semitones, $+/-4$ octaves) |
| Fine | Pitch of the part's sound (in 1-cent steps; one cent is $1 / 100$ th of a semitone) |  |
| Bend | Amount of pitch change in semitones (2 octaves) that will occur when the Pitch Bend Lever is <br> moved. <br> The amount of change when the lever is tilted is set to the same value for both left and right <br> sides. <br> If you want to use the Pitch Bend Range setting of the patch assigned to the part (p. 101), set <br> this to "PAT." |  |

## Coarse Tune and Octave Shift

The Coarse Tune and Fine Tune parameters, along with the Octave Shift parameter, can all be seen as doing the same thing to the sound, i.e., changing the pitch of the sound. For example, if C 4 (Middle C ) is played with the Coarse Tune parameter set to " +12 ," the note produced is C 5 (one octave above C4). For example, if C 4 (Middle C ) is played with the Octave Shift parameter set to " +1 ," the note produced is C 5 (one octave above (4).
However, internally these function very differently. When the Coarse Tune parameter is set to " +12 ," the pitch itself is raised one octave. On the other hand, when the Octave Shift parameter is set to " +1 ," it is the same as pressing the keys one octave up. In other words, use the Coarse Tune parameter when changing the pitch, and the Octave Shift parameter when you want to shift the entire keyboard, for example, when the number of keys is insufficient.

## [5 (OUTPUT)]

| Parameter | Value | Explanation |
| :---: | :---: | :---: |
| Asgn | $\begin{aligned} & \text { MFX 1-3, } \\ & \text { L+R, } \\ & \text { L, R, } \\ & \text { PAT 1-3 } \end{aligned}$ | Specifies for each part how the direct sound will be output. <br> MFX 1-3: Output in stereo through multi-effects. You can also apply chorus or reverb to the sound that passes through multi-effects. Specify which multi-effects (1-3) will be used. <br> L+R: Output in stereo to the OUTPUT jacks without passing through the multi-effect <br> L: Output in mono to the OUTPUT L jack without passing through the multi-effect <br> R: Output in mono to the OUTPUT R jack without passing through the multi-effect <br> PAT 1-3: The part's output destination is determined by the settings of the patch or rhythm set assigned to the part. Specify which multi-effects (1-3) will be used. <br> - Chorus and reverb are output in mono at all times. <br> - The output destination of the signal after passing through the chorus is set with the Chorus Output Select parameters (p. 81). |
| Output | 0-127 | Level of the signal that is sent to the output destination specified by Asgn. |
| Chorus | 0-127 | Level of the signal sent to chorus for each part |
| Reverb | 0-127 | Level of the signal sent to reverb for each part |

## [6 (FX SRC)]

| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| MFX1-3 | OFF, ON (V) | The settings of a specific patch can be used as the settings for MFX1-MFX3, chorus, and reverb. <br> This setting specifies the part to which this patch has been assigned. <br> If no part is selected, the settings of the Performance will be used. |
| Chorus |  |  |
| Reverb |  |  |

Chapter 10. Detailed Editing for Performances

## [PAGE $\downarrow$ ] - [2 (OFFSET)]

The values set here are applied to the parameters of the patches/rhythm sets of the various parts, and are used in correcting the tone.

| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Cutoff | $-64-+63$ | Adjusts the cutoff frequency for the patch or rhythm set assigned to a part. |
| Reso | $-64-+63$ | Adjusts the Resonance for the patch or rhythm set assigned to a part. |
| Attack | $-64-+63$ | Adjusts the TVA/TVF Envelope Attack Time for the patch or rhythm set assigned to a part. |
| Releas | $-64-+63$ | Adjusts the TVA/TVF Envelope Release Time for the patch or rhythm set assigned to a part. |
| Decay | $-64-+63$ | Adjusts the TVA/TVF Envelope Decay Time for the patch or rhythm set assigned to a part. |

[PAGE $\downarrow$ ] - [3 (VIBRATO)]

| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Vib Rate | $-64-+63$ | For each part, adjust the vibrato speed. |
| Depth | $-64-+63$ | For each part, this adjusts the depth of the vibrato effect. |
| Delay | $-64-+63$ | For each part, this adjusts the time delay until the vibrato. |
| Phase | Set to "ON" when you want to suppress discrepancies in timing of parts played on the same MIDI <br> channel. <br> * When this parameter is set to "ON," parts on the same MIDI channel are put in a condition in <br> which their timing is matched, enabling them to be played at the same time. Accordingly, a <br> certain amount of time may elapse between reception of the Note messages and playing of the <br> sounds. Turn this setting to "ON" only as needed. |  |

[PAGE $\downarrow$ ] - [4 (KEYBORD)]

| Parameter | Value | Explanation |
| :---: | :---: | :---: |
| Kbd | OFF, ON(V) | Specifies, for each part, whether or not the keyboard controller section will be connected to the internal sound generator. |
| K.L | C--(Upper) | Lowest note that the tone will sound for each part |
| K.U | (Lower)-G9 | Highest note that the tone will sound for each part <br> When the Key Range (p. 134) is set for each individual tone in a patch, sounds are produced in the range where the Key Range of each tone and the Key Range for the part overlap. <br> The range in which notes will play |
| Velo | -63-+63 | Changes the volume and cutoff frequency for each part according to the velocity with which the keys are pressed. <br> If you want strongly played notes to raise the volume/cutoff frequency, set this parameter to positive ( + ) settings. If you want strongly played notes to lower the volume/cutoff frequency, use negative $(-)$ settings. |
| Curve | OFF, 1-4 | Velocity curve for each MIDI channel <br> Selects for each MIDI channel one of the four following Velocity Curve types that best matches the touch of the connected MIDI keyboard. <br> Set this to "OFF" if you are using the MIDI keyboard's own velocity curve. <br> 1 <br> 2 <br> 3 <br> 4 |
| Voice | 0-63, FULL | This setting specifies the number of voices that will be reserved for each part when more than 128 voices are played simultaneously. <br> * It is not possible for the settings of all parts to total an amount greater than 64. The remaining number of available voices will be displayed at (rest=). Pay attention to this readout as you make Voice Reserve settings. |
| Ch | 1-16 | MIDI receive channel for each part |

## Calculating the Number of Voices Being Used

The JUNO-STAGE is able to play up to 128 notes simultaneously. The polyphony, or the number of voices (sounds) does not refer only to the number of sounds actually being played, but changes according to the number of tones used in the patches, and the number of Waves used in the tones. The following method is used to calculate the number of sounds used for one patch being played.
(Number of Sounds Being Played) × (Number of Tones Used by Patches Being Played) $\times$ (Number of Waves Used in the Tones)
Realtime Stretch requires twice the normal polyphony.
[PAGE $\downarrow$ ] - [5 (KEY MOD)]

| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Mono/Poly | MONO, POLY, PAT | Set this parameter to "MONO" when the patch assigned to the part is to be played <br> monophonically, or to "POLY" when the patch is to be played polyphonically. If you want to use <br> the Mono/Poly setting of the patch assigned to the part (p. 101), set this to "PAT." <br> " This setting is ignored for parts to which a rhythm set is assigned. |
| Legato | You can add legato when performing monophonically. The term "legato" refers to a playing style <br> in which notes are smoothly connected to create a flowing feel. This creates a smooth transition <br> between notes, which is effective when you wish to simulate the hammering-on and pulling-off <br> techniques used by a guitarist. <br> Turn this parameter "ON" when you want to use the Legato feature and "OFF" when you don't. <br> If you want to use the Legato Switch setting of the patch assigned to the part (p. 101), set this <br> to "PAT." <br> *This setting is ignored for parts to which a rhythm set is assigned. |  |
| OFF, ON, PAT | Specify whether portamento will be applied. <br> Turn this parameter "ON" when you want to apply Portamento and "OFF" when you don't. If <br> you want to use the Portamento Switch setting of the patch assigned to the part (p. 101), set <br> this to "PAT." |  |
| Time | OFF, ON, PAT | When portamento is used, this specifies the time over which the pitch will change. <br> Higher settings will cause the pitch change to the next note to take more time. If you want to <br> use the Portamento Time setting of the patch assigned to the part (p. 101), set this to "PAT." |

## [PAGE $\downarrow$ ] - [6 (S.TUNE)]

| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Part Scale Tune for <br> C-B | $-64-+63$ | Make scale tune settings for each part. <br> Scale Tune is switched on/off by means of the Scale Tune Switch parameter (p. 146). |

## Equal Temperament

This tuning divides the octave into 12 equal parts, and is the most widely used method of temperament used in Western music. The JUNO-STAGE employs equal temperament when the Scale Tune Switch is set to "OFF."

## Just Intonation (Tonic of C)

Compared with equal temperament, the principle triads sound pure in this tuning. However, this effect is achieved only in one key, and the triads will become ambiguous if you transpose.

## Arabian Scale

In this scale, E and B are a quarter note lower and C\#, F\# and G\# are a quarter-note higher compared to equal temperament. The intervals between G and $\mathrm{B}, \mathrm{C}$ and $\mathrm{E}, \mathrm{F}$ and $\mathrm{G} \#, \mathrm{Bb}$ and $\mathrm{C} \#$, and Eb and $\mathrm{F} \#$ have a natural third-he interval between a major third and a minor third. On the JUNO-STAGE, you can use Arabian temperament in the three keys of G, C and F.
<Example>

| Note name | Equal <br> temperament | Just <br> infonation | Arabian <br> scale |
| :---: | :---: | :---: | :---: |
| C | 0 | 0 | -6 |
| C\# | 0 | -8 | +45 |
| D | 0 | +4 | -2 |
| Eb | 0 | +16 | -12 |
| E | 0 | -14 | -51 |
| F | 0 | -2 | -8 |
| F\# | 0 | -10 | +43 |
| G | 0 | +2 | -4 |
| G\# | 0 | +14 | +47 |
| A | 0 | -16 | 0 |
| B b | 0 | +14 | -10 |
| B | 0 | -12 | -49 |

## Chapter 11. Other Settings

## Saving User Data to USB Memory

You can save system settings or user data to USB memory.

## NOTE

Connect your USB memory after you've turned the JUNO-STAGE's power on. Never disconnect the USB memory while the power is turned on.

## Types of Data that can be Saved

When you save settings from the JUNO-STAGE to USB memory, the following settings are saved.

- User patches (rhythm sets)
- User performances
- Favorites
- User arpeggios
- User chord memory
- User rhythm patterns
- User rhythm groups
- MIDI Controller mode settings
- Patch first selected in Piano mode
- System settings


## Saving Data to USB Memory (User Backup)

Here's how to save user data to USB memory. This operation is called "User Backup."

## MEMO

Use USB memory sold by Roland. We cannot guarantee correct operation if other products are used.

1. Press [MENU].

The Top Menu window will appear.
2. Use [ $\boldsymbol{\Lambda}$ ] [ $\boldsymbol{\nabla}$ ] to select "4. Utility," and press [ENTER].

The UTILITY MENU screen will appear.
3. Use the cursor buttons to select "User Backup," and press [ENTER].
The following screen will appear.

4. Press [7 (EXEC)].

If you decide to cancel, press [6 (CANCEL)].
When the backup has been completed, you will return to the UTILITY MENU screen.

## Restoring Saved Data from USB Memory Back into the JUNO-STAGE (User Restore)

Here's how to restore backed-up user data from USB memory into the JUNO-STAGE. This operation is called "User Restore."

1. Press [MENU].

The Top Menu window will appear.
2. Use [ $\Delta$ ] [ $\nabla$ ] to select "4. Utility," and press [ENTER].

The UTILITY MENU screen will appear.
3. Use the cursor buttons to select "User Restore," and press [ENTER].
The following screen will appear.

4. Press [7 (EXEC)].

If you decide to cancel, press [6 (CANCEL)].
When the restore operation has been completed, the following screen will appear.

## Gompleted. Turn the Power off and on ayain.

5. Turn the power of the JUNO-STAGE off, then on again.

## System Settings

Here you can make "System settings" that affect the operation of the entire JUNO-STAGE, such as the tuning and how MIDI messages will be received.

## Procedure for Making System Settings

1. Press [MENU].

The Top Menu window will appear.
2. Use [ $\Delta$ ] [ $\boldsymbol{\nabla}$ ] to choose " 1. System" and press the [ENTER].

The System Menu screen will appear.
3. Press one of the function buttons to select the setting that you want to edit.
The setting screen for the selected button will appear.
If necessary, press a function button again to access the desired setting screen.
4. Use the cursor buttons to select to the parameter that you want to set.
5. Use the VALUE dial or the [DEC] [INC] to set the value.

## Saving the Changes You've Made to the System Settings (WRITE)

Changes you've made to the system settings will return to their original state when you turn off the power. If you want to keep the changes you've made, you must save them as follows.

1. Access a system function setting screen.
2. Press [7 (WRITE)].

A screen like the following will appear, and the settings will be saved.


When the settings have been saved, you will return to the previous screen.

Chapter 11. Other Settings

## Functions of System Parameters

This section explains what the different System parameters do, and also how these parameters are organized.

## System Menu [2 (GENERAL)] <br> [2 (COMMON)]

| Parameter | Value | Explanation |
| :---: | :---: | :---: |
| System Common |  |  |
| Power Up Mode | PATCH, PERFORM | Mode that the JUNO-STAGE will be in when it is powered up. <br> PATCH: Patch mode <br> PERFORM: Performance mode |
| Patch Remain | OFF, ON | Specifies whether currently sounding notes will continue sounding when another patch or rhythm set is selected (ON), or not (OFF). <br> When this is "ON," changes produced by incoming MIDI messages such as Volume or Pan (CC $5,7,10,65,68,71-74$, RPN $0,1,2, M O N O$ ON, POLY ON), as well as tonal quality and volume changes produced by the various controllers will be inherited. <br> * Effects settings change as soon as you switch to a new patch or rhythm set, without being influenced by the Patch Remain setting. Because of this, certain effects settings can cause notes that were until then sounding to no longer be heard, even though Patch Remain has been set to "ON." |
|  | NORMAL | The pitch bend lever will operate in the conventional way. |
| Bend Mode | CATCH+LAST | If you press a key while the pitch bend lever is already moved to one side, that note will sound at its normal pitch (as if the pitch bend lever were in the center). Only after the lever has passed through the center position will it begin to affect the pitch. This will apply only to the last-played note. This is a useful way to simulate the guitar technique of double-bending. |
| Screen Saver Time | OFF, 5 min, 10 min , $20 \mathrm{~min}, 30 \mathrm{~min}$, $40 \mathrm{~min}, 50 \mathrm{~min}$, 60 min | Time until the screen saver is displayed |
| Driver Setting |  |  |
| USB Driver | GENERIC, VENDER | USB driver setting. <br> * This setting will take effect when you turn the power off, then on again. |

## [3 (SOUND)]

| Parameter | Value | Explanation |
| :---: | :---: | :---: |
| Sound Generator |  |  |
| Master Tune | 415.3-466.2 Hz | Overall tuning of the JUNO-STAGE <br> The display shows the frequency of the A4 note (center A). |
| Master Key Shift | -24-+24 | Shifts the overall pitch of the JUNO-STAGE in semitone steps. |
| Master Level | 0-127 | Volume of the entire JUNO-STAGE |
| Output Gain | -12-12 dB | Output gain from the JUNO-STAGE's Output <br> When, for example, there are relatively few voices being sounded, boosting the output gain can let you attain the most suitable output level for recording and other purposes. |
| Preview |  |  |
| Preview Mode | SINGLE, CHORD, PHRASE | SINGLE: The notes specified by Preview 1-4 Note Number will sound successively one by one. CHORD: The notes specified by Preview 1-4 Note Number will sound simultaneously. PHRASE: The Phrase associated with the patch's type/category is played. |
| Preview 1-4 Note Number | C-G9 | Specify the pitch of the four notes that will sound when the Preview Mode is set to "SINGLE" or "CHORD." <br> * If "PHRASE" is selected for the Preview Mode parameter, these settings will have no effect. |
| Preview 1-4 Velocity | OFF, 1-127 | Specify the velocity of the four notes that will sound when the Preview Mode is set to "SINGLE" or "CHORD." <br> * If "PHRASE" is selected for the Preview Mode parameter, these settings will have no effect. |
| Scale Tune for Patch Mode <br> The JUNO-STAGE allows you to play the keyboard using temperaments other than equal temperament. The pitch is specified in one-cent units relative to the equal tempered pitch. One-cent is $1 / 100$ th of a semitone. <br> One set of Scale Tune settings can be created in Patch mode. In Performance mode, this can be set for each part of the performance (p. 143). <br> * In Patch mode, this is valid only for the keyboard part. <br> * The selected scale applies to MIDI messages received from an external MIDI device. |  |  |
| Scale Tune Switch | OFF, ON | Turn this on when you wish to use a tuning scale other than equal temperament. |
| Patch Scale Tune for C-B | -64-+63 | Make scale tune settings for Patch mode. |

## System Menu [3 (KBD/CTRL)]

## [2 (KBD)]

| Salue | Explanation |  |
| :--- | :--- | :--- |
| Keyboard Velocity | REAL, 1-127 | Velocity value that will be transmitted when you play the keyboard <br> REAL: Actual keyboard velocity will be transmitted. <br> 1-127: A fixed velocity value will be transmitted regardless of how you play. |
| Keyboard Velocity <br> Curve | LIGHT, MEDIUM, <br> HEAVY | Keyboard's touch <br> LIGHT: Light weight synthesizer keyboard like <br> MEDIUM: Standard <br> HEAVY: Acoustic piano simulation |
| Keyboard Velocity <br> Sens | $-63-+63$ | Makes fine adjustments to the keyboard sensitivity following the Keyboard Velocity Curve <br> selection. Higher settings for this value will increase the velocity value that is transmitted according <br> to your playing strength. |

## [3 (PEDAL)]

| Parameter | Value | Explanation |
| :---: | :---: | :---: |
| Pedal |  |  |
| Control Pedal Assign | CCO1-31, 33-95, BEND UP, BEND DOWN, AFTERTOUCH, OCT UP, OCT DOWN, START/STOP, TAP TEMPO, PROGRAM UP, PROGRAM DOWN, FAVORITE UP, FAVORITE DOWN, ARP SW, <br> CHORD SW | Function of the pedal connected to the PEDAL CONTROL jack <br> CCO1-31, 33-95: Controller numbers 1-31, 33-95 <br> BEND UP: The pitch will rise in semitone steps (maximum 4 octaves) each time you press the pedal. <br> BEND DOWN: The pitch will fall in semitone steps (maximum 4 octaves) each time you press the pedal. <br> AFTERTOUCH: Aftertouch <br> OCT UP: Each pedal press raises the key range in octave steps (up to 3 octaves higher). <br> OCT DOWN: Each pedal press lowers the key range in octave steps (up to 3 octaves lower). <br> START/STOP: The song or the rhythm pattern will start/stop. <br> TAP TEMPO: Tap tempo (a tempo specified by the interval at which you press the pedal). PROGRAM UP: Select the next-numbered patch in Patch mode, or the next-numbered performance in Performance mode. <br> PROGRAM DOWN: Select the previous-numbered patch in Patch mode, or the previous numbered performance in Performance mode. <br> FAVORITE UP: The favorite of the next number or bank will be selected. <br> FAVORITE DOWN: The favorite of the previous number or bank will be selected. <br> ARP SW: Arpeggio/Rhythm Pattern function on/off <br> CHORD SW: Chord memory function on/off |
| Control Pedal Polarity | STANDARD, REVERSE | Selects the polarity of the pedal connected to the PEDAL CONTROL jack or to the PEDAL HOLD jack. On some pedals, the electrical signal output by the pedal when it is pressed or released is the opposite of other pedals. If your pedal has an effect opposite of what you expect, set this parameter to "REVERSE." If you are using a Roland pedal (that has no polarity switch), set this parameter to "STANDARD." |
| Continuous Hold Pedal | OFF, ON | Determines whether the HOLD PEDAL jack will provide support for half-pedaling (ON), or not (OFF). <br> When this is set to support use of half-pedaling techniques, you can then connect an optional expression pedal (DP-10, etc.), and employ pedal work to achieve even finer control in performances in which piano tones are used. |
| Patch Select | AUTO UP/(DOWN), PROGRAM UP/(DOWN), FAVORTE UP/(DOWN) | The function controlled by a pedal connected to the PATCH SELECT jack <br> AUTO UP/(DOWN): The function will depend on whether FAVORITE [ON/OFF] is on or off. When FAVORITE [ON/OFF] is on, the pedal will switch favorites (the FAVORITE UP/(DOWN) function). <br> When FAVORITE [ON/OFF] is off, the pedal will switch either patches or performances, depending on the mode (the PROGRAM UP/(DOWN) function). <br> PROGRAM UP/(DOWN): The next-numbered patch will be selected in Patch mode, or the next-numbered performance will be selected in Performance mode. If you've connected two pedals, the other pedal will select the preceding number. <br> FAVORITE UP/(DOWN): The favorite of the next number or next bank will be selected. If you've connected two pedals, the other pedal will select the favorite of the preceding number or bank. |

Chapter 11. Other Settings

| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Patch Select Polarity | STANDARD, <br> REVERSE | Selects the polarity of the pedal connected to the PATCH SELECT jack. <br> On some pedals, the electrical signal output by the pedal when it is pressed or released is the <br> opposite of other pedals. If your pedal has an effect opposite of what you expect, set this <br> parameter to "REVERSE." If you are using a Roland pedal (that has no polarity switch), set this <br> parameter to "STANDARD." |

## [4 (CTRL)]

| Parameter | Value | Explanation |
| :---: | :---: | :---: |
| Sys Crrl 1-4 Source | OFF, CCO1-95, PITCH BEND, AFTERTOUCH | Selects the MIDI message used as the System Control. <br> OFF: The system control knob will not be used. <br> CC01-95: Controller numbers 1-95 <br> PITCH BEND: Pitch Bend <br> AFTERTOUCH: Aftertouch |

## System Control

This function, which departs from previously used methods, and instead allows you to use MIDI messages to change tone settings in realtime, is called the Matrix Control (p. 110). Similarly, the function allowing you to use MIDI messages to change multi-effects settings in realtime is called the Multi-effects Control (p. 84).
Normally, the Matrix Control is used for making patch settings, and the Multi-effects Control for making settings to patches, rhythm sets, and performances.
For example, if you want the same MIDI message to always be used for matrix control for other patches as well, select that MIDI message as Sys Ctrl 1 Source, and select "SYS CTRL 1" as the CTRL Source for the other patches. With these settings, even if you need to change the MIDI message used for matrix control, all you need to do is simply choose a different MIDI message as the Sys Ctrl 1 Source. In other words, you could call the System Controls global Matrix Control/Multi-effects Control for the entire JUNO-STAGE.
You can use up to four System Controls.

## [5 (SWITCH)]

| Parameter | Value | Explanation |
| :---: | :---: | :---: |
| ASSIGNABLE Switch |  |  |
| Assign | FAVORITE UP, FAVORITE DOWN, PROGRAM UP, PROGRAM DOWN, TRANSPOSE UP, TRANSPOSE DOWN, TAP TEMPO, MONO/POLY, PORTAMENTO, HOLD, MFXI-3 SW, CHORUS SW, REVERB SW, SYS CTRL 1-4 SRC, BEND MODE, START/STOP | The function assigned to [FAVORITE UP/ASSIGNABLE] <br> FAVORITE UP: Select the favorite of the next number or bank. <br> FAVORITE DOWN: Select the favorite of the preceding number or bank. <br> PROGRAM UP: Select the next-numbered patch in Patch mode, or the next-numbered performance in Performance mode. <br> PROGRAM DOWN: Select the previous-numbered patch in Patch mode, or the previous-numbered performance in Performance mode. <br> TRANSPOSE UP: Raise the key range in semitone steps (maximum of 6 semitones). TRANSPOSE DOWN: Lower the key range in semitone steps (maximum of 5 semitones). TAP TEMPO: Tap tempo (set the tempo by pressing the button at the desired interval). MONO/POLY: Switch the patch between polyphonic (POLY) or monophonic (MONO) playing. <br> PORTAMENTO: Turn portamento on/off. <br> HOLD: Turn hold on/off. <br> MFXI-3 SW: Multi-effect 1-3 switch. <br> CHORUS SW: Chorus switch. <br> REVERB SW: Reverb switch. <br> SYS CTRL 1-4 SRC: Transmit the MIDI message specified by "Sys Ctrl 1-4 Source." <br> BEND MODE: Switch the bend mode (p. 146). <br> "NORMAL" when the button is off, "CATCH+LAST" when the button is on. <br> START/STOP: Start/stop the song or rhythm pattern. |
| Type | LATCH, MOMENTARY | The way in which [FAVORITE UP/ASSIGNABLE] will operate when pressed. <br> LATCH: The on/off status will alternate each time you press the button. <br> MOMENTARY: The function is turned on while you press the button, and is turned off when you release it. <br> * Depending on the Assign setting, this may not be available. |


| Parameter | Value | Explanation |
| :---: | :---: | :---: |
| Switch 1 |  |  |
| Assign | TRANSPOSE UP, TRANSPOSE DOWN, TAP TEMPO, MONO/POLY, PORTAMENTO, HOLD, <br> MFXI-3 SW <br> (Performance Mode), MFX SW (Patch Mode), CHORUS SW, REVERB SW, SYS CTRL 1-4 SRC, BEND MODE, PART 1-16 KBD SW, (Performance Mode) | The function assigned to [S1] <br> TRANSPOSE UP: Raise the key range in semitone steps (maximum of 6 semitones). TRANSPOSE DOWN: Lower the key range in semitone steps (maximum of 5 semitones). TAP TEMPO: Tap tempo (set the tempo by pressing the button at the desired interval). MONO/POLY: Switch the patch between polyphonic (POLY) or monophonic (MONO) playing. <br> PORTAMENTO: Turn portamento on/off. <br> HOLD: Turn hold on/off. <br> MFXI-3 SW or MFX SW: Multi-effect switch. <br> CHORUS SW: Chorus switch. <br> REVERB SW: Reverb switch. <br> SYS CTRL 1-4 SRC: Transmit the MIDI message specified by "Sys Ctrl 1-4 Source." <br> BEND MODE: Switch the bend mode (p. 146). <br> "NORMAL" when the button is off, and "CATCH+LAST" when the button is on. <br> PART 1-6 KBD SW: Turns the keyboard switch (p. 134) on/off for the specified part |
| Type | LATCH, MOMENTARY | The way in which [S1] will operate when pressed. <br> LATCH: The on/off status will alternate each time you press the button. <br> MOMENTARY: The status will turn on when you press the button, and turn off when you release it. <br> * Depending on the Assign setting, this may not be available. |
| Switch 2 |  |  |
| Assign | (same as Switch 1) |  |
| Type |  |  |

Chapter 11. Other Settings

## System Menu [4 (MIDI/SYNC)]

## [2 (GENERL)]

| Parameter | Value | Explanation |
| :---: | :---: | :---: |
| Local Switch | OFF, ON | Determines whether the internal sound generator is disconnected (OFF) from the controller section (keyboard, pitch bend/modulation lever, knobs, buttons, D Beam controller, pedal, and so on); or not disconnected (ON). <br> Normally this is left "ON," but if you wish to use the JUNO-STAGE's keyboard and controllers to control only external sound modules, set it to "OFF." |
| Device ID | 17-32 | When you want to transmit or receive System Exclusive messages, set this parameter to match the Device ID number of the other MIDI device. |
| Remote Keyboard Switch | OFF, ON | Set this parameter "ON" when you want to use an external MIDI keyboard instead of the JUNO-STAGE's keyboard. <br> In this case, the MIDI transmit channel of the external MIDI keyboard can be set to any channel. Normally you will leave this parameter "OFF." <br> * Turn this "ON" when you want to control the JUNO-STAGE from an external MIDI device when performing with the Arpeggio function. |
| Performance Control Channel | 1-16, OFF | Selects the MIDI receive channel used during switching of performances when MIDI messages (Program Change/Bank Select) are sent from an external MIDI device. <br> Set this to "OFF" if performances are not to be switched from an external MIDI device. <br> * If only a program change is received, and if this parameter setting coincides with the MIDI receive channel of a part, priority will be given to switching the performance. |
| Kbd Patch Rx/Tx Channel | 1-16 | Channel used to transmit and receive MIDI messages for the Keyboard part in Patch mode |
| USB MIDI |  |  |
| USB-MIDI Thru | OFF, ON | If this is "ON," incoming MIDI messages will be re-transmitted without change from the MIDI OUT connector. |

## Using the Local Switch

When you're using the JUNO-STAGE with external sequencer software, leave the Local Switch turned off. Read the following for details.
Typically, things are hooked up so the data travels as follows: the JUNO-STAGE's keyboard $\rightarrow$ your external sequencer software $\rightarrow$ the JUNO-STAGE's sound generator. Normally, the JUNO-STAGE's keyboard section is internally connected to its sound generator section; this internal connection is controlled by the Local Switch. If you turn the Local Switch off, the JUNO-STAGE's keyboard and sound generator sections will be independent, allowing you to use the connection described with your external sequencer software.

Connecting the JUNO-STAGE to an external sequencer


## [3 (TX)]

| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Transmit Program Change | OFF, ON | Specifies whether Program Change messages will be transmitted (ON) or not (OFF). |
| Transmit Bank Select | OFF, ON | Specifies whether Bank Select messages will be transmitted (ON) or not (OFF). |
| Transmit Active Sensing | OFF, ON | Specifies whether Active Sensing messages will be transmitted (ON) or not (OFF). |
| Transmit Edit Data | OFF, ON | Specify whether changes you make in the settings of a patch, performance will be transmitted as <br> system exclusive messages (ON), or will not be transmitted (OFF). |
| Soft Through | OFF, ON | Thru function re-transmits all messages received at the MIDI IN connector to the MIDI OUT <br> connector without modifying them in any way. |

[4 (RX)]

| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Receive Program Change | OFF, ON | Specifies whether Program Change messages will be received (ON) or not (OFF). |
| Receive Bank Select | OFF, ON | Specifies whether Bank Select messages will be received (ON) or not (OFF). |
| Receive Exclusive | OFF, ON | Specifies whether System Exclusive messages will be received (ON) or not (OFF). |
| Receive GM System On | OFF, ON | Specifies whether General MIDI System On messages will be received (ON) or not (OFF). |
| Receive GM2 System On | OFF, ON | Specifies whether General MIDI 2 System On messages will be received (ON) or not (OFF). |
| Receive GS Reset | OFF, ON | Specifies whether GS Reset messages will be received (ON) or not (OFF). |

[5 (SYNC)]

| Sarameter | Value | MASTER, <br> SLAVE, <br> REMOTE |
| :--- | :--- | :--- |
| Syncifies the synchronization signals that the JUNO-STAGE will follow. |  |  |
| MASTER: The JUNO-STAGE will be the master. Choose this setting if you're operating the |  |  |
| JUNO-STAGE by itself, without synchronizing it to any other device. |  |  |
| SLAVE: The JUNO-STAGE will be the slave. Choose this setting if you want the JUNO-STAGE to |  |  |
| operate according to MIDI Clock messages received from an external device. |  |  |
| REMOTE: The JUNO-STAGE will obey MIDI Start, Continue, and Stop messages from an external |  |  |
| device, but will use its own tempo setting. |  |  |

System Menu [5 (CLICK/PLAYER)]

## [2 (CLICKOUT)]

|  | CLICK: If SMF data is being played back, the SONG/CLICK OUT jack will output a click sound. <br> The SONG/CLICK OUT jack will output either the click sound (while playing back SMF data) or the <br> song (while playing back audio data). <br> The OUTPUT L/R jacks will output the song. <br> SONG: The SONG/CLICK OUT jack will output the song. <br> The SONG/CLICK OUT jack will output the song. <br> The OUTPUT L/R jacks will not output the click or the song. <br> * This setting is valid if the song is SMF data. If the song is audio data, the sound of the song will <br> always be output, regardless of this setting. |
| :--- | :--- | :--- |
| Song/Click Output <br> Mode | CLICK, SONG |

## [3 (PLAYER)]

| Parameter | Range |  |
| :--- | :--- | :--- |
| Song Player Level | $0-127$ | Sets the volume at which audio files will be played by the song player. |
| Audio Level | $0-127$ | Sets the volume at which SMF will be played by the song player. |

Chapter 11. Other Settings

## System Menu [6 (D BEAM)]

## [2 (GENERL)]

| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Sensitivity | $0-127$ | This sets the D Beam controller's sensitivity. <br> Increasing this value will make the D Beam controller more responsive. <br> D Beam Sens |

[3 (SYNTH)]

| Parameter | Value | Explanation |
| :---: | :---: | :---: |
| Level \& Range |  |  |
| Level | 0-127 | Volume Level of the Solo Synth |
| Chorus Send Level | 0-127 | Level of the signal sent to chorus |
| Reverb Send Level | 0-127 | Level of the signal sent to reverb |
| Range | 2OCT, 4OCT, 80CT | Range in which the pitch of the solo synth will vary |
| Oscl |  |  |
| Osc 1 Waveform | SAW, SQR | Waveform <br> SAW: Sawtooth wave <br> SQR: Square wave |
| Osc 1 Pulse Width | 0-127 | Pulse width of the waveform <br> By cyclically modifying the pulse width you can create subtle changes in the tone. |
| Osc 1 Coarse Tune | -48-+48 | Pitch of the tone's sound (in semitones, +/-4 octaves) |
| Osc 1 Fine Tune | -50-+50 | Pitch of the tone's sound (in 1-cent steps) |
| Osc2 \& Sync |  |  |
| Osc 2 Waveform | (same as Osc 1) |  |
| Osc 2 Pulse Width |  |  |
| Osc 2 Coarse Tune |  |  |
| Osc 2 Fine Tune |  |  |
| Osc 2 Level | 0-127 | Level of the OSC2 |
| Osc Sync Switch | OFF, ON | Turning this switch on produces a complex sound with many harmonics. This is effective when the OSC1 pitch is higher than the OSC2 pitch. |
| Filter |  |  |
| Filter Type | OFF, LPF, BPF, HPF, PKG | Type of filter <br> OFF: No filter is used. <br> LPF: Low Pass Filter. This reduces the volume of all frequencies above the cutoff frequency (Cutoff) in order to round off, or un-brighten the sound. <br> BPF: Band Pass Filter. This leaves only the frequencies in the region of the cutoff frequency, and cuts the rest. <br> HPF: High Pass Filter. This cuts the frequencies in the region below the cutoff frequency. PKG: Peaking Filter. This emphasizes the frequencies in the region of the cutoff frequency. |
| Cutoff | 0-127 | Frequency at which the filter begins to have an effect on the waveform's frequency components |
| Resonance | 0-127 | Emphasizes the portion of the sound in the region of the cutoff frequency, adding character to the sound. |
| LFO |  |  |
| LFO Rate | 0-127 | Modulation speed of the LFO |
| LFO Osc 1 Pitch Depth | -63-+63 | Depth to which the LFO will modulate the Osc 1 pitch |
| LFO Osc 2 Pitch Depth | -63-+63 | Depth to which the LFO will modulate the Osc 2 pitch |
| LFO Osc 1 Pulse Width Depth | -63-+63 | Depth to which the LFO will modulate the pulse width of the Osc 1 waveform <br> * The Pulse Width is activated when "SQR" is selected with Osc 1 waveform. |
| LFO Osc 2 Pulse Width Depth | -63-+63 | Depth to which the LFO will modulate the pulse width of the Osc 2 waveform <br> * The Pulse Width is activated when "SQR" is selected with Osc 2 waveform. |

## Chapter 11. Other Settings

## [4 (ATV EXP)]

| Rarameter | Value | Lower limit of the range of the Active Expression. <br> The effect will be applied when the position of your hand <br> above the D Beam controller is lower than this value. |
| :--- | :--- | :--- |
| Range Max | $0-127$ | Upper limit of the range of the Active Expression. <br> The effect will be applied when the position of your hand <br> above the D Beam controller is above this value. <br> By setting Range Max below Range Min you can invert the <br> range of change. |

## [5 (ASSIGN)]

| Parameter | Value | Explanation |
| :---: | :---: | :---: |
| Type | CCO1-31, 33-95, BEND UP, <br> BEND DOWN, <br> START/STOP, <br> TAP TEMPO, <br> ARP GRID, <br> ARP DURATION, <br> ARP MOTIF, <br> ARP OCTAVE UP, <br> ARP OCTAVEDOWN, <br> ARP STEP, <br> AFTERTOUCH | Function controlled by the D Beam controller <br> CC01-31, 33-95: Controller numbers 1-31, 33-95 <br> BEND UP: Controls the pitch as specified by the "Pitch Bend Range Up" setting (p. 101). <br> BEND DOWN: Controls the pitch as specified by the "Pitch Bend Range Down" setting (p. 101). <br> START/STOP: Starts/stops the song or rhythm pattern. <br> TAP TEMPO: Tap tempo (a tempo specified by the interval at which you move your hand over the D Beam controller). <br> ARP GRID: Specifies the arpeggio's time signature and swing <br> ARP DURATION: Duration of each arpeggiated note <br> ARP MOTIF: Ascending/descending arpeggio variation <br> ARP OCTAVE UP: The range in which the arpeggio is sounded will rise in steps of an octave (maximum 3 octaves). <br> ARP OCTAVE DOWN: The range in which the arpeggio is sounded will lower in steps of an octave (maximum 3 octaves). <br> ARP STEP: Control the playback position within the arpeggio pattern. <br> AFTERTOUCH: Produce the same effect as aftertouch. |
| Range Min | 0-127 | Lower limit of the range of the D Beam controller. <br> The effect will be applied when the position of your hand above the D Beam controller is lower than this value. |
| Range Max | 0-127 | Upper limit of the range of the D Beam controller. <br> The effect will be applied when the position of your hand above the D Beam controller is above this value. <br> * By setting Range Max below Range Min you can invert the range of change. |

## Detailed Settings for the MIC INPUT (MIC Input Setting)

Here's how to make settings for the MIC INPUT jack, and specify the reverb that will be applied to the connected mic.

## 1. Press [MENU].

The Top Menu window will appear.
2. Use [ $\Delta$ ][ $\nabla$ ] to select "2. Mic Input Setting," and press [ENTER]. The MIC INPUT SETTING screen will appear.
3. Use the cursor buttons to select the parameter that you want to change.
4. Use the VALUE dial or [DEC] [INC] to change the value.

## MEMO

If you want to save the changes you made, press [7 (WRITE)]. If you want to exit without saving, press [EXIT] or [6 (EXIT)].

## MEMO

You can also access the MIC INPUT SETTING screen by holding down [SHIFT] and pressing MIC IN [REVERB].

| Parameter | Value | Explanation |
| :---: | :---: | :---: |
| Phantom Power | OFF, ON | Turn this ON if you want to use phantom power. <br> * This setting cannot be saved. When the power is turned on, this will be set to "OFF." |
| Mic-In Reverb Level | 0-127 | Amount of reverb that is applied to the sound of the mic. |
| Mic-In Reverb Type | ROOM1, ROOM2, STAGE 1, STAGE2, HALL1, HALL2, DELAY, PAN-DELAY | Type of reverb/delay <br> ROOM1: Short, high-density reflections <br> ROOM2: Short, low-density reflections <br> STAGE1: Greater amount of late reverberation <br> STAGE2: Stronger early reflections <br> HALL1: Clear-sounding reverberation <br> HALL2: Rich-sounding reverberation <br> DELAY: Conventional delay <br> PAN-DELAY: Delay that moves the reflections between left and right |
| Mic-In Reverb Time | 0-127 | Length of the reverberation (when Mic-In Reverb Type is ROOM1-HALL2) Delay time of the delay (when Mic-In Reverb Type is DELAY or PAN-DELAY) |
| Mic Mode | ALL, VOCODER ONLY | Specifies whether the sound from the mic will be output at all times (ALL) or only if MFX (p. 84) is set to "79:VOCODER" (VOCODER ONLY). |

## Detailed Settings for Minus-One (Minus One Setting)

Here you can specify the parts that will be muted by Minus One (p. 73) when playing back an SMF song.
Parts for which this setting is ON will be muted.

| MINUS | ONE SETTING |  |  | . | Part 1 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\varepsilon$ | 3 | 4 |  | 6 | 7 | 8 |
| ON |  |  |  |  |  |  |  |
| 9.3: | 10 | 11: | 12, | 13: | 14 | 15 | 16 |
| 10 N | 3-4 | ON 1 AL | L OFF |  |  | IT | WRITE |

1. Press [MENU].

The Top Menu window will appear.
2. Use [ $\Delta$ ] [ $\overline{\text { ] to select "3. Minus One Setting," and press }}$ [ENTER].
The MINUS ONE SETTING screen will appear.
3. Use the cursor buttons to select to the part that you want to change.
4. Use the VALUE dial or [DEC] [INC] to turn the setting on or off.

You can also use the following function buttons to turn the setting on/off.

- Pressing [2 (1 ON)] will turn part 1 on.
- Pressing [3 (3-4 ON)] will turn part 3 and part 4 on.
- Pressing [4 (ALL OFF)] will turn all parts off.


## MEMO

If you want to save the changes you made, press [7(WRITE)]. If
you want to exit without saving, press [EXIT] or [6 (EXIT)].

## MEMO

You can also access the MINUS ONE SETTING screen by holding down [SHIFT] and pressing [C.CANCEL/MINUS ONE].

## Utility

From the Top Menu window, choose " 4 . Utility" to access the UTILITY MENU screen. Here you can save user data to USB memory, or restore data from USB memory back into the JUNO-STAGE.


## Backing Up User Data (User Backup)

You can save user data to USB memory. This operation is called "User Backup."
For the user backup procedure, refer to "Saving Data to USB Memory (User Backup)" (p. 144).

## Restoring Backed-Up Data (User Restore)

User data that was backed-up to USB memory can be restored back into the JUNO-STAGE. This operation is called "User Restore." For the user restore procedure, refer to "Restoring Saved Data from USB Memory Back into the JUNO-STAGE (User Restore)" (p. 144).

## Returning to the Factory Settings (Factory Reset)

You can return all of the JUNO-STAGE's settings to the state they were in when the instrument was shipped from the factory. This operation is called "Factory Reset."

## NOTI

If the JUNO-STAGE's internal memory contains important data that you've created, be aware that all of this user data will be lost when you execute the factory reset operation. If you want to keep this data, save it to USB memory before you continue.

1. In the UTILITY MENU screen, use the cursor buttons to select
"Factory Reset," and press [ENTER].
A confirmation message will appear.
2. To execute the factory reset, [7 (EXEC)].

If you decide to cancel, press [6 (CANCEL)].
When the factory reset has been completed, the following screen will appear.

## Gompleted. <br> Turn the Power off and on again.

3. Turn the power of the JUNO-STAGE off, then on again.

## Initializing USB Memory (USB Memory Format)

You can initialize (format) USB memory. This operation is called "USB Memory Format."

## NOTE

If the USB memory contains important data that you've created, be aware that all of this data will be lost when you execute this operation.

1. In the UTILITY MENU screen, use the cursor buttons to select "USB Memory Format," and press [ENTER].
A confirmation message will appear.

2. To exit the format operation, press [7 (EXEC)].

If you decide to cancel, press [6 (CANCEL)].

## Playing the Demo Songs

1. Press the [MENU].

The Top Menu window will appear.
2. Use [ $\Delta$ ] [ $\nabla$ ] to select "5. Demo Play," and press [ENTER].

The DEMO MENU screen will appear.

| LEMO MENU | ENTER for PIgy |
| :--- | :--- |
| 1.JS-GetUl/ | 3.EARth IIEM |
| 2.LAIJREIS |  |

## NOTE

You can't play the keyboard while the DEMO MENU screen or the DEMO PLAY screen are displayed.
3. Use the VALUE dial or the cursor buttons to select a demo song.
4. Press [ENTER] or [PLAY].

The DEMO PLAY screen will appear, and the selected demo song will begin playing.
If you press [7 (PLAY ALL)], the first through fourth songs will play, and playback will stop when the fourth song has ended.
While a song is playing, you can use [DEC] [INC], [ I
[ ] ] or [ ] [ ] to select the previous or next song.
5. To stop playback, press [EXIT] or [STOP].

Playback will stop, and you will return to the DEMO MENU screen.
Press [EXIT] to exit the DEMO MENU screen.

## MEMO

For details about Demo Song (such as title, etc.), refer to
"Listening to the Demo Songs" (p. 24).

## MEMO

If USB memory is not connected and [RHYTHM PATTERN] is off (the button is extinguished), you can access the DEMO MENU screen simply by pressing [PLAY].

## Appendices

## Troubleshooting

If the JUNO-STAGE does not function in the way you expect, first check the following points. If this does not resolve the problem, consult your dealer or a nearby Roland Service Station.

* If any sort of message is being displayed on the screen during an operation, refer to "Error Messages" (p. 162).


## Problems Concerning the Entire JUNO-STAGE

## Q The power does not turn on.

A Make sure that the JUNO-STAGE's AC adaptor is correctly connected to an AC outlet and to the rear panel power connector, and that the adaptor itself and AC power cable are connected correctly (p. 19).

## Issues Related to Sound

## Q There is no sound

A Check the following points.

- Is the power for connected amps and speakers turned on?
- Is the volume turned all the way down?
- Is the VOLUME knob turned all the way down?
- Have connections been made correctly?
- Can you hear sound through headphones?

If there is sound in the headphones, it is possible that the connection cables are broken, or that your amp/mixer has malfunctioned. Check your cables and amp/mixer system once again.

- If you do not hear sound when you play the keyboard, check whether the Local Switch is turned OFF.
Make sure that the Local Switch parameter is turned on (p. 150).
- Have all tones in the patch been turned off?

Turn on "Tone Switch" (p. 95, p. 120).

- The Part level settings may be too low.

Access the Level parameter, and check the level of each part (p. 140).

- Are the Effect settings correct?

Check the Effect settings ON or OFF, the Effect Balance or Level (p. 79).

- Is the Wave Expansion Board properly installed? When selecting the settings that stipulate the use of XP-A/B waves, Patches, or Rhythm Sets, check that the Wave Expansion Board is installed properly in the slot (p. 18).
- Has the volume been lowered by pedal operations or by MIDI messages (volume messages or expression messages) received from an external MIDI device?


## Q A specific Part does not sound.

A Check the following points.

- Has the volume level of the part been lowered? Adjust the Level parameter to raise the volume of the part that is not heard (p. 140).
- Is the part being muted? Set the Mute parameter to "OFF" (p. 139).
- Could the keyboard switch be off?

Turn the keyboard switch on (p. 134).

## Q Specific pitch ranges do not sound.

A Has a restricted range of notes been set? If a specific range of notes does not sound, check the Key Range settings for the Patch Tone, the Performance Part.

- Tone Key Range

Key Range Lower/Key Range Upper parameter (p. 102)

- Part Key Range

PART VIEW K.L/K.U parameter (p. 142)

## Q The sound is distorted.

A Check the following points.

- Is an effect which distorts the sound being applied? If the sound for a specific patch or part is distorted, lower the volume level on that part.
- If all sounds are distorted, use the VOLUME knob to lower the volume level.
- Could the Output Gain be excessively high? In "System Menu," check the "Sound" parameter of "GENERAL" (p. 146).


## Q Pitch is incorrect.

A Check the following points.

- Is the tuning of the JUNO-STAGE incorrect? Check the Master Tune parameter setting (p. 146).
- Has the pitch been changed by pedal operations or by Pitch Bend messages received from an external MIDI device?
- Have the Coarse or Fine parameters been set for specific Parts? Check the Coarse parameter and Fine parameter settings (p. 141).


## Q The sound is interrupted.

A Sounds will be interrupted if more than 128 voices are used simultaneously

- Reduce the number of Tones that you are using.
- Increase the Voice Reserve setting for parts that must not drop out (p. 142).

Q When I play the keyboard, notes do not stop.
A Is the pedal polarity of the Hold Pedal reversed? Check the Hold Pedal Polarity parameter setting (p. 147).

Q The sound cuts off when I switch Patches in Patch mode.
A Although you can apply a wide variety of multi-effects with the JUNO-STAGE's multi-effects, switching the Patch also switches the type of multi-effects used.
In such instances, discrepancies between the sound being produced and the multi-effects type can arise, which may result in sounds being different than intended, so sounds produced when Patches are switched may be muted when factory settings are in effect. In certain situations, such as when not using multi-effects that have a great influence on the sound, remembering to set Patch Remain parameter (p. 146) to "ON" allows you to switch Patches without sounds being muted.

Q When switching Patches in Patch mode, the volume and other parameters set with Control Changes end up being reset.
A Set Patch Remain parameter (p. 146) to "ON." Even once they have switched Patches, Control Change messages that have been received are carried forward, so even when switching a Patch whose level is turned all the way down by a Control Change volume message, the level remains unchanged.

Q If the Tone Delay time value is set to the note, then does the delay time not change beyond a fixed length when the tempo is slowed down?
A There is a maximum permissible value for the Tone Delay Time parameter (p. 111). So, if the time setting is specified in terms of a note value, and the tempo is slowed down, this maximum permissible value will be reached, and it cannot be increased further. The upper time limit for each is the maximum value that can be set other than the numerical value for the beat.

Q Even when I set the Pan for a Patch completely to one side, sound still comes from the other channel.
A The JUNO-STAGE's internal effects are in stereo, so if you have effects applied to a Patch, even if the Pan is set all the way to one side, you will still be able to hear sounds of the effect component from the other channel.

Q Sometimes, when playing legato, the pitch won't rise.
A When the Legato Switch parameter (p. 101) is "ON," and the Legato Retrigger parameter (p. 101) is "OFF," and you hold down keys in the high register to play legato, the upper pitch limit of the wave may be exceeded, so that the pitch does not rise as far as you expect, but will stop rising at a certain point. Additionally, if differing upper pitch limits are used for the waves of a Patch that uses multiple tones, it may stop being heard in MONO. When making large pitch changes, set the Legato Retrigger parameter to "ON."

Q The notes sound strange in the upper registers of the keyboard.
A Sometimes when playing the keys in the upper part of the JUNOSTAGE's keyboard, the sound may stop, or the pitch may stop rising; or with certain keys, there may be intermittent noise. This occurs mainly when the JUNO-STAGE's upper pitch limit is exceeded, so this issue doesn't arise in the ranges normally used. But, in any case, it does not indicate a malfunction.

Q Although the same Patch is selected, it sounds different when I listen to it in the Performance.
A In Performance mode, the parameters of each part of the performance can apply further modification to parameters such as pan, octave, and filter, relative to the settings specified by the patch. Thus, Patches in a Performance may sound different than they do when heard in Patch mode.
Additionally, although a Patch may comprise tones created with the use of the multi-effects, the multi-effects used in the Performance may differ from the multi-effects selected by the Patch. Check the multi-effect settings of the performance. Also do the same for the Chorus and Reverb settings.

## Issues Related to Effects

Q Effects not applied.
A Check the following points.

- Could the effect switch be off? In the EFFECT SWITCH window, check the on/off status of each effect (p. 79).
- Are the various effect settings correct? (p. 80, p. 82)
- If the send level of each effect is set to 0 , the effect will not be applied. Check the settings.
- Even with send levels to each effect set at 0, effects are not applied if the Multi-effects Output Level, the Chorus Level, or the Reverb Level is set to 0 . Check each setting.

Q The Modulation or other controller is always on.
A Check the Matrix Controller settings (p. 110). The JUNO-STAGE allows you to use the Matrix Control to control Patches in real time. The Matrix Control functions as the control source for the Control Change and other MIDI messages received by the JUNO-STAGE, and makes changes to the various Patch parameters based on these messages.
Depending on these settings, the JUNO-STAGE may be responding to MIDI messages sent from external MIDI devices, and may result the Patches sounding different than intended.

Q Raising the chorus or reverb send level for each part of a performance still does not cause the effect to be applied sufficiently.
A Although you can make Send level settings to the Chorus and Reverb for each individual Part in a Performance, these values only set the upper limit of the Chorus and Reverb Send levels for the Patch used. Accordingly, even when the value is set to the maximum of 127 , if the Send level is lowered in the Patch being used, there will be no effect. In addition, different Patch Chorus and Reverb Send level settings can be used according to whether or not the multi-effects are used.

Q Using the Matrix Control or other such means to control the LFO results in noise when the Pan is changed suddenly.
A Lower the change in speed (LFO Rate). Due to the specialized processing used for the Pan, which alters the volume level in each of the left and right sides, sudden Pan movements causing rapid changes in these levels creates large changes in volume, and noise from this may be audible as a result.

Q Multi-effect 43: DELAY or other delay time value is set to the note, and then the tempo is slowed down, does the delay time not change beyond a fixed length?
A Such Delay time settings have an upper limit, so if the upper limit of a value set to the note is exceeded when the tempo is retarded, that upper value cannot rise any further. The upper time limit for each is the maximum value that can be set other than the numerical value for the beat.

## Issues Related to Saving Data

## Q The Performance sounds different than when it was

 written.A If you have modified the settings of a patch used by a performance, or if the temporary patch of the performance has been modified by an external MIDI device, these patches must also be saved.
If patches used by a performance have been edited when you write that performance, the JUNO-STAGE will display a message asking whether you want to discard these patches. In such cases, first save the patch ( $p$. 97) or rhythm set (p. 123), and then save the performance (p. 133) again.

## Q Patches sound different than when written.

A The write operation cannot be used to save Patches as changed in Patch mode using Control Change messages from an external MIDI device.

Q The Arpeggio and D Beam controller settings in the Performance are different than those for the Patch.
A Since the JUNO-STAGE stores arpeggio and D Beam controller settings for each performance, it will operate according to the arpeggio and D Beam controller settings that were specified for each performance.

## Issues Related to Songs

Q Playlists are not shown
A This may be due to the following reasons.

- Playlists may not be shown if you directly add/delete/modify the song data in the PLAYIIST folder without using Playlist Editor.
- For some reason the USB memory is not recognized.
- It is possible that the USB memory was not formatted correctly. The JUNO-STAGE can use USB memory that has been formatted as FAT. If your USB memory was formatted using any other method, please re-format it using FAT.


## Q Songs are not shown

A This may be due to the following reasons.

- Are the songs placed in the root directory?
- Songs may not be shown if you directly add/delete/modify the song data in the PLAYLIST folder without using Playlist Editor.
- It is possible that the USB memory was not formatted correctly. The JUNO-STAGE can use USB memory that has been formatted as FAT. If your USB memory was formatted using any other method, please re-format it using FAT.


## Q Songs won't play

A This may be due to the following reasons.

- Could a "?" mark be shown by the song in the play list? Songs (audio files) whose sample rate is other than 44.1 kHz cannot be played by the JUNO-STAGE.
- The file type of the song is not one of the file types that the JUNO-STAGE can play.
- It may be that the song data is damaged.
- Songs cannot be played if you directly add/delete/modify the song data in the PLAYLIST folder without using Playlist Editor.


## Q Can't hear the playback sound

A Check the following point.

- VOLUME knob setting
- Value for "PLAYER LEVEL" that appears when you press LEVEL
[ $\boldsymbol{V}$ ] [ $\boldsymbol{\Delta}$ ] (p. 69).
- SONG LEVEL EDIT screen settings (p. 71)
- Minus-one setting (p. 73, p. 154)
- Could the system setting "Song/Click Output Mode" be set to "SONG" (p. 151)?
If this is set to "SONG," the song will not be output from the OUTPUT $L / R$ jacks. If you want the song to be output from the OUTPUT L/R jacks, set this to "CLICK."


## Issues Related to MIDI and External Devices

Q No Sound from connected MIDI device.
A Check the following points.

- Is the instrument set to transmit MIDI messages?
- In Patch Mode Kbd Patch $\mathrm{Rx} / \mathrm{Tx}_{x}$ Channel parameter (p. 150)
- In Performance Mode

KBD switch (p. 134).
MIDI messages are not transmitted for parts whose keyboard switch is turned off.

Q Exclusive messages are not received.
A Check the following points.

- Is the instrument set to receive Exclusive messages? Set the Receive Exclusive parameter to "ON" (p. 151).
- Does the Device ID number of the transmitting device match the Device ID number of the JUNO-STAGE? Check the Device ID parameter (p. 150).

Q The JUNO-STAGE's rhythm set does not sound when an external sequencer or MIDI keyboard is connected to the MIDI IN connector.
A Check to make sure that the MIDI Transmit channel of the external MIDI device and the JUNO-STAGE's MIDI Receive channel are matched. The MIDI Receive channel used by the JUNO-STAGE in Patch mode is set with the Kbd Patch RX/TX Channel parameter. Rhythm Set performance data is generally received on MIDI Channel 10.

Q When using sequencing software, operating the knobs or other controls does not affect the sound.
A For some sequencing programs, System Exclusive messages are not transmitted by the Thru function. If you are using such sequencer software and want to record system exclusive messages, turn on the following parameters.

- In Patch Mode

Local Switch parameter (p. 150).

- In Performance Mode

KBD switch (p. 134).
Q When the Bend Range for a Patch is increased (48), the pitch does not rise sufficiently, even when a MIDI Pitch Bend message is received.
A While Patch Bend Ranges can be set anywhere between 0 and 48 , when certain Waves in which the pitch is raised (in the + direction) are used, the pitch may stop rising at a fixed point, rather than continuing to go up. Although a value of 12 is ensured for the upper limit of raised pitches, use caution when setting the Bend Range above this figure.

Q Mic sound is not output/is too weak.
A Check the following points.

- Is the mic cable connected correctly? Check the connection.
- Could you have connected a condenser mic? If you're using a condenser mic, you'll need to provide phantom power.
Turn Phantom Power "ON" (p. 154).
- The mic level may have been lowered. Could the top panel MIC VOLUME knob be turned down?


## Q The volume level of the instrument connected to JUNO-

 STAGE is too low.A Could you be using a connection cable that contains a resistor? Use a connection cable that does not contain a resistor.

## Issues related to USB memory

Q USB memory is not detected. The files are not shown.
A Check the format of your USB memory. The JUNO-STAGE can use USB memory that has been formatted as FAT. If your USB memory was formatted using any other method, please re-format it using FAT.

## Q Can't back up to USB memory

A Check the following points.

- Could the USB memory be write protected?
- Is there sufficient free space on the USB memory?


## Error Messages

If an incorrect operation is performed, or if processing could not be performed as you specified, an error message will appear.
Refer to the explanation for the error message that appears, and take the appropriate action.

| Message | Meaning | Action |
| :--- | :--- | :--- |
|  | USB memory is not connected. | Connect USB memory. |
| Read Error! | Failed to load data from USB memory. | Make sure that USB memory is correctly connected. |
|  | It may be that the file is damaged. | Do not use this file. |
|  | This file cannot be loaded since its format is <br> incorrect. | Do not use this file. |
| Write Error! | Failed to write data to USB memory. | Make sure that USB memory is correctly connected. |
|  | Data cannot be written because the USB memory <br> has no more free space. | Delete unneeded files from the USB memory. <br> Alternatively, use a different USB memory device, one that <br> has more free space available. |
|  | The file or the USB memory itself is write protected. | Make sure that the file or the USB memory is not write <br> protected. |
| Incorrect File! | This is a file that the JUNO-STAGE is unable to <br> play. | Do not use this file. |
|  | This song has not been transferred from Playlist <br> Editor to USB memory. | Select the song for transfer from Playlist Editor, and <br> transfer the data once again to USB memory. |
| System Memory Damaged! | It is possible that the contents of system memory <br> have been damaged. | Please execute a Factory Reset. <br> If this does not resolve the problem, contact your dealer or <br> a nearby Roland service center. |
|  | The file was not found in USB memory. | Save the file once again in USB memory. |
| MIDI Buffer Full! | An unusually large amount of MIDI data was <br> received, and could not be processed. | Reduce the amount of MIDI messages that are being <br> transmitted. |
| MIDI Offline! | The MIDI IN connection was broken. | Check that there is no problem with the MIDI cable <br> connected to the JUNO-STAGE's MIDI IN, and that the <br> MIDl cable was not disconnected. |
| Now Playing! | The Song Player is currently playing. | Either stop playback, or wait until playback has ended. |

## Effects List

## Multi-Effects Parameters (MFX1-3, MFX)

The multi-effects feature 79 different kinds of effects. Some of the effects consist of two or more different effects connected in series.
Parameters marked with a sharp "\#" can be controlled using a Multi-Effects Control (p. 84) or Matrix Control (p. 110).
(Two setting items will change simultaneously for "\#1" and "\#2").

| FILTER (10 types) |  |  |
| :---: | :---: | :---: |
| 01 | EQUALIZER | P. 165 |
| 02 | SPECTRUM | P. 165 |
| 03 | ISOLATOR | P. 165 |
| 04 | LOW BOOST | P. 165 |
| 05 | SUPER FILTER | P. 166 |
| 06 | STEP FILTER | P. 166 |
| 07 | ENHANCER | P. 166 |
| 08 | AUTO WAH | P. 167 |
| 09 | HUMANIZER | P. 167 |
| 10 | SPEAKER SIMULATOR | P. 167 |
| MODULATION (12 types) |  |  |
| 11 | PHASER | P. 168 |
| 12 | STEP PHASER | P. 168 |
| 13 | MULTI STAGE PHASER | P. 168 |
| 14 | INFINITE PHASER | P. 169 |
| 15 | RING MODULATOR | P. 169 |
| 16 | STEP RING MODULATOR | P. 169 |
| 17 | TREMOLO | P. 169 |
| 18 | AUTO PAN | P. 170 |
| 19 | STEP PAN | P. 170 |
| 20 | SLICER | P. 170 |
| 21 | ROTARY | P. 171 |
| 22 | VK ROTARY | P. 171 |
| CHORUS (12 types) |  |  |
| 23 | CHORUS | P. 171 |
| 24 | FLANGER | P. 172 |
| 25 | STEP FLANGER | P. 172 |
| 26 | HEXA-CHORUS | P. 172 |
| 27 | TREMOLO CHORUS | P. 173 |
| 28 | SPACE-D | P. 173 |
| 29 | 3D CHORUS | P. 173 |
| 30 | 3D FLANGER | P. 174 |
| 31 | 3D STEP FLANGER | P. 174 |
| 32 | 2BAND CHORUS | P. 174 |
| 33 | 2BAND FLANGER | P. 175 |
| 34 | 2BAND STEP FLNGR | P. 175 |
| DYNAMICS (8 types) |  |  |
| 35 | OVERDRIVE | P. 176 |
| 36 | DISTORTION | P. 176 |
| 37 | VS OVERDRIVE | P. 176 |
| 38 | VS DISTORTION | P. 176 |
| 39 | GUITAR AMP SIMULATOR | P. 176 |
| 40 | COMPRESSOR | P. 177 |
| 41 | LIMITER | P. 177 |
| 42 | GATE | P. 177 |


| DELAY (13 types) |  |  |
| :---: | :---: | :---: |
| 43 | DELAY | P. 178 |
| 44 | LONG DELAY | P. 178 |
| 45 | SERIAL DELAY | P. 179 |
| 46 | MODULATION DELAY | P. 179 |
| 47 | 3TAP PAN DELAY | P. 180 |
| 48 | 4TAP PAN DELAY | P. 180 |
| 49 | MULTI TAP DELAY | P. 180 |
| 50 | REVERSE DELAY | P. 181 |
| 51 | SHUFFLE DELAY | P. 181 |
| 52 | 3D DELAY | P. 182 |
| 53 | TIME CTRL DELAY | P. 182 |
| 54 | LONG TIME CTRL DELAY | P. 182 |
| 55 | TAPE ECHO | P. 183 |
| LO-FI (5 types) |  |  |
| 56 | LOFI NOISE | P. 183 |
| 57 | LOFI COMPRESS | P. 184 |
| 58 | LOFI RADIO | P. 184 |
| 59 | TELEPHONE | P. 184 |
| 60 | PHONOGRAPH | P. 184 |
| PITCH (3 types) |  |  |
| 61 | PITCH SHIFTER | P. 185 |
| 62 | 2VOICE PITCH SHIFTER | P. 185 |
| 63 | STEP PITCH SHIFTER | P. 185 |
| REVERB (2 types) |  |  |
| 64 | REVERB | P. 186 |
| 65 | GATED REVERB | P. 186 |
| COMBINATION (12 types) |  |  |
| 66 | OVERDRIVE $\rightarrow$ CHORUS | P. 186 |
| 67 | OVERDRIVE $\rightarrow$ FLANGER | P. 186 |
| 68 | OVERDRIVE $\rightarrow$ DELAY | P. 187 |
| 69 | DISTORTION $\rightarrow$ CHORUS | P. 187 |
| 70 | DISTORTION $\rightarrow$ FLANGER | P. 187 |
| 71 | DISTORTION $\rightarrow$ DELAY | P. 187 |
| 72 | ENHANCER $\rightarrow$ CHORUS | P. 187 |
| 73 | ENHANCER $\rightarrow$ FLANGER | P. 188 |
| 74 | ENHANCER $\rightarrow$ DELAY | P. 188 |
| 75 | CHORUS $\rightarrow$ DELAY | P. 188 |
| 76 | FLANGER $\rightarrow$ DELAY | P. 188 |
| 77 | CHORUS $\rightarrow$ FLANGER | P. 189 |
| PIANO (1 type) |  |  |
| 78 | SYMPATHETIC RESONANCE | P. 189 |
| VOCODER (1 type) |  |  |
| 79 | VOCODER | P. 189 |

## About Note

Some effect parameters (such as Rate or Delay Time) can be set in terms of a note value.
Such parameters have a num/note switch that lets you specify whether you will set the value as a numerical value or as a note value.
If you want to set Rate (Delay Time) as a numerical value, set the num/ note switch to " Hz " (" msec "). If you want to set it as a note value, set the num/note switch to "NOTE."


* If the Rate is specified as a note value, the modulation will be synchronized with the tempo when you play back SMF song data.


## note:

| ${ }_{\cdot}{ }_{3}$ | Sixty-fourth-note triplet | f | Sixty-fourth note | $\mathrm{A}_{3}$ | Thirty-second-note triplet |
| :---: | :---: | :---: | :---: | :---: | :---: |
| - | Thirty-second note | $\mathrm{A}_{3}$ | Sixteenth-note triplet | d | Dotted thirty-second note |
| d | Sixteenth note | $\mathrm{d}_{3}$ | Eighth-note triplet | d. | Dotted sixteenth note |
| d) | Eighth note | -3 | Quarter-note triplet | d. | Dotted eighth note |
| - | Quarter note | ${ }^{\text {d }}$ | Half-note triplet | - | Dotted quarter note |
| - | Half note | o3 | Whole-note triplet | 0. | Dotted half note |
| - | Whole note | 1013 | Double-note triplet | - | Dotted whole note |
| \|10\| | Double note |  |  |  |  |

## NOTE

If a parameter whose num/note switch is set to "NOTE" is specified as a destination for multi-effect control, you will not be able to use multi-effect control to control that parameter.

## NOTI

If you specify the delay time as a note value, slowing down the tempo will not change the delay time beyond a certain length. This is because there is an upper limit for the delay time; if the delay time is specified as a note value and you slow down the tempo until this upper limit is reached, the delay time cannot change any further. This upper limit is the maximum value that can be specified when setting the delay time as a numerical value.

## When Using 3D Effects

The following 3D effects utilize RSS (Roland Sound Space) technology to create a spaciousness that cannot be produced by delay, reverb, chorus, etc.
52: 3D DELAY
29: 3D CHORUS
30: 3D FLANGER

## 31: 3D STEP FLANGER

When using these effects, we recommend that you place your speakers as follows. Also, make sure that the speakers are at a sufficient distance from the walls on either side.


If the left and right speakers are too far apart, or if there is too much reverberation, the full 3D effect may not appear.
Each of these effects has an "Output Mode" parameter. If the sound from the OUTPUT jacks is to be heard through speakers, set this parameter to "SPEAKER." If the sound is to be heard through headphones, set it to "PHONES." This will ensure that the optimal 3D effect will be heard. If this parameter is not set correctly, the full 3D effect may not appear.

## About the STEP RESET function

06: STEP FILTER
16: STEP RING MOD
19: STEP PAN
20: SLICER
63: STEP PCH SHIFTER

The above five types contain a sixteen-step sequencer.
For these types, you can use a multi-effect control (p. 84) to reset the sequence to play from the first step.
To do this, set the multi-effect control Destination to "Step Reset."

For example if you are using the modulation lever to control the effect, you would make the following settings.
$\begin{array}{ll}\text { Source: } & \text { CCO 1: MODULATION } \\ \text { Destination: } & \text { Step Reset } \\ \text { Sens: } & +63\end{array}$

With these settings, the sequence will play back from the first step whenever you operate the modulation lever.

## 01: EQUALIZER

This is a four-band stereo equalizer (low, mid $\times 2$, high).


| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Low Freq | $200,400 \mathrm{~Hz}$ | Frequency of the low range |
| Low Gain \# | $-15-+15 \mathrm{~dB}$ | Gain of the low range |
| Mid1 Freq | $200-8000 \mathrm{~Hz}$ | Frequency of the middle range 1 |
| Mid1 Gain | $-15-+15 \mathrm{~dB}$ | Gain of the middle range 1 |
| Mid1 Q | $0.5,1.0,2.0,4.0,8.0$ | Width of the middle range 1 <br> Set a higher value for Q to <br> narrow the range to be <br> affected. |
| Mid2 Freq | $200-8000 \mathrm{~Hz}$ | Frequency of the middle range 2 |
| Mid2 Gain | $-15-+15 \mathrm{~dB}$ | Gain of the middle range 2 |
| Mid2 Q | $0.5,1.0,2.0,4.0,8.0$ | Width of the middle range 2 <br> Set a higher value for Q to <br> narrow the range to be <br> affected. |
| High Freq | $2000,4000,8000 \mathrm{~Hz}$ | Frequency of the high range |
| High Gain \# | $-15-+15 \mathrm{~dB}$ | Gain of the high range |
| Level \# | $0-127$ | Output Level |

## 02: SPECTRUM

This is a stereo spectrum. Spectrum is a type of filter which modifies the timbre by boosting or cutting the level at specific frequencies.


| Parameter | Value | Explanation |
| :---: | :---: | :---: |
| Bandl (250Hz) | -15-+15 dB | Gain of each frequency band |
| Band2 ( 500 Hz ) |  |  |
| Band3 (1000Hz) |  |  |
| Band4 (1250Hz) |  |  |
| Band5 (2000Hz) |  |  |
| Band6 (3150Hz) |  |  |
| Band7 (4000Hz) |  |  |
| Band8 (8000Hz) |  |  |
| Q | $\begin{aligned} & 0.5,1.0,2.0,4.0, \\ & 8.0 \end{aligned}$ | Simultaneously adjusts the width of the adjusted ranges for all the frequency bands. |
| Level \# | 0-127 | Output Level |

## 03: ISOLATOR

This is an equalizer which cuts the volume greatly, allowing you to add a special effect to the sound by cutting the volume in varying ranges.


| Parameter | Value | Explanation |
| :---: | :---: | :---: |
| Boost/ Cut Low \# | -60-+4 dB | These boost and cut each of the High, Middle, and Low frequency ranges. At - 60 dB , the sound becomes inaudible. 0 dB is equivalent to the input level of the sound. |
| Boost/ Cut Mid \# |  |  |
| Boost/ Cut High \# |  |  |
| Anti Phase Low Sw | OFF, ON | Turns the Anti-Phase function on and off for the Low frequency ranges. <br> When turned on, the counter-channel of stereo sound is inverted and added to the signal. |
| Anti Phase Low Level | 0-127 | Adjusts the level settings for the Low frequency ranges. <br> Adjusting this level for certain frequencies allows you to lend emphasis to specific parts. (This is effective only for stereo source.) |
| Anti Phase Mid Sw | OFF, ON | Settings of the Anti-Phase function for the Middle frequency ranges <br> The parameters are the same as for the Low frequency ranges. |
| Anti Phase Mid Level | 0-127 |  |
| Low Boost Sw | OFF, ON | Turns Low Booster on/off. This emphasizes the bottom to create a heavy bass sound. |
| Low Boost Level | 0-127 | Increasing this value gives you a heavier low end. <br> * Depending on the Isolator and filter settings this effect may be hard to distinguish. |
| Level | 0-127 | Output Level |

## 04: LOW BOOST

Boosts the volume of the lower range, creating powerful lows.


| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Boost <br> Frequency \# | $50-125 \mathrm{~Hz}$ | Center frequency at which the lower <br> range will be boosted |
| Boost Gain \# | $0-+12 \mathrm{~dB}$ | Amount by which the lower range will <br> be boosted |
| Boost Width | WIDE, MID, <br> NARROW | Width of the lower range that will be <br> boosted |
| Low Gain | $-15-+15 \mathrm{~dB}$ | Gain of the low frequency range |
| High Gain | $-15-+15 \mathrm{~dB}$ | Gain of the high frequency range |
| Level | $0-127$ | Output level |

Effects List

## 05: SUPER FILTER

This is a filter with an extremely sharp slope. The cutoff frequency can be varied cyclically.


| Parameter | Value | Explanation |
| :---: | :---: | :---: |
| Filter Type | LPF, BPF, HPF, NOTCH | Filter type <br> Frequency range that will pass through each filter <br> LPF: frequencies below the cutoff BPF: frequencies in the region of the cutoff HPF: frequencies above the cutoff NOTCH: frequencies other than the region of the cutoff |
| Filter Slope | -12, -24, -36 dB | Amount of attenuation per octave <br> -36 dB : extremely steep <br> -24 dB : steep <br> -12 dB : gentle |
| Filter Cutoff \# | 0-127 | Cutoff frequency of the filter Increasing this value will raise the cutoff frequency. |
| Filter Resonance \# | 0-127 | Filter resonance level Increasing this value will emphasize the region near the cutoff frequency. |
| Filter Gain | 0-+12 dB | Amount of boost for the filter output |
| Modulation Sw | OFF,ON | On/off switch for cyclic change |
| Modulation Wave | TRI, SQR, SIN, SAW1, SAW2 | How the cutoff frequency will be modulated <br> TRI: triangle wave <br> SQR: square wave <br> SIN: sine wave <br> SAW1: sawtooth wave (upward) <br> SAW2: sawtooth wave (downward) |
|  |  |  |
| Rate \# | $\begin{aligned} & 0.05-10.00 \mathrm{~Hz}, \\ & \text { note } \end{aligned}$ | Rate of modulation |
| Depth | 0-127 | Depth of modulation |
| Attack \# | 0-127 | Speed at which the cutoff frequency will change <br> This is effective if Modulation Wave is SQR, SAW1, or SAW2. |
| Level | 0-127 | Output level |

## 06: STEP FILTER

This is a filter whose cutoff frequency can be modulated in steps. You can specify the pattern by which the cutoff frequency will change.


| Parameter | Value | Explanation |
| :---: | :---: | :---: |
| Step 01-16 | 0-127 | Cutoff frequency at each step |
| Rate \# | $\begin{aligned} & 0.05-10.00 \mathrm{~Hz}, \\ & \text { note } \end{aligned}$ | Rate of modulation |
| Attack \# | 0-127 | Speed at which the cutoff frequency changes between steps |
| Filter Type | LPF, BPF, HPF, NOTCH | Filter type <br> Frequency range that will pass through each filter <br> LPF: frequencies below the cutoff BPF: frequencies in the region of the cutoff HPF: frequencies above the cutoff NOTCH: frequencies other than the region of the cutoff |
| Filter Slope | -12, -24, -36 dB | Amount of attenuation per octave <br> -12 dB : gentle <br> -24 dB : steep <br> -36 dB : extremely steep |
| Filter <br> Resonance \# | 0-127 | Filter resonance level Increasing this value will emphasize the region near the cutoff frequency. |
| Filter Gain | 0-+12 dB | Amount of boost for the filter output |
| Level | 0-127 | Output level |

## (MEMO)

You can use multi-effect control to make the step sequence play again from the beginning (p. 164).

## 07: ENHANCER

Controls the overtone structure of the high frequencies, adding sparkle and tightness to the sound.


| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Sens \# | $0-127$ | Sensitivity of the enhancer |
| Mix \# | $0-127$ | Level of the overtones <br> generated by the enhancer |
| Low Gain | $-15-+15 \mathrm{~dB}$ | Gain of the low range |
| High Gain | $-15-+15 \mathrm{~dB}$ | Gain of the high range |
| Level | $0-127$ | Output Level |

## 08: AUTO WAH

Cyclically controls a filter to create cyclic change in timbre.


| Parameter | Value | Explanation |
| :---: | :---: | :---: |
| Filter Type | LPF, BPF | Type of filter <br> LPF: The wah effect will be applied over a wide frequency range. <br> BPF: The wah effect will be applied over a narrow frequency range. |
| Manual \# | 0-127 | Adjusts the center frequency at which the effect is applied. |
| Peak | 0-127 | Adjusts the amount of the wah effect that will occur in the range of the center frequency. <br> Set a higher value for $Q$ to narrow the range to be affected. |
| Sens \# | 0-127 | Adjusts the sensitivity with which the filter is controlled. |
| Polarity | UP, DOWN | Sets the direction in which the frequency will change when the auto-wah filter is modulated. <br> UP: The filter will change toward a higher frequency. <br> DOWN: The filter will change toward a lower frequency. |
| Rate \# | $\begin{aligned} & 0.05-10.00 \mathrm{~Hz}, \\ & \text { note } \end{aligned}$ | Frequency of modulation |
| Depth \# | 0-127 | Depth of modulation |
| Phase \# | 0-180 deg | Adjusts the degree of phase shift of the left and right sounds when the wah effect is applied. |
| Low Gain | -15-+15 dB | Gain of the low range |
| High Gain | -15-+15 dB | Gain of the high range |
| Level | 0-127 | Output Level |

## 09: HUMANIZER

Adds a vowel character to the sound, making it similar to a human voice.


| Parameter | Value | Explanation |
| :---: | :---: | :---: |
| Drive Sw | OFF, ON | Turns Drive on/off. |
| Drive \# | 0-127 | Degree of distortion Also changes the volume. |
| Vowel1 | a, e, i, o, u | Selects the vowel. |
| Vowel2 | a, e, i, o, u |  |
| Rate \# | $\begin{aligned} & 0.05-10.00 \mathrm{~Hz}, \\ & \text { note } \end{aligned}$ | Frequency at which the two vowels switch |
| Depth \# | 0-127 | Effect depth |
| Input Sync Sw | OFF, ON | LFO reset on/off <br> Determines whether the LFO for switching the vowels is reset by the input signal (ON) or not (OFF). |
| Input Sync Threshold | 0-127 | Volume level at which reset is applied |


| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Manual \# | $0-100$ | Point at which Vowel $1 / 2$ switch <br> 49 or less: Vowel 1 will have a longer <br> duration. <br> 50. Vowel 1 and 2 will be of equal <br> duration. <br> 51 or more: Vowel 2 will have a longer <br> duration. |
| Low Gain | $-15-+15 \mathrm{~dB}$ | Gain of the low frequency range |
| High Gain | $-15-+15 \mathrm{~dB}$ | Gain of the high frequency range |
| Pan \# | L64-63R | Stereo location of the output |
| Level | $0-127$ | Output level |

## 10: SPEAKER SIMULATOR

Simulates the speaker type and mic settings used to record the speaker sound.


| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Speaker Type | (See the table right.) | Type of speaker |
| Mic Setting | $1,2,3$ | Adjusts the location of the mic <br> that is recording the sound of the <br> speaker. <br> This can be adjusted in three <br> steps, with the mic becoming <br> more distant in the order of 1, <br> 2, and 3. |
| Mic Level \# | $0-127$ | Volume of the microphone <br> Direct Level \# <br> Level \#$\quad 0-127$ |

Specifications of each Speaker Type
The speaker column indicates the diameter of each speaker unit (in inches) and the number of units.

| Type | Cabinet | Speaker | Mic |
| :--- | :--- | :--- | :--- |
| SMALL 1 | small open-back enclosure | 10 | dynamic |
| SMALL 2 | small open-back enclosure | 10 | dynamic |
| MIDDLE | open back enclosure | $12 \times 1$ | dynamic |
| JC-120 | open back enclosure | $12 \times 2$ | dynamic |
| BUILT-IN 1 | open back enclosure | $12 \times 2$ | dynamic |
| BUILT-IN 2 | open back enclosure | $12 \times 2$ | condenser |
| BUILT-IN 3 | open back enclosure | $12 \times 2$ | condenser |
| BUILT-IN 4 | open back enclosure | $12 \times 2$ | condenser |
| BUILT-IN 5 | open back enclosure | $12 \times 2$ | condenser |
| BG STACK 1 | sealed enclosure | $12 \times 2$ | condenser |
| BG STACK 2 | large sealed enclosure | $12 \times 2$ | condenser |
| MS STACK 1 | large sealed enclosure | $12 \times 4$ | condenser |
| MS STACK 2 | large sealed enclosure | $12 \times 4$ | condenser |
| METAL STACK | large double stack | $12 \times 4$ | condenser |
| 2-STACK | large double stack | $12 \times 4$ | condenser |
| 3-STACK | large triple stack | $12 \times 4$ | condenser |

Effects List

## 11: PHASER

A phase-shifted sound is added to the original sound and modulated.


| Parameter | Value | Explanation |
| :---: | :---: | :---: |
| Mode | 4-STAGE, 8-STAGE, 12-STAGE | Number of stages in the phaser |
| Manual \# | 0-127 | Adjusts the basic frequency from which the sound will be modulated. |
| Rate \# | $0.05-10.00 \mathrm{~Hz}$, note | Frequency of modulation |
| Depth | 0-127 | Depth of modulation |
| Polarity | INVERSE, SYNCHRO | Selects whether the left and right phase of the modulation will be the same or the opposite. <br> INVERSE: The left and right phase will be opposite. When using a mono source, this spreads the sound. SYNCHRO: The left and right phase will be the same. Select this when inputting a stereo source. |
| Resonance \# | 0-127 | Amount of feedback |
| Cross Feedback | -98-+98\% | Adjusts the proportion of the phaser sound that is fed back into the effect. Negative $(-)$ settings will invert the phase. |
| Mix \# | 0-127 | Level of the phase-shifted sound |
| Low Gain | -15-+15 dB | Gain of the low range |
| High Gain | -15-+15 dB | Gain of the high range |
| Level | 0-127 | Output Level |

## 12: STEP PHASER

The phaser effect will be varied gradually.


| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Mode | 4-STAGE, 8-STAGE, <br> 12-STAGE | Number of stages in the phaser |
| Manual \# | $0-127$ | Adjusts the basic frequency from <br> which the sound will be <br> modulated. |
| Rate \# | $0.05-10.00 \mathrm{~Hz}$, note | Frequency of modulation |
| Depth | $0-127$ | Depth of modulation |


| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Polarity | INVERSE, <br> SYNCHRO <br> phase of the modulation will be <br> the same or the opposite. <br> INVERSE: The left and right <br> phase will be opposite. When <br> using a mono source, this <br> spreads the sound. <br> SYNCHRO: The left and right <br> phase will be the same. Select <br> this when inputting a stereo <br> source. |  |
| Resonance \# | $0-127$ | Amount of feedback |
| Cross |  |  |
| Feedback | $-98-+98 \%$ | Adjusts the proportion of the <br> phaser sound that is fed back <br> into the effect. Negative (-) <br> settings will invert the phase. |
| Step Rate \# | $0.10-20.00 \mathrm{~Hz}$, note | Rate of the step-wise change in <br> the phaser effect |
| Mix \# | $0-127$ | Level of the phase-shifted sound |
| Low Gain | $-15-+15 \mathrm{~dB}$ | Gain of the low range |
| High Gain | $-15-+15 \mathrm{~dB}$ | Gain of the high range |
| Level | $0-127$ | Output Level |

## 13: MULTI STAGE PHASER

Extremely high settings of the phase difference produce a deep phaser effect.


| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Mode | 4-STAGE, 8-STAGE, <br> 12-STAGE, 16-STAGE, <br> 20-STAGE, 24-STAGE | Number of phaser stages |
| Manual \# | $0-127$ | Adjusts the basic frequency <br> from which the sound will be <br> modulated. |
| Rate \# | $0.05-10.00 \mathrm{~Hz}$, note | Frequency of modulation |
| Depth | $0-127$ | Depth of modulation |
| Resonance \# | $0-127$ | Amount of feedback |
| Mix \# | $0-127$ | Level of the phase-shifted sound |
| Pan \# | L64-63R | Stereo location of the output <br> sound |
| Low Gain | $-15-+15 \mathrm{~dB}$ | Gain of the low range |
| High Gain | $-15-+15 \mathrm{~dB}$ | Gain of the high range |
| Level | $0-127$ | Output Level |

## 14: INFINITE PHASER

A phaser that continues raising/lowering the frequency at which the sound is modulated.


| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Mode | $1,2,3,4$ | Higher values will produce a <br> deeper phaser effect. |
| Speed \# | $-100-+100$ | Speed at which to raise or lower <br> the frequency at which the sound <br> is modulated <br> (+: upward / -: downward) |
| Resonance \# | $0-127$ | Amount of feedback |
| Mix \# | $0-127$ | Volume of the phase-shifted <br> sound |
| Pan \# | L64-63R | Panning of the output sound |
| Low Gain | $-15-+15 \mathrm{~dB}$ | Amount of boost/cut for the <br> low-frequency range |
| High Gain | $-15-+15 \mathrm{~dB}$ | Amount of boost/cut for the <br> high-frequency range |
| Level | $0-127$ | Output volume |

## 15: RING MODULATOR

This is an effect that applies amplitude modulation (AM) to the input signal, producing bell-like sounds. You can also change the modulation frequency in response to changes in the volume of the sound sent into the effect.


| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Frequency \# | $0-127$ | Adjusts the frequency at which modulation is <br> applied. |
| Sens \# | $0-127$ | Adjusts the amount of frequency modulation <br> applied. |
| Polarity | UP, DOWN | Determines whether the frequency <br> modulation moves towards higher <br> frequencies (UP) or lower frequencies <br> (DOWN). |
| Low Gain | $-15-+15 \mathrm{~dB}$ | Gain of the low frequency range |
| High Gain | $-15-+15 \mathrm{~dB}$ | Gain of the high frequency range |
| Balance \# | D100:0W- <br> DO:100W | Volume balance between the direct sound <br> (D) and the effect sound (W) |
| Level | $0-127$ | Output level |

## 16: STEP RING MODULATOR

This is a ring modulator that uses a 16 -step sequence to vary the frequency at which modulation is applied.


| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Step 01-16 | $0-127$ | Frequency of ring modulation at <br> each step |
| Rate \# | $0.05-10.00 \mathrm{~Hz}$, note | Rate at which the 16-step sequence <br> will cycle |
| Attack \# | $0-127$ | Speed at which the modulation <br> frequency changes between steps |
| Low Gain | $-15-+15 \mathrm{~dB}$ | Amount of boost/cut for the <br> low-frequency range |
| High Gain | $-15-+15 \mathrm{~dB}$ | Amount of boost/cut for the <br> high-frequency range |
| Balance \# | D100:0W-D0:100W | Volume balance of the original <br> sound (D) and effect sound (W) |
| Level | $0-127$ | Output volume |

## MEMO

You can use multi-effect control to make the step sequence play again from the beginning (p. 164).

## 17: TREMOLO

Cyclically modulates the volume to add tremolo effect to the sound.


| Parameter | Value | Explanation |
| :---: | :---: | :---: |
| Mod Wave | TRI, SQR, SIN, SAWI, SAW2 | Modulation Wave <br> TRI: triangle wave SQR: square wave SIN: sine wave SAWI/2: sawtooth wave |
|  |  |  |
| Rate \# | $0.05-10.00 \mathrm{~Hz}$, note | Frequency of the change |
| Depth \# | 0-127 | Depth to which the effect is applied |
| Low Gain | $-15-+15 \mathrm{~dB}$ | Gain of the low range |
| High Gain | -15-+15 dB | Gain of the high range |
| Level | 0-127 | Output Level |

## 18: AUTO PAN

Cyclically modulates the stereo location of the sound.


| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Mod Wave | TRI, SQR, SIN, SAW1, <br> SAW2 | Modulation Wave <br> TRI: triangle wave <br> SQR: square wave <br> SIN: sine wave <br> SAW1/2: sawtooth wave |
|  | RAW1 |  |

## 19: STEP PAN

This uses a 16 -step sequence to vary the panning of the sound.


MEMO
You can use multi-effect control to make the step sequence play again from the beginning (p. 164).

## 20: SLICER

By applying successive cuts to the sound, this effect turns a conventional sound into a sound that appears to be played as a backing phrase. This is especially effective when applied to sustaintype sounds.


| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Step 01-16 | $0-127$ | Level at each step |
| Rate \# | $0.05-10.00$ <br> Hz, note | Rate at which the 16-step sequence will <br> cycle |
| Attack \# | $0-127$ | Speed at which the level changes between <br> steps |
| Input Sync Sw | OFF, ON | Specifies whether an input note will cause <br> the sequence to resume from the first step of <br> the sequence (ON) or not (OFF) |
| Input Sync <br> Threshold | $0-127$ | Volume at which an input note will be <br> detected |
| Mode | LEGATO, <br> SLASH | Sets the manner in which the volume <br> changes as one step progresses to the next. <br> LEGATO: The change in volume from one <br> step's level to the next remains unaltered. <br> If the level of a following step is the same <br> as the one preceding it, there is no <br> change in volume. <br> SLASH: The level is momentarily set to 0 <br> before progressing to the level of the next <br> step. This change in volume occurs even <br> if the level of the following step is the <br> same as the preceding step. |
| Shuffle \# | $0-127$ | Timing of volume changes in levels for <br> even-numbered steps (step 2, step 4, <br> step 6...). <br> The higher the value, the later the beat <br> progresses. |
| Level | $0-127$ | Output level |

## (MEMO)

You can use multi-effect control to make the step sequence play again from the beginning (p. 164).

## 21: ROTARY

The Rotary effect simulates the sound of the rotary speakers often used with the electric organs of the past. Since the movement of the high range and low range rotors can be set independently, the unique type of modulation characteristic of these speakers can be simulated quite closely. This effect is most suitable for electric organ Patches.


| Parameter | Value | Explanation |
| :---: | :---: | :---: |
| Speed \# | SLOW, FAST | Simultaneously switch the rotational speed of the low frequency rotor and high frequency rotor. <br> SLOW: Slows down the rotation to the Slow Rate. <br> FAST: Speeds up the rotation to the Fast Rate. |
| Woofer Slow Speed | $0.05-10.00 \mathrm{~Hz}$ | Slow speed (SLOW) of the low frequency rotor |
| Woofer Fast Speed | $0.05-10.00 \mathrm{~Hz}$ | Fast speed (FAST) of the low frequency rotor |
| Woofer Acceleration | 0-15 | Adjusts the time it takes the low frequency rotor to reach the newly selected speed when switching from fast to slow (or slow to fast) speed. Lower values will require longer times. |
| Woofer Level | 0-127 | Volume of the low frequency rotor |
| Tweeter Slow Speed | $0.05-10.00 \mathrm{~Hz}$ | Settings of the high frequency rotor The parameters are the same as for the low frequency rotor |
| Tweeter Fast Speed | $0.05-10.00 \mathrm{~Hz}$ |  |
| Tweeter Acceleration | 0-15 |  |
| Tweeter Level | 0-127 |  |
| Separation | 0-127 | Spatial dispersion of the sound |
| Level \# | 0-127 | Output Level |

## 22: VK ROTARY

This type provides modified response for the rotary speaker, with the low end boosted further.
This effect features the same specifications as the VK-7's built-in rotary speaker.


| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Speed \# | SLOW, FAST | Rotational speed of the rotating <br> speaker |
| Brake \# | OFF, ON | Switches the rotation of the rotary <br> speaker. <br> When this is turned on, the <br> rotation will gradually stop. <br> When it is turned off, the rotation <br> will gradually resume. |
| Woofer Slow Speed | $0.05-10.00 \mathrm{~Hz}$ | Low-speed rotation speed of the <br> woofer |
| Woofer Fast Speed | $0.05-10.00 \mathrm{~Hz}$ | High-speed rotation speed of the <br> woofer |


| Parameter | Value | Explanation |
| :---: | :---: | :---: |
| Woofer Trans Up | 0-127 | Adjusts the rate at which the woofer rotation speeds up when the rotation is switched from Slow to Fast. |
| Woofer Trans Down | 0-127 | Adjusts the rate at which the woofer rotation speeds up when the rotation is switched from Fast to Slow. |
| Woofer Level | 0-127 | Volume of the woofer |
| Tweeter Slow Speed | $0.05-10.00 \mathrm{~Hz}$ | Settings of the tweeter The parameters are the same as for the woofer. |
| Tweeter Fast Speed | $0.05-10.00 \mathrm{~Hz}$ |  |
| Tweeter Trans Up | 0-127 |  |
| Tweeter Trans Down | 0-127 |  |
| Tweeter Level | 0-127 |  |
| Spread | 0-10 | Sets the rotary speaker stereo image. The higher the value set, the wider the sound is spread out. |
| Low Gain | -15-+15 dB | Gain of the low range |
| High Gain | -15-+15 dB | Gain of the high range |
| Level \# | 0-127 | Output Level |

## 23: CHORUS

This is a stereo chorus. A filter is provided so that you can adjust the timbre of the chorus sound.


| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Filter Type | OFF, LPF, HPF | Type of filter <br> OFF: $n$ n filter is used <br> LPF: cuts the frequency range <br> above the Cutoff Freq <br> HPF: cuts the frequency range <br> below the Cutoff Freq |
| Cutoff Freq | $200-8000 \mathrm{~Hz}$ | Center frequency when using the <br> filter to cut a specific frequency <br> range |
| Pre Delay | $0.0-100 \mathrm{msec}$ | Adjusts the delay time from the <br> direct sound until the chorus <br> sound is heard. |
| Rate \# | $0.05-10.00 \mathrm{~Hz}$, note | Frequency of modulation |
| Depth | $0-127$ | Depth of modulation |
| Phase | $0-180$ deg | Spatial spread of the sound |
| Low Gain | $-15-+15 \mathrm{~dB}$ | Gain of the low range |
| High Gain | $-15-+15 \mathrm{~dB}$ | Gain of the high range |
| Balance \# | D100:0W-D0:100W | Volume balance between the direct <br> sound (D) and the chorus sound (W) |
| Level | $0-127$ | Output Level |

Effects List

## 24: FLANGER

This is a stereo flanger. (The LFO has the same phase for left and right.) It produces a metallic resonance that rises and falls like a jet airplane taking off or landing. A filter is provided so that you can adjust the timbre of the flanged sound.


| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Filter Type | OFF, LPF, HPF | Type of filter <br> OFF: $n$ n filter is used <br> LPF: cuts the frequency range <br> above the Cutoff Freq <br> HPF: cuts the frequency range <br> below the Cutoff Freq |
| Cutoff Freq | $200-8000 \mathrm{~Hz}$ | Center frequency when using the <br> filter to cut a specific frequency <br> range |
| Pre Delay | $0.0-100 \mathrm{msec}$ | Adjusts the delay time from when <br> the direct sound begins until the <br> flanger sound is heard. |
| Rate \# | $0.05-10.00 \mathrm{~Hz}$, note | Frequency of modulation |
| Depth | $0-127$ | Depth of modulation |
| Phase | $0-180$ deg | Spatial spread of the sound |
| Feedback \# | $-98-+98 \%$ | Adjusts the proportion of the <br> flanger sound that is fed back into <br> the effect. Negative (-) settings will <br> invert the phase. |
| Low Gain | $-15-+15 \mathrm{~dB}$ | Gain of the low range |
| High Gain | $-15-+15 \mathrm{~dB}$ | Gain of the high range |
| Balance \# | D100:0W-D0:100W | Volume balance between the direct <br> sound (D) and the flanger sound (W) |
| Level | $0-127$ | Output Level |

## 25: STEP FLANGER

This is a flanger in which the flanger pitch changes in steps. The speed at which the pitch changes can also be specified in terms of a notevalue of a specified tempo.


| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Filter Type | OFF, LPF, HPF | Type of filter <br> OFF: no filter is used <br> LPF: cuts the frequency range <br> above the Cutoff Freq <br> HPF: cuts the frequency range <br> below the Cutoff Freq |
| Cutoff Freq | $200-8000 \mathrm{~Hz}$ | Center frequency when using the <br> filter to cut a specific frequency <br> range |
| Pre Delay | $0.0-100 \mathrm{msec}$ | Adjusts the delay time from when <br> the direct sound begins until the <br> flanger sound is heard. |
| Rate \# | $0.05-10.00 \mathrm{~Hz}$, note | Frequency of modulation |
| Depth | $0-127$ | Depth of modulation |
| Phase | $0-180 \mathrm{deg}$ | Spatial spread of the sound |
| Feedback \# | $-98-+98 \%$ | Adjusts the proportion of the <br> flanger sound that is fed back into <br> the effect. Negative (-) settings will <br> invert the phase. |
| Step Rate \# | $0.10-20.00 \mathrm{~Hz}$, note | Rate (period) of pitch change |
| Low Gain | $-15-+15 \mathrm{~dB}$ | Gain of the low range |
| High Gain | $-15-+15 \mathrm{~dB}$ | Gain of the high range |
| Balance \# | D100:0W-D0:100W | Volume balance between the <br> direct sound (D) and the flanger <br> sound (W) |
| Level | $0-127$ | Output Level |

## 26: HEXA-CHORUS

Uses a six-phase chorus (six layers of chorused sound) to give richness and spatial spread to the sound.


| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Pre Delay | $0.0-100 \mathrm{msec}$ | Adjusts the delay time from the <br> direct sound until the chorus sound <br> is heard. |
| Rate \# | $0.05-10.00 \mathrm{~Hz}$, note | Frequency of modulation |
| Depth | $0-127$ | Depth of modulation |
| Pre Delay <br> Deviation | $0-20$ | Adjusts the differences in Pre Delay <br> between each chorus sound. |
| Depth <br> Deviation | $-20-+20$ | Adjusts the difference in modulation <br> depth between each chorus sound. |
| Pan Deviation | $0-20$ | Adjusts the difference in stereo <br> location between each chorus <br> sound. <br> 0: All chorus sounds will be in the <br> center. <br> 20: Each chorus sound will be <br> spaced at 60 degree intervals <br> relative to the center. |
| Balance \# | D100:0W-D0:100W | Volume balance between the direct <br> sound (D) and the chorus sound (W) |
| Level | $0-127$ | Output Level |

## 27: TREMOLO CHORUS

This is a chorus effect with added Tremolo (cyclic modulation of volume).


| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Pre Delay | $0.0-100 \mathrm{msec}$ | Adjusts the delay time from the <br> direct sound until the chorus <br> sound is heard. |
| Chorus Rate \# | $0.05-10.00 \mathrm{~Hz}$, note | Modulation frequency of the <br> chorus effect |
| Chorus Depth | $0-127$ | Modulation depth of the chorus <br> effect |
| Tremolo Rate \# | $0.05-10.00 \mathrm{~Hz}$, note | Modulation frequency of the <br> tremolo effect |
| Tremolo <br> Separation | $0-127$ | Spread of the tremolo effect |
| Tremolo Phase | $0-180 \mathrm{deg}$ | Spread of the tremolo effect |
| Balance \# | D100:0W-D0:100W | Volume balance between the <br> direct sound (D) and the tremolo <br> chorus sound (W) |
| Level | $0-127$ | Output Level |

## 28: SPACE-D

This is a multiple chorus that applies two-phase modulation in stereo. It gives no impression of modulation, but produces a transparent chorus effect.


| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Pre Delay | $0.0-100 \mathrm{msec}$ | Adjusts the delay time from the <br> direct sound until the chorus <br> sound is heard. |
| Rate \# | $0.05-10.00 \mathrm{~Hz}$, note | Frequency of modulation |
| Depth | $0-127$ | Depth of modulation |
| Phase | $0-180 \mathrm{deg}$ | Spatial spread of the sound |
| Low Gain | $-15-+15 \mathrm{~dB}$ | Gain of the low range |
| High Gain | $-15-+15 \mathrm{~dB}$ | Gain of the high range |
| Balance \# | D100:0W-D0:100W | Volume balance between the <br> direct sound (D) and the chorus <br> sound (W) |
| Level | $0-127$ | Output Level |

## 29: 3D CHORUS

This applies a 3D effect to the chorus sound. The chorus sound will be positioned 90 degrees left and 90 degrees right.


| Parameter | Value | Explanation |
| :---: | :---: | :---: |
| Filter Type | OFF, LPF, HPF | Type of filter <br> OFF: no filter is used LPF: cuts the frequency range above the Cutoff Freq HPF: cuts the frequency range below the Cutoff Freq |
| Cutoff Freq | $200-8000 \mathrm{~Hz}$ | Center frequency when using the filter to cut a specific frequency range |
| Pre Delay | 0.0-100 msec | Adjusts the delay time from the direct sound until the chorus sound is heard. |
| Rate \# | $0.05-10.00 \mathrm{~Hz}$, note | Frequency of modulation |
| Depth | 0-127 | Modulation depth of the chorus effect |
| Phase | 0-180 deg | Spatial spread of the sound |
| Output Mode | SPEAKER, PHONES | Adjusts the method that will be used to hear the sound that is output to the OUTPUT jacks. The optimal 3D effect will be achieved if you select SPEAKER when using speakers, or PHONES when using headphones. |
| Low Gain | -15-+15 dB | Gain of the low range |
| High Gain | -15-+15 dB | Gain of the high range |
| Balance \# | D100:0W-D0:100W | Volume balance between the direct sound ( D ) and the chorus sound (W) |
| Level | 0-127 | Output Level |

## 30: 3D FLANGER

This applies a 3D effect to the flanger sound. The flanger sound will be positioned 90 degrees left and 90 degrees right.


| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Filter Type | OFF, LPF, HPF | Type of filter <br> OFF: $n$ no filter is used <br> LPF: cuts the frequency range <br> above the Cutoff Freq <br> HPF: cuts the frequency range <br> below the Cutoff Freq |
| Cutoff Freq | $200-8000 \mathrm{~Hz}$ | Center frequency when using the <br> filter to cut a specific frequency <br> range |
| Pre Delay | $0.0-100 \mathrm{msec}$ | Adjusts the delay time from when <br> the direct sound begins until the <br> flanger sound is heard. |
| Rate \# | $0.05-10.00 \mathrm{~Hz}$, note | Frequency of modulation |
| Depth | $0-127$ | Depth of modulation |
| Phase | $0-180$ deg | Spatial spread of the sound |
| Feedback \# | $-98-+98 \%$ | Adjusts the proportion of the <br> flanger sound that is fed back into <br> the effect. Negative (-) settings will <br> invert the phase. |
| Output Mode | SPEAKER, PHONES | Adjusts the method that will be <br> used to hear the sound that is <br> output to the OUTPUT iacks. The <br> optimal 3D effect will be achieved <br> ifyou select SPEAKER when using <br> speakers, or PHONES when using <br> headphones. |
| Low Gain | $-15-+15 \mathrm{~dB}$ | Gain of the low range |
| High Gain | $-15-+15 \mathrm{~dB}$ | Gain of the high range |
| Balance \# | D100:0W-D0:100W | Volume balance between the <br> direct sound (D) and the flanger <br> sound (W) |
| Level | $0-127$ | Output Level |

## 31: 3D STEP FLANGER

This applies a 3D effect to the step flanger sound. The flanger sound will be positioned 90 degrees left and 90 degrees right.


| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Filter Type | OFF, LPF, HPF | Type of filter <br> OFF: $n$ n filter is used <br> LPF: cuts the frequency range <br> above the Cutoff Freq <br> HPF: cuts the frequency range <br> below the Cutoff Freq |
| Cutoff Freq | $200-8000 \mathrm{~Hz}$ | Center frequency when using the <br> filter to cut a specific frequency <br> range |


| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Pre Delay | $0.0-100 \mathrm{msec}$ | Adjusts the delay time from when <br> the direct sound begins until the <br> flanger sound is heard. |
| Rate \# | $0.05-10.00 \mathrm{~Hz}$, note | Frequency of modulation |
| Depth | $0-127$ | Depth of modulation |
| Phase | $0-180 \mathrm{deg}$ | Spatial spread of the sound |
| Feedback \# | $-98-+98 \%$ | Adjusts the proportion of the <br> flanger sound that is fed back into <br> the effect. Negative (-) settings will <br> invert the phase. |
| Step Rate \# | $0.10-20.00 \mathrm{~Hz}$, note | Rate (period) of pitch change |
| Output Mode | SPEAKER, PHONES | Adjusts the method that will be <br> used to hear the sound that is <br> output to the OUTPUT jacks. The <br> optimal 3D effect will be achieved <br> ifyou select SPEAKER when using <br> speakers, or PHONES when using <br> headphones. |
| Low Gain | $-15-+15 \mathrm{~dB}$ | Gain of the low range |
| High Gain | $-15-+15 \mathrm{~dB}$ | Gain of the high range <br> Balance \# |
| D100:0W-D0:100W | Volume balance between the <br> direct sound (D) and the flanger <br> sound (W) |  |
| Level | $0-127$ | Output Level |

## 32: 2 BAND CHORUS

A chorus effect that lets you apply an effect independently to the lowfrequency and high-frequency ranges.


| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Split Freq | $200-8000 \mathrm{~Hz}$ | Frequency at which the low and <br> high ranges will be divided |
| Low Pre Delay | $0.0-100 \mathrm{msec}$ | Delay time from when the <br> original sound is heard to when <br> the low-range chorus sound is <br> heard |
| Low Rate \# | $0.05-10.00 \mathrm{~Hz}$, note | Rate at which the low-range <br> chorus sound is modulated |
| Low Depth | $0-127$ | Modulation depth for the <br> low-range chorus sound |
| Low Phase | $0-180$ deg | Spaciousness of the low-range <br> chorus sound |
| High Pre Delay | $0.0-100 \mathrm{msec}$ | Delay time from when the <br> original sound is heard to when <br> the high-range chorus sound is <br> heard |
| High Rate \# | $0.05-10.00 \mathrm{~Hz}$, note | Rate at which the low-range <br> chorus sound is modulated |
| High Depth | $0-127$ | Modulation depth for the <br> high-range chorus sound |
| High Phase | $0-180$ deg | Spaciousness of the high-range <br> chorus sound |
| Balance \# | D100:0W-D0:100W | Volume balance of the original <br> sound (D) and chorus sound (W) |
| Level | $0-127$ | Output volume |

## 33: 2 BAND FLANGER

A flanger that lets you apply an effect independently to the lowfrequency and high-frequency ranges.


| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Split Freq | $200-8000 \mathrm{~Hz}$ | Frequency at which the low and <br> high ranges will be divided |
| Low Pre Delay | $0.0-100 \mathrm{msec}$ | Delay time from when the <br> original sound is heard to when <br> the low-range flanger sound is <br> heard |
| Low Rate \# | $0.05-10.00 \mathrm{~Hz}$, note | Rate at which the low-range <br> flanger sound is modulated |
| Low Depth | $0-127$ | Modulation depth for the <br> low-range flanger sound |
| Low Phase | $0-180$ deg | Spaciousness of the low-range <br> flanger sound |
| Low |  |  |
| Feedback \# | $-98-+98 \%$ | Proportion of the low-range <br> flanger sound that is to be <br> returned to the input (negative <br> values invert the phase) |
| High Pre Delay | $0.0-100 \mathrm{msec}$ | Delay time from when the <br> original sound is heard to when <br> the high-range flanger sound is <br> heard |
| High Rate \# | $0.05-10.00 \mathrm{~Hz}$, note | Rate at which the high-range <br> flanger sound is modulated |
| High Depth | $0-127$ | Modulation depth for the <br> high-range flanger sound |
| High Phase | $0-180$ deg | Spaciousness of the high-range <br> flanger sound |
| High | Proportion of the high-range <br> flanger sound that is to be <br> returned to the input (negative <br> values invert the phase) |  |
| Balance \# | D100:0W-D0:100W | Volume balance of the original <br> sound (D) and flanger sound (W) |
| Level | $0-127$ | Output volume |

## 34: 2 BAND STEP FLANGER

A step flanger that lets you apply an effect independently to the lowfrequency and high-frequency ranges.


| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Split Freq | $200-8000 \mathrm{~Hz}$ | Frequency at which the low and <br> high ranges will be divided |
| Low Pre Delay | $0.0-100 \mathrm{msec}$ | Delay time from when the <br> original sound is heard to when <br> the low-range flanger sound is <br> heard |
| Low Rate \# | $0.05-10.00 \mathrm{~Hz}$, note | Rate at which the low-range <br> flanger sound is modulated |
| Low Depth | $0-127$ | Modulation depth for the <br> low-range flanger sound |
| Low Phase | $0-180$ deg | Spaciousness of the low-range <br> flanger sound |
| Low |  |  |
| Feedback \# | $-98-+98 \%$ | Proportion of the low-range <br> flanger sound that is to be <br> returned to the input (negative <br> values invert the phase) |
| Low Step <br> Rate \# | $0.10-20.00 \mathrm{~Hz}$, note | Rate at which the steps will cycle <br> for the low-range flanger sound |
| High Pre Delay | $0.0-100 \mathrm{msec}$ | Delay time from when the <br> original sound is heard to when <br> the high-range flanger sound is <br> heard |
| High Rate \# | $0.05-10.00 \mathrm{~Hz}$, note | Rate at which the high-range <br> flanger sound is modulated |
| High Depth | $0-127$ | Modulation depth for the <br> high-range flanger sound |
| High Phase | $0-180$ deg | Spaciousness of the high-range <br> flanger sound |
| High |  |  |
| Feedback \# | $-98-+98 \%$ | Proportion of the high-range <br> flanger sound that is to be <br> returned to the input (negative <br> values invert the phase) |
| High Step <br> Rate \# | $0.10-20.00 \mathrm{~Hz}$, note | Rate at which the steps will cycle <br> for the high-range flanger sound |
| Balance \# | D100:0W-D0:100W | Volume balance of the original <br> sound (D) and flanger sound (W) |
| Level | $0-127$ | Output volume |

## 35: OVERDRIVE

Creates a soft distortion similar to that produced by vacuum tube amplifiers.


| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Drive \# | $0-127$ | Degree of distortion <br> Also changes the volume. |
|  |  | Type of guitar amp <br> SMALL: small amp <br> BUILT-IN: single-unit type amp <br> 2-STACK: large double stack <br> amp <br> 3-STACK: large triple stack <br> amp |
| Amp Type | SMALL, BUILT-IN, |  |
| 2-STACK, 3-STACK |  |  |$\quad$| Gain of the low range |
| :--- |

## 36: DISTORTION

Produces a more intense distortion than Overdrive. The parameters are the same as for "35: OVERDRIVE."


## 37: VS OVERDRIVE

This is an overdrive that provides heavy distortion.


| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Drive \# | $0-127$ | Degree of distortion <br> Also changes the volume. |
| Tone \# | $0-127$ | Sound quality of the Overdrive effect |
| Amp Sw | OFF, ON | Turns the Amp Simulator on/off. |
| Amp Type | SMALL, BUILT-IN, |  |
| 2-STACK, 3-STACK | Type of guitar amp <br> SMALL: small amp <br> BUILT-IN: single-unit type amp <br> 2-STACK: large double stack amp <br> 3-STACK: large triple stack amp |  |
| Low Gain | $-15-+15 \mathrm{~dB}$ | Gain of the low range |
| High Gain | $-15-+15 \mathrm{~dB}$ | Gain of the high range |
| Pan \# | L64-63R | Stereo location of the output sound |
| Level | $0-127$ | Output Level |

## 38: VS DISTORTION

This is a distortion effect that provides heavy distortion. The parameters are the same as for "37: VS OVERDRIVE."


## 39: GUITAR AMP SIMULATOR

This is an effect that simulates the sound of a guitar amplifier.


| Parameter | Value | Explanation |
| :---: | :---: | :---: |
| Pre Amp Sw | OFF, ON | Turns the amp switch on/off. |
| Pre Amp Type | JC-120, CLEAN TWIN, MATCH DRIVE, BG LEAD, MS1959I, MS1959II, MS 19591+II, SLDN LEAD, METAL 5150, METAL LEAD, OD-1, OD-2 TURBO, DISTORTION, FUZZ | Type of guitar amp |
| Pre Amp Volume \# | 0-127 | Volume and amount of distortion of the amp |
| Pre Amp Master \# | 0-127 | Volume of the entire pre-amp |
| Pre Amp Gain | LOW, MIDDLE, HIGH | Amount of pre-amp distortion |
| Pre Amp Bass | 0-127 | Tone of the bass $/ \mathrm{mid} /$ treble frequency range <br> * Middle cannot be set if "MATCH DRIVE" is selected as the Pre Amp Type. |
| Pre Amp Middle |  |  |
| Pre Amp Treble |  |  |
| Pre Amp Presence | 0-127 | Tone for the ultra-high frequency range |
| Pre Amp Bright | OFF, ON | Turning this "On" produces a sharper and brighter sound. <br> * This parameter applies to the "JC-120," "CLEAN TWIN," and "BG LEAD" Pre Amp Types. |
| Speaker Sw | OFF, ON | Determines whether the signal passes through the speaker (ON), or not (OFF). |
| Speaker Type | (See the table below.) | Type of speaker |
| Mic Setting | 1, 2, 3 | Adjusts the location of the mic that's capturing the sound of the speaker. This can be adjusted in three steps, from 1 to 3 , with the mic becoming more distant as the value increases. |
| Mic Level | 0-127 | Volume of the mic |
| Direct Level | 0-127 | Volume of the direct sound |
| Pan \# | L64-63R | Stereo location of the output |
| Level \# | 0-127 | Output level |

## Specifications for each Speaker Type

The speaker column indicates the diameter of each speaker unit (in inches) and the number of units.

| Type | Cabinet | Speaker | Mic |
| :--- | :--- | :--- | :--- |
| SMALL 1 | small open-back enclosure | 10 | dynamic |
| SMALL 2 | small open-back enclosure | 10 | dynamic |
| MIDDLE | open back enclosure | $12 \times 1$ | dynamic |
| JC-120 | open back enclosure | $12 \times 2$ | dynamic |
| BUILT-IN 1 | open back enclosure | $12 \times 2$ | dynamic |
| BUILT-IN 2 | open back enclosure | $12 \times 2$ | condenser |
| BUILT-IN 3 | open back enclosure | $12 \times 2$ | condenser |
| BUILT-IN 4 | open back enclosure | $12 \times 2$ | condenser |
| BUILT-IN 5 | open back enclosure | $12 \times 2$ | condenser |
| BG STACK 1 | sealed enclosure | $12 \times 2$ | condenser |
| BG STACK 2 | large sealed enclosure | $12 \times 2$ | condenser |
| MS STACK 1 | large sealed enclosure | $12 \times 4$ | condenser |
| MS STACK 2 | large sealed enclosure | $12 \times 4$ | condenser |
| METAL STACK | large double stack | $12 \times 4$ | condenser |
| 2-STACK | large double stack | $12 \times 4$ | condenser |
| 3-STACK | large triple stack | $12 \times 4$ | condenser |

## 40: COMPRESSOR

Flattens out high levels and boosts low levels, smoothing out fluctuations in volume.


| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Attack \# | $0-127$ | Sets the time from when the input exceeds <br> the Threshold until the volume starts being <br> compressed |
| Threshold \# | $0-127$ | Adjusts the volume at which compression <br> begins |
| Post Gain | $0-+18 \mathrm{~dB}$ | Adjusts the output gain. |
| Low Gain | $-15-+15 \mathrm{~dB}$ | Gain of the low frequency range |
| High Gain | $-15-+15 \mathrm{~dB}$ | Gain of the high frequency range |
| Level \# | $0-127$ | Output level |

## 41: LIMITER

Compresses signals that exceed a specified volume level, preventing distortion from occurring.


| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Release \# | $0-127$ | Adjusts the time after the signal volume falls <br> below the Threshold Level until compression <br> is no longer applied. |
| Threshold \# | $0-127$ | Adjusts the volume at which compression <br> begins |
| Ratio | $1.5: 1,2: 1$, <br> $4: 1,100: 1$ | Compression ratio |
| Post Gain | $0-+18 \mathrm{~dB}$ | Adjusts the output gain. |
| Low Gain | $-15-+15 \mathrm{~dB}$ | Gain of the low frequency range |
| High Gain | $-15-+15 \mathrm{~dB}$ | Gain of the high frequency range |
| Level \# | $0-127$ | Output level |

## 42: GATE

Cuts the reverb's delay according to the volume of the sound sent into the effect. Use this when you want to create an artificial-sounding decrease in the reverb's decay.


| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Threshold \# | $0-127$ | Volume level at which the gate begins to close |
| Mode | GATE, <br> DUCK | Type of gate <br> GATE: The gate will close when the <br> volume of the original sound decreases, <br> cutting the original sound. <br> DUCK (Ducking): The gate will close when <br> the volume of the original sound <br> increases, cutting the original sound. |
| Attack | $0-127$ | Adjusts the time it takes for the gate to fully <br> open after being triggered. |
| Hold | $0-127$ | Adjusts the time it takes for the gate to start <br> closing after the source sound falls beneath <br> the Threshold. |
| Release | $0-127$ | Adjusts the time it takes the gate to fully <br> close after the hold time. |
| Balance \# | D100:0W- <br> D0:100W | Volume balance between the direct sound <br> (D) and the effect sound (W) |
| Level | $0-127$ | Output level |

## 43: DELAY

This is a stereo delay.
When Feedback Mode is NORMAL:


When Feedback Mode is CROSS:


| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Delay Left | $0-1300 \mathrm{msec}$, <br> note | Adjusts the time until the delay sound is <br> heard. |
| Delay Right |  |  |
| Phase Left | NORMAL, <br> INVERSE | Phase of the delay sound |
| Phase Right | NORMAL, <br> CROSS | Selects the way in which delay sound is fed <br> back into the effect. (See the figures above.) |
| Modback | $-98-+98 \%$ | Adjusts the amount of the delay sound that's <br> fed back into the effect. Negative <br> (-) settings invert the phase. |
| Feedback \# | $200-8000 \mathrm{~Hz}$, <br> BYPASS | Adjusts the frequency above which sound fed <br> back to the effect is filtered out. If you don't <br> want to filter out any high frequencies, set this <br> parameter to BYPASS. |
| HF Damp | $-15-+15 \mathrm{~dB}$ | Gain of the low frequency range |
| Low Gain | $-15-+15 \mathrm{~dB}$ | Gain of the high frequency range |
| High Gain | G100:0W- <br> DO:100W | Volume balance between the direct sound <br> (D) and the delay sound (W) |
| Balance \# | $0-127$ | Output level |
| Level |  |  |

## 44: LONG DELAY

A delay that provides a long delay time.


| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Delay Time | $0-2600$ msec, note | Delay time from when the <br> original sound is heard to when <br> the delay sound is heard |
| Phase | NORMAL, INVERSE | Phase of the delay (NORMAL: <br> non-inverted, INVERT: inverted) |
| Feedback \# | $-98-+98 \%$ | Proportion of the delay sound <br> that is to be returned to the input <br> (negative values invert the phase) |
| HF Damp | $200-8000 \mathrm{~Hz}$, <br> BYPASS | liequency at which the <br> hheqh-frequency content of the <br> delayed sound will be cut <br> (BYPASS: no cut) |
| Pan \# | L64-63R | Panning of the delay sound |
| Low Gain | $-15-+15 \mathrm{~dB}$ | Amount of boost/cut for the <br> high-frequency range |
| High Gain | $-15-+15 \mathrm{~dB}$ | Amount of boost/cut for the <br> high-frequency range |
| Balance \# | D100:0W-D0:100W | Volume balance of the original <br> sound (D) and delay sound (W) |
| Level | $0-127$ | Output volume |

## 45: SERIAL DELAY

This delay connects two delay units in series. Feedback can be applied independently to each delay unit, allowing you to produce complex delay sounds.


| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Delay 1 Time | $0-1300 \mathrm{msec}$, note | Delay time from when sound is <br> input to delay 1 until the delay <br> sound is heard |
| Delay 1 <br> Feedback \# | $-98-+98 \%$ | Proportion of the delay sound <br> that is to be returned to the input <br> of delay 1 (negative values invert <br> the phase) |
| Delay 1 HF Damp | $200-8000 \mathrm{~Hz}$, <br> BYPASS | lrequency at which the <br> high-frequency content of the <br> delayed sound of delay 1 will be <br> cut (BYPASS: no cut) |
| Delay 2 Time | $0-1300 \mathrm{msec}$, note | Delay time from when sound is <br> input to delay 2 until the delay <br> sound is heard |
| Delay 2 <br> Feedback \# | $-98-+98 \%$ | Proportion of the delay sound <br> that is to be returned to the input <br> of delay 2 (negative values invert <br> the phase) |
| Delay 2 HF Damp | 200-8000 Hz, <br> BYPASS | Frequency at which the <br> high-frequency content of the <br> delayed sound of delay 2 will be <br> cut (BYPASS: no cut) |
| Pan \# | L64-63R | Panning of the delay sound |
| Low Gain | $-15-+15 \mathrm{~dB}$ | Amount of boost/cut for the <br> low-frequency range |
| High Gain | $-15-+15 \mathrm{~dB}$ | Amount of boost/cut for the <br> high-frequency range |
| Balance \# | D100:0W-D0:100W | Volume balance of the original <br> sound (D) and delay sound (W) |
| Level | $0-127$ | Output volume |

## 46: MODULATION DELAY

Adds modulation to the delayed sound.
When Feedback Mode is NORMAL:


When Feedback Mode is CROSS:


| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Delay Left | $0-1300 \mathrm{msec}$, <br> note | Adjusts the time until the delay sound is <br> heard. |
| Delay Right | NORMAL, <br> CROSS | Selects the way in which delay sound is fed <br> back into the effect (See the figures above.) <br> Mode |
| Feedback \# | $-98-+98 \%$ | Adjusts the amount of the delay sound <br> that's fed back into the effect. Negative (-) <br> settings invert the phase. |
| HF Damp | $200-8000 \mathrm{~Hz}$, <br> BYPASS | Adjusts the frequency above which sound <br> fed back to the effect is filtered out. If you <br> don't want to filter out any high <br> frequencies, set this parameter to BYPASS. |
| Rate \# | $0.05-10.00 \mathrm{~Hz}$, <br> note | Frequency of modulation |
| Depth | $0-127$ | Depth of modulation |
| Phase | $0-180 \mathrm{deg}$ | Spatial spread of the sound |
| Low Gain | $-15-+15 \mathrm{~dB}$ | Gain of the low frequency range |
| High Gain | $-15-+15 \mathrm{~dB}$ | Gain of the high frequency range |
| Balance \# | D100:0W- <br> D0:100W | Volume balance between the direct sound <br> (D) and the delay sound (W) |
| Level | $0-127$ | Output level |

## 47: 3TAP PAN DELAY

Produces three delay sounds; center, left and right.


| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Delay Left/ <br> Right/Center | $0-2600 \mathrm{msec}$, <br> note | Adjusts the time from the original sound <br> until the left, right, and center delayed <br> sounds are heard |
| Center <br> Feedback \# | $-98-+98 \%$ | Adjusts the amount of the delay sound <br> that's fed back into the effect. Negative (-) <br> settings invert the phase. |
| HF Damp | $200-8000 \mathrm{~Hz}$, <br> BYPASS | Adjusts the frequency above which sound <br> fed back to the effect is filtered out. If you <br> do not want to filter out any high <br> frequencies, set this parameter to BYPASS. |
| Left/Right/ <br> Center Level | $0-127$ | Volume of each delay |
| Low Gain | $-15-+15 \mathrm{~dB}$ | Gain of the low frequency range |
| High Gain | $-15-+15 \mathrm{~dB}$ | Gain of the high frequency range |
| Balance \# | D100:0W- <br> D0:100W | Volume balance between the direct sound <br> (D) and the delay sound (W) |
| Level | $0-127$ | Output level |

## 48: 4TAP PAN DELAY

This effect has four delays.


Stereo location of each delay

| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Delay 1-4 Time | 0-2600 msec, <br> note | Adjusts the time from the original sound <br> until delay sounds 1-4 are heard |
| Delay 1 <br> Feedback \# | $-98-+98 \%$ | Adjusts the amount of the delay sound <br> that's fed back into the effect. Negative <br> settings invert the phase. |
| HF Damp | $200-8000 \mathrm{~Hz}$, <br> BYPASS | Adjusts the frequency above which sound <br> fed back to the effect is filtered out. If you <br> do not want to filter out any high <br> frequencies, set this parameter to BYPASS. |
| Delay 1-4 Level | $0-127$ | Volume of each delay |
| Low Gain | $-15-+15 \mathrm{~dB}$ | Gain of the low frequency range |
| High Gain | $-15-+15 \mathrm{~dB}$ | Gain of the high frequency range |
| Balance \# | D100:0W- <br> DO:100W | Volume balance between the direct sound <br> (D) and the delay sound (W) |
| Level | $0-127$ | Output level |

## 49: MULTI TAP DELAY

This effect provides four delays. Each of the Delay Time parameters can be set to a note length based on the selected tempo. You can also set the panning and level of each delay sound.


| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Delay 1-4 Time | $0-2600 \mathrm{msec}$, <br> note | Adjusts the time until Delays 1-4 are <br> heard. |
| Delay 1 <br> Feedback \# | $-98-+98 \%$ | Adjusts the amount of the delay sound <br> that's fed back into the effect. Negative (-) <br> settings invert the phase. |
| HF Damp | $200-8000 \mathrm{~Hz}$, <br> BYPASS | Adjusts the frequency above which sound <br> fed back to the effect is filtered out. If you <br> don't want to filter out any the high <br> frequencies, set this parameter to BYPASS. |
| Delay 1-4 Pan | L64-63R | Stereo location of Delays 1-4 |
| Delay 1-4 Level | $0-127$ | Output level of Delays 1-4 |
| Low Gain | $-15-+15 \mathrm{~dB}$ | Gain of the low frequency range |
| High Gain | $-15-+15 \mathrm{~dB}$ | Gain of the high frequency range |
| Balance \# | D100:0W- <br> D0:100W | Volume balance between the direct sound <br> (D) and the effect sound (W) |
| Level | $0-127$ | Output level |

## 50: REVERSE DELAY

This is a reverse delay that adds a reversed and delayed sound to the input sound. A tap delay is connected immediately after the reverse delay.


| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Threshold | $0-127$ | Volume at which the reverse <br> delay will begin to be applied |
| Rev Delay Time | $0-1300$ msec, note | Delay time from when sound is <br> input into the reverse delay until <br> the delay sound is heard |
| Rev Delay <br> Feedback \# | $-98-+98 \%$ | Proportion of the delay sound <br> that is to be returned to the input <br> of the reverse delay (negative <br> values invert the phase) |
| Rev Delay HF <br> Damp | $200-8000 \mathrm{~Hz}$, <br> BYPASS | Frequency at which the <br> high-frequency content of the <br> reverse-delayed sound will be cut <br> (BYPASS: no cut) |
| Rev Delay Pan | L64-63R | Panning of the reverse delay <br> sound |
| Rev Delay Level | $0-127$ | Volume of the reverse delay <br> sound |
| Delay 1 - 3 Time | $0-1300 \mathrm{msec}$, note | Delay time from when sound is <br> input into the tap delay until the <br> delay sound is heard |
| Delay 3 Feedback \# | $-98-+98 \%$ | Proportion of the delay sound <br> that is to be returned to the input <br> of the tap delay (negative values <br> invert the phase) |
| Delay HF Damp | $200-8000 \mathrm{~Hz}$, BYPASS | Frequency at which the low- <br> frequency content of the tap <br> delay sound will be cut (BYPASS: <br> no cut) |
| Delay 1 Pan, <br> Delay 2 Pan | L64-63R | Panning of the tap delay sounds |
| Delay 1 Level, | $0-127$ | Delay 2 Level |

## 51: SHUFFLE DELAY

Adds a shuffle to the delay sound, giving the sound a bouncy delay effect with a swing feel.


| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Delay Time \# | $0-2600 \mathrm{msec}$, <br> note | Adjusts the time until the delay sound is <br> heard. |
| Shuffle <br> Rat | $0-100$ | Adjusts the ratio (as a percentage) of the <br> time that elapses before Delay B sounds <br> relative to the time that elapses before the <br> Delay A sounds. <br> When set to 100, the delay times are the <br> same. |
| Acceleration | $0-15$ | Adjusts the speed which the Delay Time <br> changes from the current setting to its <br> specified new setting. |
| Feedback \# | $-98-+98 \%$ | Adjusts the amount of the delay that's <br> feedback into the effect. Negative $(-)$ settings <br> invert the phase. |
| HF Damp | $200-8000 \mathrm{~Hz}$ <br> BYPASS | Adjusts the frequency above which sound <br> fed back to the effect is filtered out. If you <br> don't want to filter out any high frequencies, <br> set this parameter to BYPASS. |
| Pan A/B | $0-127$ | Stereo location of Delay A/B |
| Level A/B | $0-127$ | Volume of delay A/B |
| Low Gain | $-15-+15 \mathrm{~dB}$ | Gain of the low frequency range |
| High Gain | $-15-+15 \mathrm{~dB}$ | Gain of the high frequency range |
| Balance \# | D100:0W- <br> D0:100W | Volume balance between the direct sound <br> (D) and the effect sound (W) |
| Level | $0-127$ | Output level |

Effects List

## 52: 3D DELAY

This applies a 3D effect to the delay sound. The delay sound will be positioned 90 degrees left and 90 degrees right.


| Parameter | Value | Explanation |
| :---: | :---: | :---: |
| Delay Left | 0-2600 msec, note | Adjusts the delay time from the direct sound until the delay sound is heard. |
| Delay Right |  |  |
| Delay Center |  |  |
| Center Feedback \# | -98-+98\% | Adjusts the proportion of the delay sound that is fed back into the effect. Negative (H) settings will invert the phase. |
| HF Damp | 200-8000 Hz, BYPASS | Adjusts the frequency above which sound fed back to the effect will be cut. If you do not want to cut the high frequencies, set this parameter to BYPASS. |
| Left Level | 0-127 | Output level of the delay sound |
| Right Level |  |  |
| Center Level |  |  |
| Output Mode | SPEAKER, PHONES | Adjusts the method that will be used to hear the sound that is output to the OUTPUT jacks. The optimal 3D effect will be achieved if you select SPEAKER when using speakers, or PHONES when using headphones. |
| Low Gain | $-15-+15 \mathrm{~dB}$ | Gain of the low range |
| High Gain | -15-+15 dB | Gain of the high range |
| Balance \# | D100:0W-D0:100W | Volume balance between the direct sound (D) and the effect sound (W) |
| Level | 0-127 | Output Level |

## 53: TIME CTRL DELAY

A stereo delay in which the delay time can be varied smoothly.


| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Feedback \# | $-98-+98 \%$ | Adjusts the amount of the delay <br> that's fed back into the effect. <br> Negative (-) settings invert the <br> phase. |
| HF Damp | $200-8000 \mathrm{~Hz}$, <br> BYPASS | Adjusts the frequency above which <br> sound fed back to the effect is <br> filtered out. If you do not want to <br> filter out any high frequencies, set <br> this parameter to BYPASS. |
| Low Gain | $-15-+15 \mathrm{~dB}$ | Gain of the low frequency range |
| High Gain | $-15-+15 \mathrm{~dB}$ | Gain of the high frequency range |
| Balance \# | D100:0W- <br> D0:100W | Volume balance between the direct <br> sound (D) and the delay sound (W) |
| Level | $0-127$ | Output level |

## 54: LONG TIME CTRL DELAY

A delay in which the delay time can be varied smoothly, and allowing an extended delay to be produced.


| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Delay Time \# | $0-2600 \mathrm{msec}$, <br> note | Adjusts the time until the delay is heard. |
| Acceleration | $0-15$ | Adjusts the speed which the Delay Time <br> changes from the current setting to a <br> specified new setting. <br> The rate of change for the Delay Time <br> directly affects the rate of pitch change. |
| Feedback \# | $-98-+98 \%$ | Adjusts the amount of the delay that's fed <br> back into the effect. Negative (-) settings <br> invert the phase. |
| HF Damp | $200-8000 \mathrm{~Hz}$, <br> BYPASS | Adjusts the frequency above which sound <br> fed back to the effect is filtered out. If you do <br> not want to filter out any high frequencies, <br> set this parameter to BYPASS. |
| Pan \# | L64-63R | Stereo location of the delay |
| Low Gain | $-15-+15 \mathrm{~dB}$ | Gain of the low frequency range |
| High Gain | $-15-+15 \mathrm{~dB}$ | Gain of the high frequency range |
| Balance \# | D100:0W- <br> D0:100W | Volume balance between the direct sound <br> (D) and the delay sound (W) |
| Level | $0-127$ | Output level |

## 55: TAPE ECHO

A virtual tape echo that produces a realistic tape delay sound. This simulates the tape echo section of a Roland RE-201 Space Echo.


| Parameter | Value | Explanation |
| :---: | :---: | :---: |
| Mode | $\begin{aligned} & S, M, L, S+M, \\ & S+L, M+L, \\ & S+M+L \end{aligned}$ | Combination of playback heads to use Select from three different heads with different delay times. <br> S: short, M: middle, L: long |
| Repeat Rate \# | 0-127 | Tape speed Increasing this value will shorten the spacing of the delayed sounds. |
| Intensity \# | 0-127 | Amount of delay repeats |
| Bass | -15-+15 dB | Boost/cut for the lower range of the echo sound |
| Treble | -15-+15 dB | Boost/cut for the upper range of the echo sound |
| Head S Pan | L64-63R | Independent panning for the short, middle, and long playback heads |
| Head M Pan |  |  |
| Head L Pan |  |  |
| Tape Distortion | 0-5 | Amount of tape-dependent distortion to be added <br> This simulates the slight tonal changes that can be detected by signal-analysis equipment. Increasing this value will increase the distortion. |
| Wow/Flutter Rate | 0-127 | Speed of wow/flutter (complex variation in pitch caused by tape wear and rotational irregularity) |
| Wow/Flutter Depth | 0-127 | Depth of wow/flutter |
| Echo Level \# | 0-127 | Volume of the echo sound |
| Direct Level \# | 0-127 | Volume of the original sound |
| Level | 0-127 | Output level |

## 56: LOFI NOISE

In addition to a lo-fi effect, this adds various types of noise such as white noise and disc noise.


| Parameter | Value | Explanation |
| :---: | :---: | :---: |
| LoFi Type | 1-9 | Degrades the sound quality. The sound quality grows poorer as this value is increased. |
| Post Filter Type | OFF, LPF, HPF | Type of filter that follows the LoFi effect <br> OFF: no filter is used <br> LPF: cuts the frequency range above the Cutoff <br> HPF: cuts the frequency range below the Cutoff |
| Post Filter Cutoff | $200-8000$ Hz | Center frequency of the filter |
| W/P Noise Type | WHITE, PINK | Switch between white noise and pink noise. |
| W/P Noise LPF | $\begin{aligned} & 200-8000 \mathrm{~Hz}, \\ & \text { BYPASS } \end{aligned}$ | Center frequency of the low pass filter applied to the white/pink noise (BYPASS: no cut) |
| W/P Noise Level \# | 0-127 | Volume of the white/pink noise |
| Disc Noise Type | $\begin{aligned} & \text { LP, EP, SP, } \\ & \text { RND } \end{aligned}$ | Type of record noise The frequency at which the noise is heard depends on the selected type. |
| Disc Noise LPF | $\begin{aligned} & 200-8000 \mathrm{~Hz}, \\ & \text { BYPASS } \end{aligned}$ | Adjusts the cutoff frequency of the low pass filter applied to the record noise. If you don't want to filter out any high frequencies, set this parameter to BYPASS. |
| Disc Noise Level \# | 0-127 | Volume of the record noise |
| Hum Noise Type | $50 \mathrm{~Hz}, 60 \mathrm{~Hz}$ | Frequency of the hum noise |
| Hum Noise LPF | $\begin{aligned} & 200-8000 \mathrm{~Hz}, \\ & \text { BYPASS } \end{aligned}$ | Center frequency of the low pass filter applied to the hum noise (BYPASS: no cut) |
| Hum Noise Level \# | 0-127 | Volume of the hum noise |
| Low Gain | $-15-+15 \mathrm{~dB}$ | Gain of the low range |
| High Gain | -15-+15 dB | Gain of the high range |
| Balance \# | $\begin{aligned} & \text { D100:0W- } \\ & \text { D0:100W } \end{aligned}$ | Volume balance between the direct sound (D) and the effect sound (W) |
| Level | 0-127 | Output level |

## 57: LOFI COMPRESS

This is an effect that intentionally degrades the sound quality for creative purposes.


| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Pre Filter Type | $1-6$ | Selects the type of filter applied to the sound <br> before it passes through the Lo-Fi effect. <br> 1: Compressor off <br> 2-6: Compressor on |
| Lofi Type | $1-9$ | Degrades the sound quality. The sound <br> quality grows poorer as this value is <br> increased. |
| Post Filter Type | OFF, LPF, HPF | Type of filter <br> OFF: no filter is used <br> LPF: cuts the frequency range above the <br> Cutoff <br> HPF: cuts the frequency range below the <br> Cutoff |
| Post Filter <br> Cutoff | $200-8000$ Hz | Basic frequency of the Post Filter |
| Low Gain | $-15-+15 \mathrm{~dB}$ | Gain of the low range |
| High Gain | $-15-+15 \mathrm{~dB}$ | Gain of the high range |
| Balance \# | D100:0W- <br> D0:100W | Volume balance between the direct sound <br> (D) and the effect sound (W) |
| Level \# | $0-127$ | Output level |

## 58: LOFI RADIO

In addition to a Lo-Fi effect, this effect also generates radio noise.


| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Lofi Type | $1-9$ | Degrades the sound quality. The sound <br> quality grows poorer as this value is <br> increased. |
| Post Filter Type | OFF, LPF, <br> HPF | Type of filter <br> OFF: $n$ n filter is used <br> LPF: cuts the frequency range above the <br> Cutoff <br> HPF: cuts the frequency range below the <br> Cutoff |
| Post Filter <br> Cutoff | $200-8000 \mathrm{~Hz}$ | Basic frequency of the Post Filter |
| Radio <br> Detune \# | $0-127$ | Simulates the tuning noise of a radio. As this <br> value is raised, the tuning drifts further. |
| Radio Noise <br> Level \# | $0-127$ | Volume of the radio noise |
| Low Gain | $-15-+15 \mathrm{~dB}$ | Gain of the low range |
| High Gain | $-15-+15 \mathrm{~dB}$ | Gain of the high range |
| Balance \# | D100:0W- <br> D0:100W | Volume balance between the direct sound <br> (D) and the effect sound (W) |
| Level | $0-127$ | Output level |

## 59: TELEPHONE

This effect produces a muffled sound, like that heard through a telephone.


| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Voice <br> Quality \# | $0-15$ | Audio quality of the telephone voice |
| Treble | $-15-+15 \mathrm{~dB}$ | Bandwidth of the telephone voice |
| Balance \# | D100:0- <br> D0:100W | Volume balance between the direct sound <br> (D) and the effect sound (W) |
| Level | $0-127$ | Output level |

## 60: PHONOGRAPH

Simulates a sound recorded on an analog record and played back on a record player. This effect also simulates the various types of noise that are typical of a record, and even the rotational irregularities of an old turntable.


| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Signal <br> Distortion | $0-127$ | Depth of distortion |
| Frequency <br> Range | $0-127$ | Frequency response of the playback system <br> Decreasing this value will produce the <br> impression of an old system with a poor <br> frequency response. |
| Disc Type | LP, EP, SP | Rotational speed of the turntable <br> This will affect the frequency of the <br> scratch noise. |
| Scratch Noise <br> Level | $0-127$ | Amount of noise due to scratches on the <br> record |
| Dust Noise <br> Level | $0-127$ | Volume of noise due to dust on the record |
| Hiss Noise <br> Level | $0-127$ | Volume of continuous "hiss" |
| Total Noise <br> Level \# | $0-127$ | Volume of overall noise |
| Wow | $0-127$ | Depth of long-cycle rotational irregularity |
| Flutter | $0-127$ | Depth of short-cycle rotational irregularity |
| Random | $0-127$ | Depth of indefinite-cycle rotational <br> irregularity |
| Total Wow/ <br> Flutter \# | $0-127$ | Depth of overall rotational irregularity |
| Balance \# | D100:0W- <br> D0:100W | Volume balance between the direct sound <br> (D) and the effect sound (W) |
| Level | $0-127$ | Output level |

## 61: PITCH SHIFTER

A stereo pitch shifter.


| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Coarse \#1 | $-24-+12$ semi | Adjusts the pitch of the pitch <br> shifted sound in semitone steps. |
| Fine \#1 | $-100-+100$ cent | Adjusts the pitch of the pitch <br> shifted sound in 2-cent steps. |
| Delay Time | $0-1300$ msec, note | Adjusts the delay time from the <br> direct sound until the pitch shifted <br> sound is heard. |
| Feedback \# | $-98-+98 \%$ | Adjusts the proportion of the <br> pitch shifted sound that is fed <br> back into the effect. Negative <br> settings will invert the phase. |
| Low Gain | $-15-+15 \mathrm{~dB}$ | Gain of the low range |
| High Gain | $-15-+15 \mathrm{~dB}$ | Gain of the high range |
| Balance \# | D100:0W-D0:100W | Volume balance between the <br> direct sound (D) and the pitch <br> shifted sound (W) |
| Level | $0-127$ | Output Level |

## 62: 2VOICE PITCH SHIFTER

Shifts the pitch of the original sound. This 2 -voice pitch shifter has two pitch shifters, and can add two pitch shifted sounds to the original sound.


| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Pitch1 Coarse \#1 | $-24-12$ semi | Adjusts the pitch of Pitch Shift 1 <br> in semitone steps. |
| Pitch1 Fine \#1 | $-100-+100$ cent | Adjusts the pitch of Pitch Shift <br> Pitch 1 in 2-cent steps. |
| Pitch1 Delay | $0-1300$ msec, note | Adjusts the delay time from the <br> direct sound until the Pitch Shift 1 <br> sound is heard. |
| Pitch1 Feedback \# | $-98-+98 \%$ | Adjusts the proportion of the <br> pitch shifted sound that is fed <br> back into the effect. Negative (-) <br> settings will invert the phase. |
| Pitch1 Pan \# | L64-63R | Stereo location of the Pitch Shift <br> 1 sound |
| Pitch1 Level | $0-127$ | Volume of the Pitch Shift1 sound |


| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Pitch2 Coarse \#2 | $-24-+12$ semi | Settings of the Pitch Shift 2 <br> sound. <br> Pitch2 Fine \#2 |
| The parameters are the same as |  |  |
| for the Pitch Shift 1 sound. |  |  |

## 63: STEP PITCH SHIFTER

A pitch shifter in which the amount of pitch shift is varied by a 16 -step sequence.


| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Step 01-16 | $-24-+12$ semi | Amount of pitch shift at each step <br> (semitone units) |
| Rate \# | $0.05-10.00 \mathrm{~Hz}$, note | Rate at which the 16-step <br> sequence will cycle |
| Attack \# | $0-127$ | Speed at which the amount of <br> pitch shift changes between steps |
| Gate Time \# | $0-127$ | Duration of the pitch shifted <br> sound at each step |
| Fine | $-100-+100$ cent | Pitch shift adjustment for all steps <br> (2-cent units) |
| Delay Time | $0-1300$ msec, note | Delay time from the original <br> sound until the pitch-shifted <br> sound is heard |
| Feedback \# | $-98-+98 \%$ | Proportion of the pitch-shifted <br> sound that is to be returned to the <br> input (negative values invert the <br> phase) |
| Low Gain | $-15-+15 \mathrm{~dB}$ | Amount of boost/cut for the <br> low-frequency range |
| High Gain | $-15-+15 \mathrm{~dB}$ | Amount of boost/cut for the <br> high-frequency range |
| Balance \# | D100:0W-D0:100W | Volume balance of the original <br> sound (D) and pitch-shifted sound <br> (W) |
| Level | $0-127$ | Output volume |

## (MEMO)

You can use multi-effect control to make the step sequence play again from the beginning (p. 164).

Effects List

## 64: REVERB

Adds reverberation to the sound, simulating an acoustic space.


| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Type | ROOM1, ROOM2, <br> STAGE1, STAGE2, <br> HALL1, HALL2 | Type of reverb <br> ROOM1: dense reverb with <br> short decay <br> ROOM2: sparse reverb with <br> short decay <br> STAGE1: reverb with greater <br> late reverberation <br> STAGE2: <br> early reflections with strong <br> HALL1: reverb with clear <br> reverberance <br> HALL2: reverb with rich <br> reverberance |
| Pre Delay | $0.0-100 \mathrm{msec}$ | Adjusts the delay time from the <br> direct sound until the reverb sound <br> is heard. |
| Time \# | $0-127$ | Time length of reverberation |
| HF Damp | $200-8000 \mathrm{~Hz}$, | Adjusts the frequency above which <br> the reverberant sound will be cut. <br> As the frequency is set lower, <br> more of the high frequencies <br> will be cut, resulting in a softer <br> and more, muted reverberance. <br> If you do not want to cut the <br> high frequencies, set this <br> parameter to BYPASS. |
| Low Gain | $-15-+15 \mathrm{~dB}$ | Gain of the low range |

## 65: GATED REVERB

This is a special type of reverb in which the reverberant sound is cut off before its natural length.


| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Type | NORMAL, REVERSE, <br> SWEEP1, SWEEP2 | Type of reverb <br> NORMAL: conventional <br> gated reverb <br> REVERSE: backwards reverb <br> SWEEP1: the reverberant <br> sound moves from right to left <br> SWEEP2: the reverberant <br> sound moves from left to right |
| Pre Delay | $0.0-100 \mathrm{msec}$ | Adjusts the delay time from the <br> direct sound until the reverb <br> sound is heard. |
| Gate Time | $5-500 \mathrm{msec}$ | Adjusts the time from when the <br> reverb is heard until it disappears. |
| Low Gain | $-15-+15 \mathrm{~dB}$ | Gain of the low range |


| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| High Gain | $-15-+15 \mathrm{~dB}$ | Gain of the high range |
| Balance \# | D100:0W-D0:100W | Volume balance between the <br> direct sound (D) and the reverb <br> sound (W) |
| Level \# | $0-127$ | Output Level |

## 66: OVERDRIVE $\rightarrow$ CHORUS



| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Overdrive <br> Drive \# | $0-127$ | Degree of distortion <br> Also changes the volume. |
| Overdrive Pan \# | L64-63R | Stereo location of the overdrive <br> sound |
| Chorus Pre <br> Delay | $0.0-100 \mathrm{msec}$ | Adjusts the delay time from the <br> direct sound until the chorus sound <br> is heard. |
| Chorus Rate \# | $0.05-10.00 \mathrm{~Hz}$, note | Frequency of modulation |
| Chorus Depth | $0-127$ | Depth of modulation |
| Chorus |  |  |
| Balance \# | D100:0W-D0:100W | Adjusts the volume balance <br> between the sound that is sent <br> through the chorus (W) and the <br> sound that is not sent through the <br> chorus (D). |
| Level | $0-127$ | Output Level |

## 67: OVERDRIVE $\rightarrow$ FLANGER



| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Overdrive <br> Drive \# | $0-127$ | Degree of distortion <br> Also changes the volume. |
| Overdrive Pan \# | L64-63R | Stereo location of the overdrive <br> sound |
| Flanger Pre <br> Delay | $0.0-100 \mathrm{msec}$ | Adjusts the delay time from when <br> the direct sound begins until the <br> flanger sound is heard. |
| Flanger Rate \# | $0.05-10.00 \mathrm{~Hz}$, note | Frequency of modulation |
| Flanger Depth | $0-127$ | Depth of modulation <br> Flanger <br> Feedback \# <br> Adjusts the proportion of the <br> flanger sound that is fed back into <br> the effect. Negative (-) settings will <br> invert the phase. |
| Flanger <br> Balance \# | D100:0W-D0:100W | Adjusts the volume balance <br> between the sound that is sent <br> through the flanger (W) and the <br> sound that is not sent through the <br> flanger (D). |
| Level | $0-127$ | Output Level |

## 68: OVERDRIVE $\rightarrow$ DELAY



| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Overdrive Drive \# | $0-127$ | Degree of distortion <br> Also changes the volume. |
| Overdrive Pan \# | L64-63R | Stereo location of the overdrive <br> sound |
| Delay Time | $0-2600$ msec, note | Adjusts the delay time from the <br> direct sound until the delay <br> sound is heard. |
| Delay <br> Feedback \# | $-98-+98 \%$ | Adjusts the proportion of the <br> delay sound that is fed back into <br> the effect. Negative (-) settings <br> will invert the phase. |
| Delay HF Damp | 200-8000 Hz, <br> BYPASS | Adjusts the frequency above <br> which sound fed back to the <br> effect will be cut. If you do not <br> want to cut the high frequencies, <br> set this parameter to BYPASS. |
| Delay Balance \# | D100:0W-D0:100W | Adjusts the volume balance <br> between the sound that is sent <br> through the delay (W) and the <br> sound that is not sent through the <br> delay (D). |
| Level | $0-127$ | Output Level |

## 69: DISTORTION $\rightarrow$ CHORUS

The parameters are essentially the same as in
"66: OVERDRIVE $\rightarrow$ CHORUS," with the exception of the following two.
Overdrive Drive $\rightarrow$ Distortion Drive,
Overdrive Pan $\rightarrow$ Distortion Pan


## 70: DISTORTION $\rightarrow$ FLANGER

The parameters are essentially the same as in
"67: OVERDRIVE $\rightarrow$ FLANGER," with the exception of the following two.
Overdrive Drive $\rightarrow$ Distortion Drive,
Overdrive Pan $\rightarrow$ Distortion Pan


## 71: DISTORTION $\rightarrow$ DELAY

The parameters are essentially the same as in
"68: OVERDRIVE $\rightarrow$ DELAY," with the exception of the following two. Overdrive Drive $\rightarrow$ Distortion Drive,
Overdrive Pan $\rightarrow$ Distortion Pan


## 72: ENHANCER $\rightarrow$ CHORUS



| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Enhancer Sens \# | $0-127$ | Sensitivity of the enhancer |
| Enhancer Mix \# | $0-127$ | Level of the overtones generated <br> by the enhancer |
| Chorus Pre Delay | $0.0-100 \mathrm{msec}$ | Adjusts the delay time from the <br> direct sound until the chorus sound <br> is heard. |
| Chorus Rate \# | $0.05-10.00 \mathrm{~Hz}$, <br> note | Frequency of modulation |
| Chorus Depth | $0-127$ | Depth of modulation |
| Chorus Balance \# | D100:0W- <br> D0:100W | Adjusts the volume balance between <br> the sound that is sent through the <br> chorus (W) and the sound that is not <br> sent through the chorus (D). |
| Level | $0-127$ | Output Level |

## 73: ENHANCER $\rightarrow$ FLANGER



| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Enhancer Sens \# | $0-127$ | Sensitivity of the enhancer |
| Enhancer Mix \# | $0-127$ | Level of the overtones generated <br> by the enhancer |
| Flanger Pre Delay | $0.0-100 \mathrm{msec}$ | Adjusts the delay time from when <br> the direct sound begins until the <br> flanger sound is heard. |
| Flanger Rate \# | 0.05-10.00 Hz, <br> note | Frequency of modulation |
| Flanger Depth | $0-127$ | Depth of modulation |
| Flanger <br> Feedback \# | $-98-+98 \%$ | Adjusts the proportion of the <br> flanger sound that is fed back into <br> the effect. Negative (-) settings will <br> invert the phase. |
| Flanger Balance \# | D100:0W- <br> D0:100W | Adjusts the volume balance between <br> the sound that is sent through the <br> flanger (W) and the sound that is not <br> sent through the flanger (D). |
| Level | $0-127$ | Output Level |

## 74: ENHANCER $\rightarrow$ DELAY



| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Enhancer Sens \# | $0-127$ | Sensitivity of the enhancer |
| Enhancer Mix \# | $0-127$ | Level of the overtones generated <br> by the enhancer |
| Delay Time | $0-2600$ msec, note | Adjusts the delay time from the <br> direct sound until the delay <br> sound is heard. |
| Delay <br> Feedback \# | $-98-+98 \%$ | Adjusts the proportion of the <br> delay sound that is fed back into <br> the effect. Negative (H) settings <br> will invert the phase. |
| Delay HF Damp | 200-8000 Hz, |  |
| BYPASS | Adjusts the frequency above <br> which sound fed back to the <br> effect will be cut. If you do not <br> want to cut the high frequencies, <br> set this parameter to BYPASS. |  |
| Delay Balance \# | D100:0W-D0:100W | Adjusts the volume balance <br> between the sound that is sent <br> through the delay (W) and the <br> sound that is not sent through the <br> delay (D). |
| Level | 0-127 | Output Level |

## 75: CHORUS $\rightarrow$ DELAY



| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Chorus Pre <br> Delay | $0.0-100 \mathrm{msec}$ | Adjusts the delay time from the <br> direct sound until the chorus sound <br> is heard. |
| Chorus Rate \# | $0.05-10.00 \mathrm{~Hz}$, note | Frequency of modulation |
| Chorus Depth | $0-127$ | Depth of modulation |
| Chorus <br> Balance \# | D100:0W-D0:100W | Volume balance between the <br> direct sound (D) and the chorus <br> sound (W) |
| Delay Time | $0-2600 \mathrm{msec}$, note | Adjusts the delay time from the <br> direct sound until the delay sound <br> is heard. |
| Delay <br> Feedback \# | $-98-+98 \%$ | Adjusts the proportion of the delay <br> sound that is fed back into the <br> effect. Negative (-) settings will <br> invert the phase. |
| Delay HF Damp | $200-8000 \mathrm{~Hz}$, | Adjusts the frequency above which <br> sound fed back to the effect will be <br> cut. If you do not want to cut the <br> high frequencies, set this <br> parameter to BYPASS. |
| Delay | D100:0W-D0:100W | Adjusts the volume balance <br> between the sound that is sent <br> through the delay (W) and the <br> sound that is not sent through the <br> delay (D). |
| Balance \# | Level | O-127 |

## 76: FLANGER $\rightarrow$ DELAY



| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Flanger Pre Delay | $0.0-100 \mathrm{msec}$ | Adjusts the delay time from when <br> the direct sound begins until the <br> flanger sound is heard. |
| Flanger Rate \# | $0.05-10.00 \mathrm{~Hz}$, note | Frequency of modulation |
| Flanger Depth | $0-127$ | Depth of modulation |
| Flanger <br> Feedback \# | $-98-+98 \%$ | Adjusts the proportion of the <br> flanger sound that is fed back into <br> the effect. Negative (-) settings will <br> invert the phase. |
| Flanger Balance \# | D100:0W-D0:100W | Volume balance between the <br> direct sound (D) and the flanger <br> sound (W) |
| Delay Time | $0-2600$ msec, note | Adjusts the delay time from the <br> direct sound until the delay sound <br> is heard. |


| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Delay <br> Feedback \# | $-98-+98 \%$ | Adjusts the proportion of the <br> delay sound that is fed back into <br> the effect. Negative $(-)$ settings will <br> invert the phase. |
| Delay HF Damp | $200-8000 \mathrm{~Hz}$, <br> BYPASS | Adjusts the frequency above <br> which sound fed back to the effect <br> will be cut. If you do not want to <br> cut the high frequencies, set this <br> parameter to BYPASS. |
| Delay <br> Balance \# | D100:0W-D0:100W | Adjusts the volume balance between <br> the sound that is sent through the <br> delay (W) and the sound that is not <br> sent through the delay (D). |
| Level | $0-127$ | Output Level |

77: CHORUS $\rightarrow$ FLANGER

|  |  |  |
| :---: | :---: | :---: |
| Parameter | Value | Explanation |
| Chorus Pre Delay | $0.0-100 \mathrm{msec}$ | Adjusts the delay time from the direct sound until the chorus sound is heard. |
| Chorus Rate \# | 0.05-10.00 Hz, note | Modulation frequency of the chorus effect |
| Chorus Depth | 0-127 | Modulation depth of the chorus effect |
| Chorus <br> Balance \# | D100:0W-D0:100W | Volume balance between the direct sound (D) and the chorus sound (W) |
| Flanger Pre Delay | $0.0-100 \mathrm{msec}$ | Adjusts the delay time from when the direct sound begins until the flanger sound is heard. |
| Flanger Rate \# | 0.05-10.00 Hz, note | Modulation frequency of the flanger effect |
| Flanger Depth | 0-127 | Modulation depth of the flanger effect |
| Flanger Feedback \# | -98-+98\% | Adjusts the proportion of the flanger sound that is fed back into the effect. Negative ( - ) settings will invert the phase. |
| Flanger Balance \# | D100:0W-D0:100W | Adjusts the volume balance between the sound that is sent through the flanger (W) and the sound that is not sent through the flanger (D). |
| Level | 0-127 | Output Level |

## 78: SYMPATHETIC RESONANCE

On an acoustic piano, holding down the damper pedal allows other strings to resonate in sympathy with the notes you play, creating rich and spacious resonances. This effect simulates these sympathetic resonances.


| Parameter | Value | Explanation |
| :---: | :---: | :---: |
| Depth \# | 0-127 | Depth of the effect |
| Damper \# | 0-127 | Depth to which the damper pedal is pressed (controls the resonant sound) |
| Pre LPF | $\begin{aligned} & 16-15000 \mathrm{~Hz}, \\ & \text { BYPASS } \end{aligned}$ | Frequency of the filter that cuts the high-frequency content of the input sound (BYPASS: no cut) |
| Pre HPF | BYPASS, $16-15000 \mathrm{~Hz}$ | Frequency of the filter that cuts the low-frequency content of the input sound (BYPASS: no cut) |
| Peaking Freq | $200-8000 \mathrm{~Hz}$ | Frequency of the filter that boosts/ cuts a specific frequency region of the input sound |
| Peaking Gain | -15-+15 dB | Amount of boost/cut produced by the filter at the specified frequency region of the input sound |
| Peaking Q | $\begin{aligned} & 0.5,1.0,2.0,4.0, \\ & 8.0 \end{aligned}$ | Width of the frequency region boosted/cut by the 'Peaking Gain' parameter (larger values make the region narrower) |
| HF Damp | $\begin{aligned} & 16-15000 \mathrm{~Hz}, \\ & \text { BYPASS } \end{aligned}$ | Frequency at which the high-frequency content of the resonant sound will be cut (BYPASS: no cut) |
| LF Damp | BYPASS, $16-15000 \mathrm{~Hz}$ | Frequency at which the low-frequency content of the resonant sound will be cut (BYPASS: no cut) |
| Lid | 1-6 | This simulates the actual changes in sound that occur when the lid of a grand piano is set at different heights. |
| EQ Low Freq | $200,400 \mathrm{~Hz}$ | Frequency of the low-range EQ |
| EQ Low Gain | -15-+15 dB | Amount of low-range boost/cut |
| EQ Mid Freq | $200-8000 \mathrm{~Hz}$ | Frequency of the midrange EQ |
| EQ Mid Gain | -15-+15 dB | Amount of midrange boost/cut |
| EQ Mid Q | $\begin{aligned} & 0.5,1.0,2.0,4.0, \\ & 8.0 \end{aligned}$ | Width of midrange (larger values make the region narrower) |
| EQ High Freq | $\begin{aligned} & 2000,4000,8000 \\ & \mathrm{~Hz} \end{aligned}$ | Frequency of the high-range EQ |
| EQ High Gain | -15-+15 dB | Amount of high-range boost/cut |
| Level | 0-127 | Output Level |

## 79: VOCODER



| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| Mic Sens \# | $0-127$ | Input sensitivity of the mic |
| Synth Level \# | $0-127$ | Input level of the instrument |
| Mic Mix \# | $0-127$ | Amount of mic audio added to the <br> output of the vocoder |
| Level | $0-127$ | Volume level after passing through <br> the vocoder |

Effects List

## Chorus Parameters

The JUNO-STAGE's Chorus effect unit can also be used as a stereo delay unit.
These settings allow you to select chorus or delay, and the characteristics of the selected effect type.

| Parameter | Value | Explanation |
| :---: | :---: | :---: |
| Chorus Type | 00 (OFF), <br> 01 (CHORUS), <br> 02 (DELAY), <br> 03 (GM2 CHORUS) | Selects either Chorus or Delay. 00 (OFF): Neither Chorus or Delay is used. <br> 01 (CHORUS): Chorus is used. 02 (DELAY): Delay is used. 03 (GM2 CHORUS): GM2 Chorus is used. |
| Chorus Level | 0-127 | Volume of the chorus sound |
| 01: CHORUS |  |  |
| Filter Type | OFF, LPF, HPF | Type of filter <br> OFF: no filter is used <br> LPF: cuts the frequency range above the Cutoff Freq HPF: cuts the frequency range below the Cutoff Freq |
| Cutoff Freq | $200-8000 \mathrm{~Hz}$ | Basic frequency of the filter |
| Pre Delay | $0.0-100 \mathrm{msec}$ | Adjusts the delay time from the direct sound until the chorus sound is heard. |
| Rate | $\begin{aligned} & 0.05-10.00 \mathrm{~Hz}, \\ & \text { note } \end{aligned}$ | Frequency of modulation |
| Depth | 0-127 | Depth of modulation |
| Phase | 0-180 deg | Spatial spread of the sound |
| Feedback | 0-127 | Adjusts the amount of the chorus sound that is fed back into the effect. |

## 02: DELAY

| Delay Left | Delay Right $0-1000 \mathrm{msec}$, note | Adjusts the delay time from the direct <br> sound until the delay sound is heard. |
| :--- | :--- | :--- |
| Delay Center |  | Adjusts the proportion of the delay <br> sound that is fed back into the effect. <br> Negative (-) settings will invert the <br> phase. |
| Center <br> Feedback | Adjusts the frequency above which <br> sound fed back to the effect will be cut. <br> If you do not want to cut the high <br> frequencies, set this parameter to <br> BYPASS. |  |
| HF Damp | $200-8000 \mathrm{~Hz}$, <br> BYPASS | Volume of each delay sound |
| Left Level | $0-127$ |  |

## 03: GM2 CHORUS

| Pre-LPF | $0-7$ | Cuts the high frequency range of the <br> sound coming into the chorus. <br> Higher values will cut more of the <br> high frequencies. |
| :--- | :--- | :--- |
| Level | $0-127$ | Volume of the chorus sound |
| Feedback | $0-127$ | Adjusts the amount of the chorus sound <br> that is fed back into the effect. |
| Delay | $0-127$ | Adjusts the delay time from the direct <br> sound until the chorus sound is heard. |
| Rate | $0-127$ | Frequency of modulation |
| Depth | $0-127$ | Depth of modulation |
| Send Level to <br> Reverb | $0-127$ | Adjusts the amount of chorus sound <br> that will be sent to the reverb. |

## NOTE

If you specify the delay time as a note value, slowing down the tempo will not change the delay time beyond a certain length. This is because there is an upper limit for the delay time; if the delay time is specified as a note value and you slow down the tempo until this upper limit is reached, the delay time cannot change any further. This upper limit is the maximum value that can be specified when setting the delay time as a numerical value.

## note:

| $\mathrm{f}_{3}$ | Sixty-fourth-note triplet | ${ }^{+}$ | Sixty-fourth note | ${ }^{8}$ | Thirty-second-note triplet |
| :---: | :---: | :---: | :---: | :---: | :---: |
| d | Thirty-second note | $\mathrm{A}_{3}$ | Sixteenth-note triplet | d | Dotted thirty-second note |
| d | Sixteenth note | ${ }^{\circ}$ | Eighth-note triplet | $\lambda$ | Dotted sixteenth note |
| $\downarrow$ | Eighth note | $\bullet 3$ | Quarter-note triplet | d. | Dotted eighth note |
| d | Quarter note | ${ }^{\text {d }}$ | Half-note triplet | $\downarrow$ | Dotted quarter note |
| $\delta$ | Half note | \%3 | Whole-note triplet | $d$ | Dotted half note |
| - | Whole note | $1 \mathrm{lll} \mathrm{l}^{2}$ | Double-note triplet | - | Dotted whole note |
| "orl | Double note |  |  |  |  |

## Reverb Parameters

These settings allow you to select the desired type of reverb, and its characteristics.

| Parameter | Value | Explanation |
| :---: | :---: | :---: |
| Reverb <br> Type | 00 (OFF), <br> 01 (REVERB), <br> 02 (SRV ROOM), <br> 03 (SRV HALL), <br> 04 (SRV PLATE), <br> 05 (GM2 REVERB) | Type of reverb <br> 00 (OFF): Reverb is not used. 01 (REVERB): Normal reverb 02 (SRV ROOM): This simulates typical room acoustic reflections. 03 (SRV HALL): This simulates typical concert hall acoustic reflections. 04 (SRV PLATE): This simulates a reverb plate, a popular type of artificial reverb unit that derives its sound from the vibration of a metallic plate. <br> 05 (GM2 REVERB): GM2 Reverb |
| Reverb Level | 0-127 | Volume of the reverb sound |
| 01: REVERB |  |  |
| Type | ROOM1, ROOM2, STAGE 1 , STAGE2, HALL1, HALL2, DELAY, PAN-DELAY | Type of reverb/delay <br> ROOMI: short reverb with high density <br> ROOM2: short reverb with low density <br> STAGE1: reverb with greater late reverberation <br> STAGE2: reverb with strong early reflections <br> HALLI: very clear-sounding reverb <br> HALL2: rich reverb <br> DELAY: conventional delay effect <br> PAN-DELAY: delay effect with echoes that pan left and right |
| Time | 0-127 | Time length of reverberation (Type: ROOM1-HALL2) Delay time (Type: DELAY, PAN-DELAY) |
| HF Damp | $\begin{aligned} & 200-8000 \mathrm{~Hz}, \\ & \text { BYPASS } \end{aligned}$ | Adjusts the frequency above which the high-frequency content of the reverb sound will be cut, or "damped." If you do not want to cut the high frequencies, set this parameter to BYPASS. |
| Delay Feedback | 0-127 | Adjusts the amount of delay feedback when the Type setting is DELAY or PAN-DELAY. Amount of delay sound returned to the input (this setting is valid only if Type is DELAY or PAN-DELAY) |
| 02: SRV ROOM <br> 03: SRV HALL <br> 04: SRV PLATE |  |  |
| Pre Delay | 0.0-100 msec | Adjusts the delay time from the direct sound until the reverb sound is heard. |
| Time | 0-127 | Time length of reverberation |
| Size | 1-8 | Size of the simulated room or hall |
| High Cut | $\begin{aligned} & 160-12500 \mathrm{~Hz}, \\ & \text { BYPASS } \end{aligned}$ | Adjusts the frequency above which the high-frequency content of the reverb will be reduced. If you do not want to reduce the high frequencies, set this parameter to BYPASS. |
| Density | 0-127 | Density of reverb |
| Diffusion | 0-127 | Adjusts the change in the density of the reverb over time. The higher the value, the more the density increases with time. (The effect of this setting is most pronounced with long reverb times.) |
| LF Damp Freq | $50-4000 \mathrm{~Hz}$ | Adjusts the frequency below which the lowfrequency content of the reverb sound will be reduced, or "damped." |
| LF Damp Gain | $-36-0 \mathrm{~dB}$ | Adjusts the amount of damping applied to the frequency range selected with LF Damp. With a setting of " 0 ," there will be no reduction of the reverb's low-frequency content. |
| HF Damp Freq | $4000-12500$ Hz | Adjusts the frequency above which the high-frequency content of the reverb sound will be reduced, or "damped." |
| HF Damp Gain | $-36-0 \mathrm{~dB}$ | Adjusts the amount of damping applied to the frequency range selected with HF Damp. With a setting of " 0, " there will be no reduction of the reverb's high-frequency content. |


| Parameter | Value | Explanation |
| :--- | :--- | :--- |
| O5: GM2 REVERB | Character $0-7$ <br> Pre-LPF $0-7$ <br> Type of reverb  <br> 6-5: reverb  <br> 6, delay  |  |
| Level | $0-127$ | Cuts the high frequency range of the sound <br> coming into the reverb. <br> Higher values will cut more of the high <br> frequencies. |
| Time | $0-127$ | Output level of reverberation |
| Delay <br> Feedback | $0-127$ | Time length of reverberation |

## Performance List

## USER (User Group)

| No | Name |
| ---: | :--- |
| 1 | Piano / Bass |
| 2 | Jazz n' Rhtm |
| 3 | RollTheRock |
| 4 | Symphonique |
| 5 | Back 2 Juno |
| 6 | TinyBee / Bs |
| 7 | Funky Stage |
| 8 | Eden Gardens |
| 9 | Concerto Pno |
| 10 | Stage Brass |
| 11 | Notre-Dame |
| 12 | Dual Rotary |
| 13 | Silky Analog |
| 14 | Leading D/A |
| 15 | Now Friends |
| 16 | Airy Wurly |
| 17 | London Stage |
| 18 | Vinstage Pno |
| 19 | Only Roland |
| 20 | Vienna 1781 |
| 21 | The Leader |
| 22 | Rotary / Bs |
| 23 | EP / Rotary |
| 24 | EP / Bass |
| 25 | Piano / Brs |
| 26 | Dreaming Pno |
| 27 | HypnoRhythm |
| 28 | Dual D-50 |
| 29 | New Age |
| 30 | VOCODER+Bass |
| 31 | VOCODER+Orgn |
| 32 | VOCODER+Pad |
|  |  |


| No | Name |
| :--- | :--- |
| 33 | GM2 Template |
| 34 | SuperRichPNO |
| 35 | Bs/Piano |
| 36 | Brite Piano |
| 37 | CrystalGrand |
| 38 | SuperPhaseEP |
| 39 | D50 Memories |
| 40 | RockOrg |
| 41 | Delicate |
| 42 | SuperStrings |
| 43 | Braves |
| 44 | Orchestral |
| 45 | Sonic |
| 46 | Pole |
| 47 | Twilight |
| 48 | 3AM |
| 49 | Ocean |
| 50 | Jupiters |
| 51 | Blizzard |
| 52 | Horizon |
| 53 | Buzz |
| 54 | 80s |
| 55 | TripTo80s |
| 56 | 80s Stack |
| 57 | AutoNoise |
| 58 | World Lead |
| 59 | XyloSawLead |
| 60 | WoodyFltld |
| 61 | Saturn |
| 62 | Tale |
| 63 | Synchronize |
| 64 | Gramophone |

Gramophone

PRST (Preset Group)

| No | Name |
| ---: | :--- |
| 1 | Piano / Bass |
| 2 | Jazz n' Rhtm |
| 3 | RollTheRock |
| 4 | Symphonique |
| 5 | Back 2 Juno |
| 6 | TinyBee / Bs |
| 7 | Funky Stage |
| 8 | Eden Gardens |
| 9 | Concerto Pno |
| 10 | Stage Brass |
| 11 | Notre-Dame |
| 12 | Dual Rotary |
| 13 | Silky Analog |
| 14 | Leading D/A |
| 15 | Now Friends |
| 16 | Airy Wurly |
| 17 | London Stage |
| 18 | Vinstage Pno |
| 19 | Only Roland |
| 20 | Vienna 1781 |
| 21 | The Leader |
| 22 | Rotary / Bs |
| 23 | EP / Rotary |
| 24 | EP / Bass |
| 25 | Piano / Brs |
| 26 | Dreaming Pno |
| 27 | HypnoRhythm |
| 28 | Dual D-50 |
| 29 | New Age |
| 30 | VOCODER+Bass |
| 31 | VOCODER+Orgn |
| 32 | VOCODER+Pad |
|  |  |


| No | Name |
| :--- | :--- |
| 33 | GM2 Template |
| 34 | SuperRichPNO |
| 35 | Bs/Piano |
| 36 | Brite Piano |
| 37 | CrystalGrand |
| 38 | SuperPhaseEP |
| 39 | D50 Memories |
| 40 | RockOrg |
| 41 | Delicate |
| 42 | SuperStrings |
| 43 | Braves |
| 44 | Orchestral |
| 45 | Sonic |
| 46 | Pole |
| 47 | Twilight |
| 48 | 3AM |
| 49 | Ocean |
| 50 | Jupiters |
| 51 | Blizzard |
| 52 | Horizon |
| 53 | Buzz |
| 54 | 80s |
| 55 | TripTo80s |
| 56 | 8Os Stack |
| 57 | AutoNoise |
| 58 | World Lead |
| 59 | XyloSawLead |
| 60 | WoodyFltLd |
| 61 | Saturn |
| 62 | Tale |
| 63 | Synchronize |
| 64 | Gramophone |
|  |  |

## Patch List

## USER (User Group)

User $1-128(C C \# 0=87, C C \# 32=0), U s e r 129-256(C C \# 0=87, C C \# 32=1)$

| No | Name | Voice | Category |
| :---: | :---: | :---: | :---: |
| 001 | 88StageGrand | 2 | AC.Piano |
| 002 | Juno-Grand | 4 | AC.Piano |
| 003 | JD-800 Piano | 1 | AC.Piano |
| 004 | Stage Phazer | 2 | EL.Piano |
| 005 | Lounge Kit | 2 | Combination |
| 006 | Trem Wuly | 1 | EL.Piano |
| 007 | FM-777 | 5 | EL.Piano |
| 008 | SA EPiano | 3 | EL.Piano |
| 009 | HardRockORG1 | 4 | Organ |
| 010 | Rocky Organ | 2 | Organ |
| 011 | FullStop Org | 3 | Organ |
| 012 | R\&B Organ 2 | 4 | Organ |
| 013 | X Perc Organ | 3 | Organ |
| 014 | Smoky Organ | 1 | Organ |
| 015 | Crummy Organ | 2 | Organ |
| 016 | Chapel Organ | 2 | Organ |
| 017 | Mid Pipe Org | 4 | Organ |
| 018 | VntgClav | 3 | Keyboards |
| 019 | Phase Clavi | 2 | Keyboards |
| 020 | Funky Line | 2 | Keyboards |
| 021 | Harpsy Clavi | 2 | Keyboards |
| 022 | Strings | 8 | Strings |
| 023 | String Ens | 3 | Strings |
| 024 | Wind \& Str 1 | 7 | Orchestra |
| 025 | Soft Orch 2 | 7 | Orchestra |
| 026 | Hollow | 4 | Soft Pad |
| 027 | Heaven Pad | 3 | Soft Pad |
| 028 | Soft OB Pad | 3 | Soft Pad |
| 029 | Reso Pad | 3 | Soft Pad |
| 030 | Slow Saw Str | 2 | Soft Pad |
| 031 | JP Strings 2 | 5 | Soft Pad |
| 032 | Comb | 3 | Bright Pad |
| 033 | Super SynStr | 2 | Bright Pad |
| 034 | 80s Str | 8 | Bright Pad |
| 035 | Polar Night | 4 | Bright Pad |
| 036 | Distant Sun | 4 | Bright Pad |
| 037 | BrtBrass | 4 | AC.Brass |
| 038 | Horny Sax | 2 | Sax |
| 039 | 80s Brass 1 | 6 | Synth Brass |
| 040 | Juno-106 Brs | 1 | Synth Brass |
| 041 | Poly Brass | 2 | Synth Brass |
| 042 | JP8000 Brass | 6 | Synth Brass |
| 043 | Brass | 4 | Synth Brass |
| 044 | SuperSawSlow | 2 | Other Synth |
| 045 | Trance | 3 | Other Synth |
| 046 | Trancy Synth | 2 | Other Synth |
| 047 | Stacc Heaven | 4 | Other Synth |
| 048 | Sugar Synth | 5 | Other Synth |
| 049 | Himalaya Ice | 2 | Bell |
| 050 | Wine Glass | 4 | Bell |
| 051 | Synergy MLT | 2 | Mallet |
| 052 | AirPluck | 4 | Mallet |
| 053 | Marimba | 1 | Mallet |
| 054 | Cmp'd Fng Bs | 3 | Bass |
| 055 | FingerMaster | 2 | Bass |
| 056 | Return2Base! | 1 | Bass |
| 057 | Chicken Bass | 3 | Bass |
| 058 | Fretnot 1 | 2 | Bass |
| 059 | Got Pop? | 1 | Bass |
| 060 | Ac Bass | 1 | Bass |
| 061 | Low Bass | 3 | Synth Bass |
| 062 | Foundation | 2 | Synth Bass |
| 063 | Fat RubberBs | 3 | Synth Bass |
| 064 | Punch MG 2 | 2 | Synth Bass |
| 065 | GarageBs2 | 2 | Synth Bass |
| 066 | Acid Bs | 2 | Synth Bass |
| 067 | Loco Voco | 2 | Synth Bass |
| 068 | VirtualHuman | 4 | Pulsating |
| 069 | Strobot | 2 | Pulsating |
| 070 | Strobe | 4 | Pulsating |


| No | Name | Voice | Category |
| :---: | :---: | :---: | :---: |
| 071 | HPF Slicer | 3 | Pulsating |
| 072 | Choir Aahs 1 | 4 | Vox |
| 073 | Choir Aahs 2 | 4 | Vox |
| 074 | Angels Choir | 4 | Vox |
| 075 | Syn Opera | 4 | Vox |
| 076 | Choir\&Str | 7 | Vox |
| 077 | Terra Nostra | 8 | Soft Pad |
| 078 | Aah Vox | 2 | Vox |
| 079 | Squlead | 4 | Soft Lead |
| 080 | Howards Lead | 3 | Soft Lead |
| 081 | Windy Synth | 3 | Soft Lead |
| 082 | Sinetific | 2 | Soft Lead |
| 083 | SoloNzPeaker | 1 | Soft Lead |
| 084 | Juno Sftld | 1 | Soft Lead |
| 085 | R\&B Trilead | 1 | Soft Lead |
| 086 | X-Pulse Lead | 2 | Soft Lead |
| 087 | Theramax | 1 | Soft Lead |
| 088 | GR Lead | 2 | Soft Lead |
| 089 | Chubby Lead | 2 | Soft Lead |
| 090 | Shaku Lead | 5 | Soft Lead |
| 091 | Porta Solold | 2 | Hard Lead |
| 092 | Wind Syn Ld | 2 | Hard Lead |
| 093 | Follow Me | 2 | Hard Lead |
| 094 | Saw Ld 1 | 2 | Hard Lead |
| 095 | Sync Ld Mono | 1 | Hard Lead |
| 096 | Brt Nylon | 1 | AC.Guitar |
| 097 | So good! | 2 | AC.Guitar |
| 098 | 12str Gtr | 3 | AC.Guitar |
| 099 | Jazz Guitar | 1 | EL Guitar |
| 100 | Strat Gtr | 1 | EL Guitar |
| 101 | Trem-o-Vibe | 2 | Dist.Guitar |
| 102 | Searing COSM | 2 | Dist.Guitar |
| 103 | Larsen /Aft | 2 | Dist.Guitar |
| 104 | Loud Gtr | 3 | Dist.Guitar |
| 105 | Sitar on C | 6 | Plucked |
| 106 | Pat is away | 5 | Plucked |
| 107 | Bosporus | 3 | Plucked |
| 108 | Aerial Harp | 2 | Plucked |
| 109 | Nice Kalimba | 1 | Plucked |
| 110 | Flute | 2 | Flute |
| 111 | Andes Mood | 1 | Flute |
| 112 | LongDistance | 1 | Ethnic |
| 113 | Ambi Shaku | 3 | Ethnic |
| 114 | Soprano Sax | 1 | Sax |
| 115 | Solo AltoSax | 1 | Sax |
| 116 | XP TnrBrethy | 1 | Sax |
| 117 | Good Old Day | 3 | Wind |
| 118 | BluesHrp V/S | 1 | Harmonica |
| 119 | Squeeze Me! | 4 | Accordion |
| 120 | Solo Tp | 2 | AC.Brass |
| 121 | Violin 1 | 1 | Strings |
| 122 | Cello 1 | 1 | Strings |
| 123 | Juno-D Maj7 | 4 | Techno Synth |
| 124 | Sweet House | 4 | Techno Synth |
| 125 | ElectroDisco | 5 | Beat\&Groove |
| 126 | Groove 007 | 4 | Beat\&Groove |
| 127 | Autotrance | 4 | Beat\&Groove |
| 128 | Compusonic 2 | 4 | Beat\&Groove |
| 129 | Passing by | 4 | Synth FX |
| 130 | Rich Grand | 2 | AC.Piano |
| 131 | GermanGrand | 2 | AC.Piano |
| 132 | Oil Can Bass | 3 | Synth Bass |
| 133 | Pedal SynBs | 2 | Synth Bass |
| 134 | Big Mini 1 | 3 | Synth Bass |
| 135 | Big Mini 2 | 2 | Synth Bass |
| 136 | SH-2 Bs | 2 | Synth Bass |
| 137 | SH-101 Bs | 2 | Synth Bass |
| 138 | R\&B Bass 5 | 3 | Synth Bass |
| 139 | R\&B Bass 6 | 1 | Synth Bass |
| 140 | R\&B Bass 7 | 3 | Synth Bass |


| No | Name | Voice | Category |
| :---: | :---: | :---: | :---: |
| 141 | Moogy Bass 1 | 2 | Synth Bass |
| 142 | Moogy Bass 2 | 2 | Synth Bass |
| 143 | Juno Reso | 2 | Synth Bass |
| 144 | Alpha SBass 1 | 2 | Synth Bass |
| 145 | Alpha SBass2 | 2 | Synth Bass |
| 146 | SH Square | 2 | Synth Bass |
| 147 | SH Sawtooth | 2 | Synth Bass |
| 148 | Pedal Square | 2 | Synth Bass |
| 149 | Doze Bass | 1 | Synth Bass |
| 150 | Virtual RnBs | 2 | Synth Bass |
| 151 | Saw\&MG Bass | 4 | Synth Bass |
| 152 | SquareBs 1 | 2 | Synth Bass |
| 153 | Sine Lead | 1 | Soft Lead |
| 154 | Pure Sin Ld | 1 | Soft Lead |
| 155 | PureLD Tri | 3 | Soft Lead |
| 156 | Sqr Lead 1 | 2 | Soft Lead |
| 157 | Squ Pipe | 4 | Soft Lead |
| 158 | Pure Squld 1 | 1 | Soft Lead |
| 159 | Pure Squld 2 | 2 | Soft Lead |
| 160 | MG Squ Ld 1 | 2 | Soft Lead |
| 161 | MG Squ Ld 2 | 2 | Soft Lead |
| 162 | MG Squ Ld 3 | 1 | Soft Lead |
| 163 | MG Squ Ld 4 | 2 | Soft Lead |
| 164 | Reso G | 1 | Soft Lead |
| 165 | Mew Lead | 1 | Soft Lead |
| 166 | Pulstar G | 2 | Soft Lead |
| 167 | MG Saw Ld 1 | 2 | Soft Lead |
| 168 | MG Saw Ld 2 | 4 | Soft Lead |
| 169 | Vint SawLead | 2 | Soft Lead |
| 170 | Shy Saw Lead | 1 | Soft Lead |
| 171 | Mid Saw Ld 1 | 2 | Soft Lead |
| 172 | Mid Saw Ld 2 | 2 | Soft Lead |
| 173 | Mid Saw Ld 3 | 1 | Soft Lead |
| 174 | Mid Saw Ld 4 | 4 | Soft Lead |
| 175 | Mid Saw Ld 5 | 1 | Soft Lead |
| 176 | Mid Saw Key | 2 | Soft Lead |
| 177 | ResoSaw Lead | 2 | Soft Lead |
| 178 | ResoAmp Ld | 2 | Soft Lead |
| 179 | Jucy Saw | 3 | Soft Lead |
| 180 | Juno SftLead | 1 | Soft Lead |
| 181 | R\&B Tri Ld 1 | 1 | Soft Lead |
| 182 | R\&B Tri Ld 2 | 1 | Soft Lead |
| 183 | Weather Ld 1 | 2 | Soft Lead |
| 184 | Weather Ld 2 | 2 | Soft Lead |
| 185 | Weather Pad | 4 | Soft Lead |
| 186 | Weather Ld 3 | 2 | Soft Lead |
| 187 | Shy Soloist | 1 | Soft Lead |
| 188 | Softlead | 2 | Soft Lead |
| 189 | CompSaw Ld | 2 | Soft Lead |
| 190 | OB Lead 1 | 2 | Soft Lead |
| 191 | OB Lead 2 | 2 | Soft Lead |
| 192 | BellSawLead 1 | 3 | Soft Lead |
| 193 | BellSawLead2 | 4 | Soft Lead |
| 194 | Brusky Ld | 3 | Soft Lead |
| 195 | Mod Lead | 4 | Soft Lead |
| 196 | Polysine | 2 | Soft Lead |
| 197 | Wally Ld | 3 | Soft Lead |
| 198 | Belly Ld | 3 | Soft Lead |
| 199 | Castle Ld 1 | 2 | Soft Lead |
| 200 | Castle Ld 2 | 2 | Soft Lead |
| 201 | CompSqu Ld | 2 | Soft Lead |
| 202 | Digi Vox Ld | 3 | Soft Lead |
| 203 | Digi Lead | 3 | Soft Lead |
| 204 | Velo Voicez | 2 | Bright Pad |
| 205 | Jet Pad | 8 | Bright Pad |
| 206 | Space Pad | 4 | Bright Pad |
| 207 | Glossy Pad | 4 | Bright Pad |
| 208 | Magic Sines | 4 | Soft Pad |
| 209 | PAD | 3 | Soft Pad |

User 210-256: "INIT PATCH"

## Patch List

## PRST (Preset Group)

Preset 001-128 (CC\#0=87, CC\#32 =64 PC=1-128), Preset 129-256 (CC\#0=87, CC\#32 =65 PC=1-128)

| No | Name | Voice | Category |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 001 | 88StageGrand | 2 | AC. Piano | 065 | FM EP mix | 6 | EL.Piano | 129 | SuperDistORG | 4 | Organ | 193 | Punker 2 | 2 | Dist.Guitar |
| 002 | Juno-Grand | 4 | AC.Piano | 066 | FM-777 | 5 | EL.Piano | 130 | SuperDistld2 | 4 | Organ | 194 | Larsen /Aft | 2 | Dist.Guitar |
| 003 | ConcriPno | 2 | AC. Piano | 067 | FM EPad | 3 | EL.Piano | 131 | Fulldraw Org | 3 | Organ | 195 | Rockin' Dly | 3 | Dist.Guitar |
| 004 | GermanGrand | 2 | AC.Piano | 068 | EP Stack | 4 | El.Piano | 132 | StakDraw Org | 4 | Organ | 196 | Ac Bass | 1 | Bass |
| 005 | Rich Grand | 2 | AC.Piano | 069 | EP Belle 1 | 3 | El.Piano | 133 | FullStop Org | 3 | Organ | 197 | Ulit Ac Bass | 2 | Bass |
| 006 | So true... | 2 | AC.Piano | 070 | 80s EP | 4 | EL.Piano | 134 | Perc Org | 4 | Organ | 198 | Downright Bs | 3 | Bass |
| 007 | ConcertPiano | 3 | AC. Piano | 071 | SA EPiano | 3 | EL.Piano | 135 | VKHold4Speed | 4 | Organ | 199 | Cmp'd Fng Bs | 3 | Bass |
| 008 | Warm Piano | 2 | AC. Piano | 072 | BrillClav DB | 2 | Keyboards | 136 | X Perc Organ | 3 | Organ | 200 | Fing Bs | 3 | Bass |
| 009 | ConcertGrand | 2 | AC.Piano | 073 | Clav | 2 | Keyboards | 137 | Rocky Organ | 2 | Organ | 201 | Ultimo Bass | 2 | Bass |
| 010 | Hall Concert | 2 | AC.Piano | 074 | VntgClav | 3 | Keyboards | 138 | Euro Organ | 2 | Organ | 202 | Roomy Bass | 2 | Bass |
| 011 | Bright Tune | 2 | AC.Piano | 075 | Cutter Clavi | 2 | Keyboards | 139 | Rhythm'n'B | 4 | Organ | 203 | FingerMaster | 2 | Bass |
| 012 | Mellow Tune | 2 | AC.Piano | 076 | Funky D | 2 | Keyboards | 140 | Phono Organ | 2 | Organ | 204 | All Round Bs | 2 | Bass |
| 013 | Studio Grand | 2 | AC. Piano | 077 | Phase Clavi | 2 | Keyboards | 141 | LoFi PercOrg | 1 | Organ | 205 | R\&B Bs/Slide | 2 | Bass |
| 014 | First Choice | 2 | AC.Piano | 078 | BPF Clavi Ph | 2 | Keyboards | 142 | Rochno Org | 4 | Organ | 206 | Pick Bs | 3 | Bass |
| 015 | Rokkin' pF | 2 | AC. Piano | 079 | Pulse Clavi | 2 | Keyboards | 143 | R\&B Organ 1 | 2 | Organ | 207 | Thumb Up! | 1 | Bass |
| 016 | Dark Grand | 4 | AC. Piano | 080 | PWM Clav | 1 | Keyboards | 144 | R\&B Organ 2 | 4 | Organ | 208 | Tubby Mute | 2 | Bass |
| 017 | Grand+Pad | 4 | AC.Piano | 081 | Funky Line | 2 | Keyboards | 145 | Dist Bee | 1 | Organ | 209 | Chicken Bass | 3 | Bass |
| 018 | Warm Pad Pno | 4 | AC.Piano | 082 | Biting Clav | 2 | Keyboards | 146 | 60's Org 1 | 2 | Organ | 210 | Snug Bass | 2 | Bass |
| 019 | Grand+Vox | 4 | AC.Piano | 083 | Analog Clavi | 1 | Keyboards | 147 | 60's Org 2 | 2 | Organ | 211 | Return2Base! | 1 | Bass |
| 020 | Cicada Piano | 4 | AC.Piano | 084 | Reso Clavi | 2 | Keyboards | 148 | Smoky Organ | 1 | Organ | 212 | Chorus Bass | 2 | Bass |
| 021 | X Piano +Str | 4 | AC.Piano | 085 | Snappy Clav | 2 | Keyboards | 149 | SoapOpera | 1 | Organ | 213 | A Big Pick | 3 | Bass |
| 022 | Warm Str Pno | 6 | AC.Piano | 086 | Over-D6 | 3 | Keyboards | 150 | Crummy Organ | 2 | Organ | 214 | Basement | 1 | Bass |
| 023 | Grand Hall | 5 | AC.Piano | 087 | Harpsy Clavi | 2 | Keyboards | 151 | Chapel Organ | 2 | Organ | 215 | Fretnot 1 | 2 | Bass |
| 024 | Rapsody | 7 | AC. Piano | 088 | Harpsi | 4 | Keyboards | 152 | Grand Pipe | 3 | Organ | 216 | Fretnot 2 | 3 | Bass |
| 025 | JD-800 Piano | 1 | AC. Piano | 089 | Amadeus | 8 | Keyboards | 153 | Pipe Org/Mod | 6 | Organ | 217 | RichFretless | 2 | Bass |
| 026 | SA Dance Pno | 2 | AC.Piano | 090 | Celesta | 1 | Keyboards | 154 | Masked Opera | 6 | Organ | 218 | NewAge Frtls | 3 | Bass |
| 027 | E-Grand | 4 | AC.Piano | 091 | Himalaya Ice | 2 | Bell | 155 | Mid Pipe Org | 4 | Organ | 219 | SlapBass 1 | 1 | Bass |
| 028 | Back E-Grand | 2 | AC. Piano | 092 | FM Syn Bell | 4 | Bell | 156 | Vodkakordion | 3 | Accordion | 220 | Slap2 w/Fx | 1 | Bass |
| 029 | Grand+FM | 4 | AC. Piano | 093 | D-50 Fantsia | 3 | Bell | 157 | Squeeze Me! | 4 | Accordion | 221 | Got Pop? | 1 | Bass |
| 030 | Blend Pno | 5 | AC.Piano | 094 | Wine Glass | 4 | Bell | 158 | Guinguette | 3 | Accordion | 222 | JBass v/Thmb | 2 | Bass |
| 031 | Piano Oz | 4 | AC.Piano | 095 | MuBox Pad | 4 | Bell | 159 | HarWonderca | 2 | Harmonica | 223 | Slap Bass | 2 | Bass |
| 032 | FX Piano | 4 | AC.Piano | 096 | Bell 1 | 4 | Bell | 160 | BluesHrp V/S | 1 | Harmonica | 224 | X Slap Bass | 3 | Bass |
| 033 | AmbientPiano | 4 | AC.Piano | 097 | FM Heaven | 4 | Bell | 161 | Green Bullet | 2 | Harmonica | 225 | Low Bass | 3 | Synth Bass |
| 034 | Pure EP | 1 | EL.Piano | 098 | Juno Glocken | 1 | Bell | 162 | Brt Nylon | 1 | AC. Guitar | 226 | Mini Like! | 2 | Synth Bass |
| 035 | Trem EP | 1 | EL.Piano | 099 | Music Bells | 2 | Bell | 163 | SoftNyln Gtr | 2 | AC.Guitar | 227 | MC-404 Bass | 2 | Synth Bass |
| 036 | Phase EP | 1 | EL.Piano | 100 | Musicbox | 1 | Bell | 164 | Nylon Gt | 2 | AC.Guitar | 228 | Fat RubberBs | 3 | Synth Bass |
| 037 | PhaseEPLayer | 3 | EL.Piano | 101 | Music Box 2 | 2 | Bell | 165 | Wet Nyln Gtr | 3 | AC.Guitar | 229 | SH-101 Bs 1 | 2 | Synth Bass |
| 038 | E.Piano | 5 | EL.Piano | 102 | Kalimbells | 2 | Bell | 166 | Pre Mass Hum | 4 | AC.Guitar | 230 | Syn Bass 1 | 3 | Synth Bass |
| 039 | StageEP Trem | 2 | EL.Piano | 103 | Step Ice | 4 | Bell | 167 | Thick Steel | 2 | AC.Guitar | 231 | Juno-106 Bs | 2 | Synth Bass |
| 040 | Back2the60s | 2 | EL.Piano | 104 | Bell 2 | 2 | Bell | 168 | Uncle Martin | 2 | AC.Guitar | 232 | Smooth Bass | 2 | Synth Bass |
| 041 | Stage EP | 4 | EL.Piano | 105 | Candy Bell | 2 | Bell | 169 | Wide Ac Gtr | 4 | AC.Guitar | 233 | Flat Bs | 3 | Synth Bass |
| 042 | Stage Phazer | 2 | EL.Piano | 106 | Chime | 1 | Bell | 170 | Comp Stl Gtr | 2 | AC.Guitar | 234 | Foundation | 2 | Synth Bass |
| 043 | StageCabinet | 2 | EL.Piano | 107 | Bell Ring | 4 | Bell | 171 | Stl Grr Duo |  | AC.Guitar | 235 | Punch MG 2 | 2 | Synth Bass |
| 044 | Tine EP | 1 | EL.Piano | 108 | Tubular Bell | 1 | Bell | 172 | 12 str Gtr | 3 | AC.Guitar | 236 | Electro Rubb | 2 | Synth Bass |
| 045 | LEO EP | 4 | EL.Piano | 109 | 5th Key | 2 | Bell | 173 | So good! | 2 | AC.Guitar | 237 | R\&B Bass 1 | 2 | Synth Bass |
| 046 | LonesomeRoad | 2 | EL.Piano | 110 | Bell Monitor | 2 | Bell | 174 | StratSeq'nce | 2 | EL Guitar | 238 | Enoriizor | 2 | Synth Bass |
| 047 | Age'n'Tines | 2 | EL.Piano | 111 | TubyRuesday | 2 | Bell | 175 | Jazz Guitar | 1 | EL Guitar | 239 | LowFat Bass | 3 | Synth Bass |
| 048 | Brill TremEP | 2 | EL.Piano | 112 | Vibrations | 2 | Mallet | 176 | DynoJazz Gtr | 1 | EL Guitar | 240 | Doze Bass | 1 | Synth Bass |
| 049 | Crystal EP | 2 | EL.Piano | 113 | Vibe | 1 | Mallet | 177 | Clean Grr | 1 | EL Guitar | 241 | DCO Bass | 4 | Synth Bass |
| 050 | Vintage Tine | 1 | El.Piano | 114 | Ringy Vibes | 2 | Mallet | 178 | Crimson Gtr | 2 | EL Guitar | 242 | Virtual RnBs | 2 | Synth Bass |
| 051 | Celestial EP | 4 | EL.Piano | 115 | Airie Vibez | 4 | Mallet | 179 | Plug n' Gig | 1 | EL Guitar | 243 | Saw\&MG Bass | 4 | Synth Bass |
| 052 | Psycho EP | 4 | EL.Piano | 116 | Marimba | 1 | Mallet | 180 | Kinda Kurt | 2 | EL Guitar | 244 | MG+SubOsc Bs | 2 | Synth Bass |
| 053 | Mk2 phsr | 3 | EL.Piano | 117 | FM Wood | 4 | Mallet | 181 | Nice Oct Gtr | 2 | EL Guitar | 245 | R\&B Bass 2 | 1 | Synth Bass |
| 054 | Dreaming EP | 4 | EL.Piano | 118 | Xylo | 1 | Mallet | 182 | Strat Gtr | 1 | EL Guitar | 246 | R\&B Bass 3 | 2 | Synth Bass |
| 055 | Balladeer | 3 | EL.Piano | 119 | Ethno Keys | 2 | Mallet | 183 | Touch Drive | 1 | Dist.Guitar | 247 | Not a Bass | 2 | Synth Bass |
| 056 | Remember | 2 | EL.Piano | 120 | Synergy MLT | 2 | Mallet | 184 | Chunk | 4 | Dist.Guitar | 248 | ResoSyn Bs 1 | 2 | Synth Bass |
| 057 | Vibe EP | 1 | EL.Piano | 121 | Icy Keys | 4 | Mallet | 185 | Trem-o-Vibe | 2 | Dist.Guitar | 249 | SH-1 Bass | 2 | Synth Bass |
| 058 | $\sin (E P)$ | 2 | EL.Piano | 122 | Steel Drums | 2 | Mallet | 186 | LP Dist | 2 | Dist.Guitar | 250 | SH-101 Bs 2 | 2 | Synth Bass |
| 059 | Pure Wuly | 1 | EL.Piano | 123 | 50`SteelDrms | 4 | Mallet | 187 | Hurtling Gtr | 3 | Dist.Guitar | 251 | Punch MG 1 | 2 | Synth Bass |
| 060 | Trem Wuly | 1 | EL.Piano | 124 | Xylosizer | 2 | Mallet | 188 | Searing COSM | 2 | Dist.Guitar | 252 | MKS-50 SynBs | 1 | Synth Bass |
| 061 | Super Wurly | 3 | EL.Piano | 125 | Toy Box | 3 | Mallet | 189 | Loud Gtr | 3 | Dist.Guitar | 253 | Gashed Bass | 2 | Synth Bass |
| 062 | Wurly Trem | 3 | EL.Piano | 126 | AirPluck | 4 | Mallet | 190 | Plugged!! | 1 | Dist.Guitar | 254 | Q Bass | 3 | Synth Bass |
| 063 | VelSpdWurly | 2 | EL.Piano | 127 | HardRockORG1 | 4 | Organ | 191 | Punker 1 | 2 | Dist.Guitar | 255 | Super-G DX | 3 | Synth Bass |
| 064 | Fonky Fonky | 2 | EL.Piano | 128 | HardRockORG2 | 5 | Organ | 192 | PowerChd | 2 | Dist.Guitar | 256 | Kickin' Bass | 2 | Synth Bass |

Preset 257-384 (CC\#0 $=87, C C \# 32=66 \mathrm{PC}=1-128)$, Preset $385-512(\mathrm{CC} \mathrm{\# O}=87, C C \# 32=67 \mathrm{PC}=1-128)$

| No | Name | Voice | Category |
| :---: | :---: | :---: | :---: |
| 257 | OilDrum Bass | 3 | Synth Bass |
| 258 | Dust Bass | 4 | Synth Bass |
| 259 | Glide-iator | 2 | Synth Bass |
| 260 | AcidPunch | 2 | Synth Bass |
| 261 | TBasic | 1 | Synth Bass |
| 262 | Unison Bs | 2 | Synth Bass |
| 263 | Detune Bass | 2 | Synth Bass |
| 264 | Lo Bass | 3 | Synth Bass |
| 265 | GarageBs 1 | 3 | Synth Bass |
| 266 | GarageBs2 | 2 | Synth Bass |
| 267 | Sub Sonic | 4 | Synth Bass |
| 268 | Jungle Bs | 2 | Synth Bass |
| 269 | R\&B Bass 4 | 1 | Synth Bass |
| 270 | Simply Basic | 2 | Synth Bass |
| 271 | Beepin Bass | 2 | Synth Bass |
| 272 | MC-TB Bass | 2 | Synth Bass |
| 273 | Acdg Bass | 2 | Synth Bass |
| 274 | Loco Voco | 2 | Synth Bass |
| 275 | Unplug it! | 1 | Synth Bass |
| 276 | S\&H Bass | 2 | Synth Bass |
| 277 | Destroyed Bs | 2 | Synth Bass |
| 278 | Acid Bs | 2 | Synth Bass |
| 279 | Lo-Fi TB | 1 | Synth Bass |
| 280 | Drop Bass | 3 | Synth Bass |
| 281 | Big Mini | 3 | Synth Bass |
| 282 | Muffled MG | 2 | Synth Bass |
| 283 | Intrusive Bs | 2 | Synth Bass |
| 284 | Alpha SynBs | 2 | Synth Bass |
| 285 | TransistorBs | 3 | Synth Bass |
| 286 | Juno-60 Bass | 2 | Synth Bass |
| 287 | Storm Bass | 4 | Synth Bass |
| 288 | Alpha ResoBs | 2 | Synth Bass |
| 289 | SH-101 Vibe | 4 | Synth Bass |
| 290 | Fazee Bass | 4 | Synth Bass |
| 291 | Hi-Energy Bs | 2 | Synth Bass |
| 292 | Violin 1 | 1 | Strings |
| 293 | Violin 2 | 1 | Strings |
| 294 | Viola | 3 | Strings |
| 295 | Cello 1 | 1 | Strings |
| 296 | Cello 2 | 1 | Strings |
| 297 | Contrabass | 4 | Strings |
| 298 | Dolce Qrt | 2 | Strings |
| 299 | Chamber Str | 3 | Strings |
| 300 | Small Str | 7 | Strings |
| 301 | Marcato | 2 | Strings |
| 302 | Bright Str | 2 | Strings |
| 303 | String Ens | 3 | Strings |
| 304 | Strings | 8 | Strings |
| 305 | Stringz 101 | 2 | Strings |
| 306 | Crossed Bows | 5 | Strings |
| 307 | Warm Strings | 5 | Strings |
| 308 | Stacc mp Str | 4 | Strings |
| 309 | Movie Scene | 4 | Strings |
| 310 | Hybrid Str 1 | 6 | Strings |
| 311 | Gang Strangs | 6 | Strings |
| 312 | Clustered!?! | 8 | Strings |
| 313 | Full Strings | 4 | Strings |
| 314 | X StrSection | 4 | Strings |
| 315 | Oct Strings | 6 | Strings |
| 316 | Sahara Str | 4 | Strings |
| 317 | Random Mood | 6 | Strings |
| 318 | X Hall Str | 8 | Strings |
| 319 | Slow Str | 8 | Strings |
| 320 | Hybrid Str 2 | 7 | Strings |


| No | Name | Voice | Category |
| :---: | :---: | :---: | :---: |
| 321 | Biggie Bows | 6 | Strings |
| 322 | Staccato VS | 4 | Strings |
| 323 | So Staccato | 4 | Strings |
| 324 | DelicatePizz | 4 | Strings |
| 325 | Vls PizzHall | 8 | Strings |
| 326 | Orch Pizz | 4 | Strings |
| 327 | Pizz'Stac VS | 6 | Strings |
| 328 | Mellow Tron | 3 | Strings |
| 329 | Tronic Str | 2 | Strings |
| 330 | Tape Memory | 2 | Strings |
| 331 | Wind \& Str 1 | 7 | Orchestra |
| 332 | Wind \& Str 2 | 5 | Orchestra |
| 333 | Farewell | 6 | Orchestra |
| 334 | Orch \& Horns | 5 | Orchestra |
| 335 | Soft Orch 1 | 4 | Orchestra |
| 336 | Soft Orch 2 | 7 | Orchestra |
| 337 | Henry IX | 4 | Orchestra |
| 338 | Ending Scene | 4 | Orchestra |
| 339 | Symphonika | 8 | Orchestra |
| 340 | Mix Hit 2 | 4 | Hit\&Stab |
| 341 | Cheezy Movie | 4 | Hit\&Stab |
| 342 | Philly Hit | 1 | Hit\&Stab |
| 343 | Smear Hit 1 | 2 | Hit\&Stab |
| 344 | Smear Hit 2 | 2 | Hit\&Stab |
| 345 | Good Old Hit | 4 | Hit\&Stab |
| 346 | Mix Hit 1 | 4 | Hit\&Stab |
| 347 | Lo-Fi Hit | 4 | Hit\&Stab |
| 348 | 2ble Action | 2 | Hit\&Stab |
| 349 | In da Cave | 2 | Hit\&Stab |
| 350 | Housechord | 3 | Hit\&Stab |
| 351 | Mod Chord | 2 | Hit\&Stab |
| 352 | Dance Steam | 2 | Hit\&Stab |
| 353 | Good Old Day | 3 | Wind |
| 354 | WindWood | 3 | Wind |
| 355 | Clarence.net | 2 | Wind |
| 356 | Oboe | 1 | Wind |
| 357 | Hall Oboe | 1 | Wind |
| 358 | English Horn | 1 | Wind |
| 359 | Bassoon | 1 | Wind |
| 360 | Flute | 2 | Flute |
| 361 | Piccolo | 2 | Flute |
| 362 | Andes Mood | 1 | Flute |
| 363 | HimalayaPipe | 4 | Flute |
| 364 | Solo Tp | 2 | AC.Brass |
| 365 | Horn Chops | 2 | AC.Brass |
| 366 | Flugel Horn | 1 | AC.Brass |
| 367 | Spit Flugel | 3 | AC.Brass |
| 368 | Mute Tp / Mod | 3 | AC.Brass |
| 369 | Harmon Mute | 1 | AC.Brass |
| 370 | Soft Tb | 2 | AC.Brass |
| 371 | Solo Tb | 1 | AC.Brass |
| 372 | Solo Bone | 2 | AC.Brass |
| 373 | XP Horn | 1 | AC.Brass |
| 374 | Grande Tuba | 2 | AC.Brass |
| 375 | Tuba | 1 | AC.Brass |
| 376 | StackTp Sect | 4 | AC.Brass |
| 377 | Tb Section | 5 | AC.Brass |
| 378 | TpTb Sect. | 2 | AC.Brass |
| 379 | BrtBrass | 4 | AC.Brass |
| 380 | BrsSect 1 | 7 | AC.Brass |
| 381 | BrsSect 2 | 8 | AC.Brass |
| 382 | Tpts \& Tmbs | 2 | AC.Brass |
| 383 | Brass \& Sax | 5 | AC.Brass |
| 384 | BrassPartOut | 6 | AC.Brass |


| No | Name | Voice | Category |
| :---: | :---: | :---: | :---: |
| 385 | Simple Tutti | 2 | AC.Brass |
| 386 | F.Horns Sect | 3 | AC.Brass |
| 387 | Full sForza | 4 | AC.Brass |
| 388 | Stereo Brass | 4 | AC.Brass |
| 389 | Wide SynBrss | 2 | Synth Brass |
| 390 | DetuneSawBrs | 2 | Synth Brass |
| 391 | J-Pop Brass | 6 | Synth Brass |
| 392 | 80s Brass 1 | 6 | Synth Brass |
| 393 | 80s Brass 2 | 4 | Synth Brass |
| 394 | Ana Brass | 5 | Synth Brass |
| 395 | Soft Brass | 3 | Synth Brass |
| 396 | JP8000 Brass | 6 | Synth Brass |
| 397 | Brass | 4 | Synth Brass |
| 398 | Syn Brass | 4 | Synth Brass |
| 399 | Syn Brass 2 | 4 | Synth Brass |
| 400 | Xpand Brass | 2 | Synth Brass |
| 401 | Xpand Brass2 | 4 | Synth Brass |
| 402 | Super Saw | 4 | Synth Brass |
| 403 | SoftSynBrass | 2 | Synth Brass |
| 404 | Silky JP | 2 | Synth Brass |
| 405 | Silk Brs Pad | 1 | Synth Brass |
| 406 | 80s Brass 3 | 8 | Synth Brass |
| 407 | X-Saw Brass 1 | 2 | Synth Brass |
| 408 | Cheesy Brass | 4 | Synth Brass |
| 409 | Dual Saw Brs | 2 | Synth Brass |
| 410 | Juno-106 Brs | 1 | Synth Brass |
| 411 | Poly Brass | 2 | Synth Brass |
| 412 | Stacked Brs | 4 | Synth Brass |
| 413 | Soprano Sax | 1 | Sax |
| 414 | Solo Sop Sax | 1 | Sax |
| 415 | Alto mp | 1 | Sax |
| 416 | Alto Sax | 1 | Sax |
| 417 | Solo AltoSax | 1 | Sax |
| 418 | AltoLead Sax | 1 | Sax |
| 419 | XP TnrBrethy | 1 | Sax |
| 420 | Tenor Sax | 2 | Sax |
| 421 | Fat TenorSax | 3 | Sax |
| 422 | Baritone Sax | 1 | Sax |
| 423 | Sax Sect. 1 | 3 | Sax |
| 424 | Sax Sect. 2 | 4 | Sax |
| 425 | Horny Sax | 2 | Sax |
| 426 | FXM Alto Sax | 1 | Sax |
| 427 | Porta Solold | 2 | Hard Lead |
| 428 | Porta Lead | 2 | Hard Lead |
| 429 | Wind Syn Ld | 2 | Hard Lead |
| 430 | Saw Ld 1 | 2 | Hard Lead |
| 431 | Saw Ld 2 | 2 | Hard Lead |
| 432 | Juno Lead | 2 | Hard Lead |
| 433 | Follow Me | 2 | Hard Lead |
| 434 | DC Triangle | 2 | Hard Lead |
| 435 | Sqr-Seqence | 1 | Hard Lead |
| 436 | Pure Square | 2 | Hard Lead |
| 437 | Griggley | 2 | Hard Lead |
| 438 | LegatoSaw | 2 | Hard Lead |
| 439 | Lone Prophat | 1 | Hard Lead |
| 440 | Dual Profs | 2 | Hard Lead |
| 441 | Gwyo Press | 2 | Hard Lead |
| 442 | Q DualSaws | 2 | Hard Lead |
| 443 | Mogulator Ld | 2 | Hard Lead |
| 444 | DirtyVoltage | 2 | Hard Lead |
| 445 | Clean? | 2 | Hard Lead |
| 446 | Distortion | 4 | Hard Lead |
| 447 | Syn Ld | 2 | Hard Lead |
| 448 | SynLead 0322 | 2 | Hard Lead |


| No | Name | Voice | Category |
| :---: | :---: | :---: | :---: |
| 449 | X-Sink Delay | 3 | Hard Lead |
| 450 | Destroyed Ld | 2 | Hard Lead |
| 451 | Synchro Lead | 2 | Hard Lead |
| 452 | Sync Ld Mono | 1 | Hard Lead |
| 453 | SyncModulate | 3 | Hard Lead |
| 454 | Distorted MG | 1 | Hard Lead |
| 455 | Vampire | 2 | Hard Lead |
| 456 | Blue Meanie | 2 | Hard Lead |
| 457 | Juno Dist Ld | 2 | Hard Lead |
| 458 | Ringmod Lead | 4 | Hard Lead |
| 459 | Stimulation | 4 | Hard Lead |
| 460 | BodyElectric | 3 | Hard Lead |
| 461 | Classic Lead | 4 | Hard Lead |
| 462 | Feat Lead | 2 | Hard Lead |
| 463 | Wire Sync | 3 | Hard Lead |
| 464 | Epic Lead | 2 | Hard Lead |
| 465 | Bag Lead | 3 | Hard Lead |
| 466 | Wezcoast | 2 | Hard Lead |
| 467 | HyperJupiter | 3 | Hard Lead |
| 468 | Vintagolizer | 4 | Hard Lead |
| 469 | C64 Lead | 2 | Hard Lead |
| 470 | 303 NRG | 2 | Hard Lead |
| 471 | SquLead | 4 | Soft Lead |
| 472 | Sqr Lead | 2 | Soft Lead |
| 473 | SH Sqr Lead | 2 | Soft Lead |
| 474 | Round SQR | 2 | Soft Lead |
| 475 | Windy Synth | 3 | Soft Lead |
| 476 | Sqr Diamond | 2 | Soft Lead |
| 477 | Sinetific | 2 | Soft Lead |
| 478 | PeakArpSine | 1 | Soft Lead |
| 479 | Howards Lead | 3 | Soft Lead |
| 480 | SoloNzPeaker | 1 | Soft Lead |
| 481 | Juno Sftld | 1 | Soft Lead |
| 482 | R\&B TriLead | 1 | Soft Lead |
| 483 | R\&B Tri Ld2 | 1 | Soft Lead |
| 484 | Jupiter Lead | 1 | Soft Lead |
| 485 | Dig-n-Duke | 2 | Soft Lead |
| 486 | SoftLead | 2 | Soft Lead |
| 487 | Mid Saw Ld | 4 | Soft Lead |
| 488 | X-Pulse Lead | 2 | Soft Lead |
| 489 | Mild 2-SawLd | 2 | Soft Lead |
| 490 | Mew Lead | 1 | Soft Lead |
| 491 | Shy Soloist | 1 | Soft Lead |
| 492 | Theramax | 1 | Soft Lead |
| 493 | Therasqu | 1 | Soft Lead |
| 494 | GR Lead | 2 | Soft Lead |
| 495 | SH-2 Lead | 2 | Soft Lead |
| 496 | Resolead | 3 | Soft Lead |
| 497 | Modulated Ld | 1 | Soft Lead |
| 498 | Synthi Fizz | 2 | Soft Lead |
| 499 | Waspy Lead | 1 | Soft Lead |
| 500 | Pulstar Ld | 1 | Soft Lead |
| 501 | Naked Lead | 1 | Soft Lead |
| 502 | Alpha Spit | 1 | Soft Lead |
| 503 | Vliolin Lead | 2 | Soft Lead |
| 504 | Mod Lead | 4 | Soft Lead |
| 505 | JP Saw Lead | 2 | Soft Lead |
| 506 | Tristar | 2 | Soft Lead |
| 507 | Chubby Lead | 2 | Soft Lead |
| 508 | Sneaky Leady | 2 | Soft Lead |
| 509 | Shaku Lead | 5 | Soft Lead |
| 510 | Legato Tkno | 1 | Soft Lead |
| 511 | ResoSawLd | 2 | Soft Lead |
| 512 | SliCed Lead | 2 | Soft Lead |

Preset 513-640 (CC\#0 $=87, C C \# 32=68 P C=1-128)$, Preset $641-768(C C \# 0=87, C C \# 32=69 P C=1-128)$

| No | Name | Voice | Category |
| :---: | :---: | :---: | :---: |
| 513 | Mini Growl | 2 | Soft Lead |
| 514 | Evangelized | 2 | Soft Lead |
| 515 | Air Lead | 4 | Soft Lead |
| 516 | Juno-D Maj7 | 4 | Techno Synth |
| 517 | Sweet House | 4 | Techno Synth |
| 518 | Periscope | 4 | Techno Synth |
| 519 | 5th Voice | 6 | Techno Synth |
| 520 | HPF Sweep | 2 | Techno Synth |
| 521 | BPF Saw | 4 | Techno Synth |
| 522 | Moon Synth | 2 | Techno Synth |
| 523 | DelyResoSaws | 2 | Techno Synth |
| 524 | R-Trance | 7 | Techno Synth |
| 525 | Braatz... | 6 | Techno Synth |
| 526 | AllinOneRiff | 7 | Techno Synth |
| 527 | YZ Again | 7 | Techno Synth |
| 528 | Flazzy Lead | 8 | Techno Synth |
| 529 | Coffee Bee | 2 | Techno Synth |
| 530 | Stage-303 | 1 | Techno Synth |
| 531 | Dance Saws | 8 | Techno Synth |
| 532 | AluminmWires | 3 | Techno Synth |
| 533 | Fred\&Barney | 6 | Techno Synth |
| 534 | Electrostars | 4 | Techno Synth |
| 535 | LoFiSequence | 2 | Techno Synth |
| 536 | Melodic Line | 2 | Techno Synth |
| 537 | TB Wah | 1 | Techno Synth |
| 538 | Waving TB303 | 3 | Techno Synth |
| 539 | Digi Seq | 3 | Techno Synth |
| 540 | Juno Seq Saw | 1 | Techno Synth |
| 541 | Reso Seq Saw | 1 | Techno Synth |
| 542 | DetuneSeqSaw | 2 | Techno Synth |
| 543 | Technotribe | 2 | Techno Synth |
| 544 | Teethy Grit | 3 | Techno Synth |
| 545 | Repertition | 4 | Techno Synth |
| 546 | Killerbeez | 4 | Techno Synth |
| 547 | Acid Lead | 2 | Techno Synth |
| 548 | Tranceformer | 1 | Techno Synth |
| 549 | Anadroid | 1 | Techno Synth |
| 550 | Shroomy | 3 | Techno Synth |
| 551 | Noize R us | 2 | Techno Synth |
| 552 | Beep Melodie | 4 | Techno Synth |
| 553 | Morpher | 8 | Techno Synth |
| 554 | Uni-G | 2 | Techno Synth |
| 555 | Power Synth | 4 | Techno Synth |
| 556 | Hoover Again | 4 | Techno Synth |
| 557 | Alpha Said.. | 2 | Techno Synth |
| 558 | Ravers Awake | 2 | Techno Synth |
| 559 | Tekno Gargle | 2 | Techno Synth |
| 560 | Tranceiver | 4 | Techno Synth |
| 561 | Techno Dream | 4 | Techno Synth |
| 562 | Techno Pizz | 4 | Techno Synth |
| 563 | VirtualHuman | 4 | Pulsating |
| 564 | Strobot | 2 | Pulsating |
| 565 | Strobe | 4 | Pulsating |
| 566 | Strobe X | 5 | Pulsating |
| 567 | Rhythmic 5th | 4 | Pulsating |
| 568 | Pad | 3 | Pulsating |
| 569 | DarknessSide | 6 | Pulsating |
| 570 | Shape of $X$ | 5 | Pulsating |
| 571 | Dance | 5 | Pulsating |
| 572 | ShapeURMusic | 5 | Pulsating |
| 573 | Synth Force | 4 | Pulsating |
| 574 | Trance Split | 2 | Pulsating |
| 575 | Step Trance | 1 | Pulsating |
| 576 | Chop Synth | 2 | Pulsating |


| No | Name | Voice | Category |
| :---: | :---: | :---: | :---: |
| 577 | Euro Teuro | 6 | Pulsating |
| 578 | Auto Trance | 2 | Pulsating |
| 579 | Eureggae | 2 | Pulsating |
| 580 | Sorry4theDLY | 2 | Pulsating |
| 581 | Beat Pad | 3 | Pulsating |
| 582 | TMT Seq Pad | 4 | Pulsating |
| 583 | ForYourBreak | 4 | Pulsating |
| 584 | HPF Slicer | 3 | Pulsating |
| 585 | Sliced Choir | 6 | Pulsating |
| 586 | Digi-Doo | 2 | Pulsating |
| 587 | PanningFrmnt | 2 | Pulsating |
| 588 | Dirty Beat | 7 | Pulsating |
| 589 | Electrons | 1 | Pulsating |
| 590 | Protons | 2 | Pulsating |
| 591 | Brisk Vortex | 3 | Pulsating |
| 592 | Throbulax | 2 | Pulsating |
| 593 | Lonizer | 4 | Pulsating |
| 594 | diGital Pad | 4 | Pulsating |
| 595 | StepPitShift | 2 | Pulsating |
| 596 | Pad Pulses | 3 | Pulsating |
| 597 | Seq-Pad 2 | 8 | Pulsating |
| 598 | DSP Chaos | 1 | Pulsating |
| 599 | Dancefloor | 4 | Pulsating |
| 600 | Minor Thirds | 2 | Pulsating |
| 601 | FX World | 2 | Pulsating |
| 602 | Mr. Fourier | 3 | Pulsating |
| 603 | Nu Trance X | 2 | Pulsating |
| 604 | Auto 5thSaws | 4 | Pulsating |
| 605 | Cross Talk | 1 | Pulsating |
| 606 | Reanimation | 2 | Pulsating |
| 607 | VoX Chopper | 2 | Pulsating |
| 608 | Trevor's Pad | 4 | Pulsating |
| 609 | Fantomas Pad | 5 | Pulsating |
| 610 | Jazzy Arps | 4 | Pulsating |
| 611 | Keep Running | 4 | Pulsating |
| 612 | Step In | 4 | Pulsating |
| 613 | Echo Echo | 8 | Pulsating |
| 614 | Keep going | 4 | Pulsating |
| 615 | Arposphere | 4 | Pulsating |
| 616 | Voco Riff | 4 | Pulsating |
| 617 | Pulsator | 4 | Pulsating |
| 618 | Motion Bass | 2 | Pulsating |
| 619 | Sine Magic | 3 | Pulsating |
| 620 | Juno-D Slice | 3 | Pulsating |
| 621 | Pulsatron | 4 | Pulsating |
| 622 | Mega Sync | 2 | Pulsating |
| 623 | Passing by | 4 | Synth FX |
| 624 | Lazer Points | 2 | Synth FX |
| 625 | Retro Sci-Fi | 4 | Synth FX |
| 626 | Magic Chime | 4 | Synth FX |
| 627 | TryThis! | 3 | Synth FX |
| 628 | New Planetz | 4 | Synth FX |
| 629 | Jet Noise | 4 | Synth FX |
| 630 | Chaos 2003 | 4 | Synth FX |
| 631 | Control Room | 4 | Synth FX |
| 632 | OutOf sortz | 5 | Synth FX |
| 633 | Scatter | 7 | Synth FX |
| 634 | Low Beat-S | 5 | Synth FX |
| 635 | WaitnOutside | 2 | Synth FX |
| 636 | Breath Echo | 1 | Synth FX |
| 637 | SoundStrange | 3 | Synth FX |
| 638 | Cosmic Pulse | 2 | Synth FX |
| 639 | Faked Piano | 4 | Synth FX |
| 640 | Crystal Soft | 2 | Synth FX |


| No | Name | Voice | Category |
| :---: | :---: | :---: | :---: |
| 641 | ResoSweep Dn | 1 | Synth FX |
| 642 | Zap B3 \& C4 | 1 | Synth FX |
| 643 | PolySweep Nz | 4 | Synth FX |
| 644 | Strange Land | 6 | Synth FX |
| 645 | S\&H Voc | 2 | Synth FX |
| 646 | 12th Planet | 2 | Synth FX |
| 647 | Scare | 7 | Synth FX |
| 648 | Hillside | 1 | Synth FX |
| 649 | Mod Scanner | 2 | Synth FX |
| 650 | SoundOnSound | 1 | Synth FX |
| 651 | Gasp | 8 | Synth FX |
| 652 | ResoSweep Up | 1 | Synth FX |
| 653 | Magic Wave | 2 | Synth FX |
| 654 | Shangri-La | 5 | Synth FX |
| 655 | CerealKiller | 1 | Synth FX |
| 656 | Cosmic Drops | 1 | Synth FX |
| 657 | Space Echo | 4 | Synth FX |
| 658 | Robot Sci-Fi | 4 | Synth FX |
| 659 | Stacc Heaven | 4 | Other Synth |
| 660 | Juno Poly | 4 | Other Synth |
| 661 | DigitalDream | 2 | Other Synth |
| 662 | Jucy Saw | 3 | Other Synth |
| 663 | Cue Tip | 1 | Other Synth |
| 664 | Waspy Synth | 2 | Other Synth |
| 665 | TB-Sequence | 1 | Other Synth |
| 666 | Europe Xpres | 2 | Other Synth |
| 667 | Squeepy | 1 | Other Synth |
| 668 | DOC Stack | 2 | Other Synth |
| 669 | Sweep Lead | 2 | Other Synth |
| 670 | 80s Saws 1 | 8 | Other Synth |
| 671 | 80s Saws 2 | 6 | Other Synth |
| 672 | 80s Saws 3 | 5 | Other Synth |
| 673 | Digitaless | 2 | Other Synth |
| 674 | Flip Pad | 3 | Other Synth |
| 675 | Short Detune | 2 | Other Synth |
| 676 | forSequence | 2 | Other Synth |
| 677 | Memory Pluck | 2 | Other Synth |
| 678 | Metalic Bass | 2 | Other Synth |
| 679 | Aqua | 2 | Other Synth |
| 680 | Big Planet | 2 | Other Synth |
| 681 | Wet Atax | 2 | Other Synth |
| 682 | Houze Clavi | 2 | Other Synth |
| 683 | SuperSawSlow | 2 | Other Synth |
| 684 | Trance | 3 | Other Synth |
| 685 | Trancy X | 4 | Other Synth |
| 686 | Trancy Synth | 2 | Other Synth |
| 687 | Juno Trnce | 4 | Other Synth |
| 688 | Saw Stack | 2 | Other Synth |
| 689 | Frgile Saws | 2 | Other Synth |
| 690 | Steamed Sawz | 2 | Other Synth |
| 691 | RAVtune | 2 | Other Synth |
| 692 | Bustranza | 2 | Other Synth |
| 693 | AftTch Ji-n | 2 | Other Synth |
| 694 | JP OctAttack | 2 | Other Synth |
| 695 | Oct Unison | 6 | Other Synth |
| 696 | Xtatic | 4 | Other Synth |
| 697 | Dirty Combo | 2 | Other Synth |
| 698 | FM's Attack | 3 | Other Synth |
| 699 | Digi-vox Syn |  | Other Synth |
| 700 | Fairy Factor | 6 | Other Synth |
| 701 | Tempest | 2 | Other Synth |
| 702 | X-Racer | 2 | Other Synth |
| 703 | TB Booster | 2 | Other Synth |
| 704 | Syn-Orch/Mod | 4 | Other Synth |


| No | Name V | Voice | Category |
| :---: | :---: | :---: | :---: |
| 705 | Pressyn | 2 | Other Synth |
| 706 | High Five | 2 | Other Synth |
| 707 | 4DaCommonMan | n 4 | Other Synth |
| 708 | Orgaenia | 5 | Other Synth |
| 709 | Sleeper | 4 | Other Synth |
| 710 | Sugar Synth | 5 | Other Synth |
| 711 | Ice Palace | 4 | Other Synth |
| 712 | Story Harp | 7 | Other Synth |
| 713 | LostParadise | 5 | Other Synth |
| 714 | Magnetic 5th | 2 | Other Synth |
| 715 | DigimaX | 2 | Other Synth |
| 716 | Exhale | 2 | Other Synth |
| 717 | X-panda | 2 | Other Synth |
| 718 | Saw Keystep | 2 | Other Synth |
| 719 | 4mant Cycle | 1 | Other Synth |
| 720 | Modular | 2 | Other Synth |
| 721 | Angel Pipes | 2 | Other Synth |
| 722 | Wired Synth | 8 | Other Synth |
| 723 | Analog Dream | 3 | Other Synth |
| 724 | DCO Bell Pad | 4 | Other Synth |
| 725 | Fanta | 3 | Other Synth |
| 726 | Juno 5th | 2 | Other Synth |
| 727 | DoubleBubble | 4 | Other Synth |
| 728 | Comb | 3 | Bright Pad |
| 729 | Super SynStr | 2 | Bright Pad |
| 730 | 80s Str | 8 | Bright Pad |
| 731 | PhaseStrings | 2 | Bright Pad |
| 732 | Voyager | 4 | Bright Pad |
| 733 | Cosmic Rays | 4 | Bright Pad |
| 734 | Stringship | 4 | Bright Pad |
| 735 | Fat Stacks | 4 | Bright Pad |
| 736 | Strings R Us | 2 | Bright Pad |
| 737 | Electric Pad | 3 | Bright Pad |
| 738 | Neo RS-202 | 2 | Bright Pad |
| 739 | OB Rezo Pad | 3 | Bright Pad |
| 740 | Synthi Ens | 4 | Bright Pad |
| 741 | Giant Sweep | 2 | Bright Pad |
| 742 | Mod Dare | 4 | Bright Pad |
| 743 | Space | 4 | Bright Pad |
| 744 | Digi-Swell | 3 | Bright Pad |
| 745 | Surfer | 2 | Bright Pad |
| 746 | New Year Day | 4 | Bright Pad |
| 747 | Polar Morn | 4 | Bright Pad |
| 748 | Distant Sun | 4 | Bright Pad |
| 749 | PG Chimes | 4 | Bright Pad |
| 750 | Saturn Rings | 4 | Bright Pad |
| 751 | Brusky | 4 | Bright Pad |
| 752 | 2 Point 2 | 7 | Bright Pad |
| 753 | 2.2 Pad | 7 | Bright Pad |
| 754 | two.two Pad | 4 | Bright Pad |
| 755 | SaturnHolida | 2 | Bright Pad |
| 756 | Neuro-Drone | 7 | Bright Pad |
| 757 | In The Pass | 3 | Bright Pad |
| 758 | Polar Night | 4 | Bright Pad |
| 759 | 5th | 3 | Bright Pad |
| 760 | MistOver5ths | 4 | Bright Pad |
| 761 | Gritty Pad | 1 | Bright Pad |
| 762 | India Garden | 6 | Bright Pad |
| 763 | BillionStars | 4 | Bright Pad |
| 764 | Sand Pad | 2 | Bright Pad |
| 765 | ReverseSweep | 2 | Bright Pad |
| 766 | HugeSoundMod | 4 | Bright Pad |
| 767 | Metal Swell | 5 | Bright Pad |
| 768 | NuSoundtrack | 4 | Bright Pad |

Preset 769-896 (CC\#0 = 87, CC\#32 =70 PC=1-128), Preset 897-1024 (CC\#0=87, CC\#32 =71 PC=1-128)
Preset 1025-1027 (CC\#O = 87, CC\#32 =72 PC=1-3)

| No | Name | Voice | Category |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 769 | Phat Strings | 4 | Bright Pad | 833 | Choir\&Str | 7 | Vox | 897 | Grand 1 | 2 | AC.Piano | 961 | D. Bar Org 19 | 4 | Organ |
| 770 | Soft OB Pad | 3 | Soft Pad | 834 | Aah Vox | 2 | Vox | 898 | Grand 2 | 2 | AC.Piano | 962 | D. Bar Org 20 | 4 | Organ |
| 771 | Hollow | 4 | Soft Pad | 835 | Synvox | 2 | Vox | 899 | Grand 3 | 2 | AC.Piano | 963 | D. Bar Org 21 | 4 | Organ |
| 772 | Sqr Pad | 4 | Soft Pad | 836 | Uhmmm | 8 | Vox | 900 | Grand 4 | 2 | AC.Piano | 964 | Cathedral | 4 | Organ |
| 773 | Silk Pad | 3 | Soft Pad | 837 | Morning Star | 3 | Vox | 901 | Grand 5 | 2 | AC.Piano | 965 | Posit/Mod | 4 | Organ |
| 774 | WarmReso Pad | 2 | Soft Pad | 838 | Syn Opera | 4 | Vox | 902 | Piano 1 | 2 | AC.Piano | 966 | Nylon 1 | 2 | AC.Guitar |
| 775 | Soft Pad | 3 | Soft Pad | 839 | BeautifulOne | 4 | Vox | 903 | Piano 2 | 2 | AC.Piano | 967 | Nylon 2 | 2 | AC.Guitar |
| 776 | Air Pad | 4 | Soft Pad | 840 | Ooze | 2 | Vox | 904 | Piano 3 | 2 | AC.Piano | 968 | Nylon 3 | 2 | AC.Guitar |
| 777 | Soft Breeze | 2 | Soft Pad | 841 | Aerial Choir | 4 | Vox | 905 | Piano 4 | 2 | AC.Piano | 969 | NylonSld | 1 | AC.Guitar |
| 778 | JP Strings 1 | 3 | Soft Pad | 842 | 3D Vox | 3 | Vox | 906 | FairyPno | 6 | AC. Piano | 970 | St.Nylon | 4 | AC.Guitar |
| 779 | JP Strings 2 | 5 | Soft Pad | 843 | Film Cue | 4 | Vox | 907 | Meditate Pno | 4 | AC.Piano | 971 | Ac Bass2 | 2 | Bass |
| 780 | DelayStrings | 3 | Soft Pad | 844 | Paradise | 4 | Vox | 908 | Layers | 4 | AC.Piano | 972 | Ac Bass3 | 2 | Bass |
| 781 | NorthStrings | 4 | Soft Pad | 845 | Sad ceremony | 8 | Vox | 909 | EP 1 | 2 | El.Piano | 973 | FingrBs 1 | 2 | Bass |
| 782 | Syn Str | 5 | Soft Pad | 846 | Lost Voices | 4 | Vox | 910 | EP 2 | 2 | El.Piano | 974 | FingrBs2 | 2 | Bass |
| 783 | Slow Saw Str | 2 | Soft Pad | 847 | Jazz Doos | 4 | Vox | 911 | EP 3 | 2 | EL.Piano | 975 | P.Bass | 2 | Bass |
| 784 | Syn Strings | 2 | Soft Pad | 848 | Beat Vox | 1 | Vox | 912 | EP Trm 1 | 2 | EL.Piano | 976 | Fretless | 2 | Bass |
| 785 | OB Slow Str | 2 | Soft Pad | 849 | Talk 2 Me | 2 | Vox | 913 | EP Trm 2 | 2 | EL.Piano | 977 | Pick Bs2 | 2 | Bass |
| 786 | Strings Pad | 2 | Soft Pad | 850 | FM Vox | 4 | Vox | 914 | EP Trm 3 | 2 | EL.Piano | 978 | SlwOrch 1 | 6 | Orchestra |
| 787 | R\&B SoftPad | 2 | Soft Pad | 851 | Let's Talk! | 3 | Vox | 915 | Wurly 1 | 2 | EL.Piano | 979 | SlwOrch2 | 8 | Orchestra |
| 788 | Reso Pad | 3 | Soft Pad | 852 | Nice Kalimba | 1 | Plucked | 916 | Wurly 2 | 2 | EL.Piano | 980 | Strings2 | 2 | Strings |
| 789 | Phat Pad | 2 | Soft Pad | 853 | Quiet River | 4 | Plucked | 917 | Wurly 3 | 2 | EL.Piano | 981 | DynaStrSect1 | 4 | Strings |
| 790 | PhaserPad | 2 | Soft Pad | 854 | Teky Drop | 4 | Plucked | 918 | WlyTrm 1 | 2 | EL.Piano | 982 | DynaStrSect2 | 4 | Strings |
| 791 | Mystic Str | 5 | Soft Pad | 855 | Pat is away | 5 | Plucked | 919 | WlyTrm 2 | 2 | EL.Piano | 983 | Staccato | 6 | Strings |
| 792 | Glass Organ | 3 | Soft Pad | 856 | Sitar 1 | 4 | Plucked | 920 | WlyTrm 3 | 2 | El.Piano | 984 | DynaPizz | 6 | Strings |
| 793 | Wind Pad | 4 | Soft Pad | 857 | Sitar 2 | 5 | Plucked | 921 | Chorus 1 | 2 | EL.Piano | 985 | Bs MG | 2 | Synth Bass |
| 794 | Combination | 4 | Soft Pad | 858 | Sitar on C | 6 | Plucked | 922 | Chorus 2 | 2 | EL.Piano | 986 | Bs Resol | 2 | Synth Bass |
| 795 | HumanKindnes | 4 | Soft Pad | 859 | Sitar Baby | 1 | Plucked | 923 | Chorus 3 | 2 | EL.Piano | 987 | Bs Reso2 | 2 | Synth Bass |
| 796 | BeautyPad | 4 | Soft Pad | 860 | Elec Sitar | 3 | Plucked | 924 | EP Belle 2 | 2 | EL.Piano | 988 | Bs Alpha | 2 | Synth Bass |
| 797 | Atmospherics | 2 | Soft Pad | 861 | Neo Sitar | 2 | Plucked | 925 | FMEP 1 | 1 | EL.Piano | 990 | Bs MKS | 2 | Synth Bass |
| 798 | Terra Nostra | 8 | Soft Pad | 862 | SaraswatiRvr | 3 | Plucked | 926 | FMEP 2 | 1 | EL.Piano | 990 | Bs SH | 2 | Synth Bass |
| 799 | OB Aaahs | 4 | Soft Pad | 863 | Bosporus | 3 | Plucked | 927 | Tine+Pad | 6 | EL.Piano | 991 | Bs TB | 2 | Synth Bass |
| 800 | Vulcano Pad | 5 | Soft Pad | 864 | Santur Stack | 4 | Plucked | 928 | Wly+Pad | 6 | EL.Piano | 992 | Bs MC | 2 | Synth Bass |
| 801 | Cloud \#9 | 3 | Soft Pad | 865 | Aerial Harp | 2 | Plucked | 929 | Vibe 2 | 1 | Mallet | 993 | Bs Pedal | 2 | Synth Bass |
| 802 | Organic Pad | 3 | Soft Pad | 866 | Harpiness | 2 | Plucked | 930 | Clav 2 | 2 | Keyboards | 994 | BsReleas | 2 | Synth Bass |
| 803 | Hum Pad | 4 | Soft Pad | 867 | Skydiver | 2 | Plucked | 931 | Clav 3 | 2 | Keyboards | 995 | BsCheeze | 2 | Synth Bass |
| 804 | Vox Pad | 4 | Soft Pad | 868 | TroubadorEns | 4 | Plucked | 932 | Clav 4 | 2 | Keyboards | 996 | Ld Tri 1 | 3 | Hard Lead |
| 805 | Digital Aahs | 3 | Soft Pad | 869 | Jamisen | 2 | Plucked | 933 | Vibrabel | , | Bell | 997 | Ld Tri 2 | 4 | Hard Lead |
| 806 | Tri 5th Pad | 4 | Soft Pad | 870 | Koto | 8 | Plucked | 934 | Celesta 2 | 1 | Bell | 998 | Ld Sqr 1 | 3 | Hard Lead |
| 807 | MovinPad | 8 | Soft Pad | 871 | Monsoon | 4 | Plucked | 935 | B Org 1 | 5 | Organ | 999 | Ld Sqr 2 | 4 | Hard Lead |
| 808 | Seq-Pad 1 | 8 | Soft Pad | 872 | Bend Koto | 2 | Plucked | 936 | B Org 2 | 5 | Organ | 1000 | Ld Saw 1 | 3 | Hard Lead |
| 809 | Follow | 2 | Soft Pad | 873 | LongDistance | 1 | Ethnic | 937 | B Org 3 | 5 | Organ | 1001 | Ld Saw 2 | 4 | Hard Lead |
| 810 | Consolament | 3 | Soft Pad | 874 | Ambi Shaku | 3 | Ethnic | 938 | B Org 4 | 5 | Organ | 1002 | Ld GR 1 | 3 | Hard Lead |
| 811 | Spacious Pad | 4 | Soft Pad | 875 | Lochscape | 2 | Ethnic | 939 | B Org 5 | 5 | Organ | 1003 | Ld GR 2 | 4 | Hard Lead |
| 812 | JD Pop Pad | 3 | Soft Pad | 876 | PipeDream | 4 | Ethnic | 940 | B Org 6 | 5 | Organ | 1004 | Ld Oct 1 | 3 | Hard Lead |
| 813 | JP-8 Phase | 4 | Soft Pad | 877 | Far East | 4 | Ethnic | 941 | B Org 7 | 5 | Organ | 1005 | Ld Oct 2 | 4 | Hard Lead |
| 814 | Nu Epic Pad | 2 | Soft Pad | 878 | Banjo | 2 | Fretted | 942 | B Org 8 | 5 | Organ | 1006 | Ld Swp 1 | 3 | Hard Lead |
| 815 | Forever | 5 | Soft Pad | 879 | Timpani+Low | 4 | Percussion | 943 | D. Bar Org 1 | 2 | Organ | 1007 | Ld Swp 2 | 4 | Hard Lead |
| 816 | Flange Dream | 4 | Soft Pad | 880 | Timpani Roll | 2 | Percussion | 944 | D.Bar Org 2 | 2 | Organ | 1008 | Ld Sine 1 | 3 | Hard Lead |
| 817 | Evolution X | 2 | Soft Pad | 881 | Bass Drum | 4 | Percussion | 945 | D. Bar Org 3 | 2 | Organ | 1009 | Ld Sine2 | 4 | Hard Lead |
| 818 | Heaven Pad | 3 | Soft Pad | 882 | Ambidextrous | 2 | Sound FX | 946 | D. Bar Org 4 | 3 | Organ | 1010 | Syn Str2 | 6 | Soft Pad |
| 819 | Angelis Pad | 4 | Soft Pad | 883 | En-co-re | 4 | Sound FX | 947 | D.Bar Org 5 | 3 | Organ | 1011 | Syn Str3 | 6 | Soft Pad |
| 820 | Juno-106 Str | 1 | Soft Pad | 884 | Mobile Phone | 1 | Sound FX | 948 | D. Bar Org 6 | 3 | Organ | 1012 | Syn Pad 1 | 6 | Soft Pad |
| 821 | JupiterMoves | 2 | Soft Pad | 885 | ElectroDisco | 5 | Beat\&Groove | 949 | D. Bar Org 7 | 3 | Organ | 1013 | Syn Pad2 | 6 | Soft Pad |
| 822 | Oceanic Pad | 2 | Soft Pad | 886 | Groove 007 | 4 | Beat\&Groove | 950 | D. Bar Org 8 | 3 | Organ | 1014 | SynPoly 1 | 6 | Other Synth |
| 823 | Fairy's Song | 4 | Soft Pad | 887 | In Da Groove | 4 | Beat\&Groove | 951 | D.Bar Org 9 | 3 | Organ | 1015 | SynPoly2 | 6 | Other Synth |
| 824 | Borealis | 2 | Soft Pad | 888 | Sweet 80s | 4 | Beat\&Groove | 952 | D. Bar Org 10 | 3 | Organ | 1016 | Syn Brs 1 | 6 | Synth Brass |
| 825 | JX Warm Pad | 2 | Soft Pad | 889 | Autotrance | 4 | Beat\&Groove | 953 | D. Bar Org 11 | 3 | Organ | 1017 | Syn Brs2 | 6 | Synth Brass |
| 826 | Analog Bgrnd | 3 | Soft Pad | 890 | Juno Pop | 4 | Beat\&Groove | 954 | D.Bar Org 12 | 3 | Organ | 1018 | Oct Brs 1 | 6 | Synth Brass |
| 827 | Choir Aahs 1 | 4 | Vox | 891 | Compusonic 1 | 4 | Beat\&Groove | 955 | D. Bar Org 13 | 2 | Organ | 1019 1020 | Oct Brs2 Pad Airy | 6 | Synth Brass Soft Pad |
| 828 | Choir Aahs 2 | 4 | Vox | 892 | Compusonic 2 | 4 | Beat\&Groove | 956 | D.Bar Org 14 | 2 | Organ | 1020 | Pad Airy | 8 | Soft Pad |
| 829 | ChoirOoh/Aft | 4 | Vox | 893 | 80s Combo | 3 | Combination | 957 | D.Bar Org 15 | 2 | Organ | 1021 | Pad Soft | 4 | Bright Pad |
| 830 | Angels Choir | 4 | Vox | 894 | Analog Days | 3 | Combination | 958 | D. Bar Org 16 | 3 | Organ | 1022 | Pad Pure | 4 | Bright Pad |
| 831 | Angelique | 4 | Vox | 895 | Techno Craft | 3 | Combination | 959 | D. Bar Org 17 | 3 | Organ | 1023 | Pad Vox 1 | 2 | Bright Pad |
| 832 | Gospel Oohs | 2 | Vox | 896 | Lounge Kit | 2 | Combination | 960 | D.Bar Org 18 | 3 | Organ | 1024 | Pad Vox2 | 2 | Bright Pad |
|  | Gospel Oohs |  |  |  |  |  |  |  |  |  |  | 1025 | VOCODER Robt | 1 | Vox |
|  |  |  |  |  |  |  |  |  |  |  |  | 1026 | VOCODER Chr | 1 | Vox |
|  |  |  |  |  |  |  |  |  |  |  |  | 1027 | VOCODER Ens | 1 | Vox |

Patch List

GM (GM2 Group)

| No | Name | Category | Voices | LSB | PC |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 001 | Piano 1 | AC.PIANO | 2 | 0 | 1 |
| 002 | Piano 1w | AC.PIANO | 2 | 1 |  |
| 003 | European Pf | AC.PIANO | 2 | 2 |  |
| 004 | Piano 2 | AC.PIANO | 2 | 0 | 2 |
| 005 | Piano 2w | AC.PIANO | 2 | 1 |  |
| 006 | Piano 3 | AC.PIANO | 2 | 0 | 3 |
| 007 | Piano 3w | AC.PIANO | 2 | 1 |  |
| 008 | Honky-tonk | AC.PIANO | 2 | 0 | 4 |
| 009 | Honky-tonk 2 | AC.PIANO | 2 | 4 |  |
| 010 | E.Piano 1 | EL.PIANO | 1 | 0 | 5 |
| 011 | St.Soft EP | EL.PIANO | 3 | 1 |  |
| 012 | FM+SA EP | EL.PIANO | 3 | 2 |  |
| 013 | Wurly | EL.PIANO | 1 | 3 |  |
| 014 | E.Piano 2 | EL.PIANO | 4 | 0 | 6 |
| 015 | Detuned EP 2 | EL.PIANO | 4 | 1 |  |
| 016 | St.FM EP | EL.PIANO | 4 | 2 |  |
| 017 | EP Legend | EL.PIANO | 4 | 3 |  |
| 018 | EP Phase | EL.PIANO | 2 | 4 |  |
| 019 | Harpsichord | KEYBOARDS | 2 | 0 | 7 |
| 020 | Coupled Hps. | KEYBOARDS | 7 | 1 |  |
| 021 | Harpsi.w | KEYBOARDS | 2 | 2 |  |
| 022 | Harpsi.o | KEYBOARDS | 4 | 3 |  |
| 023 | Clav. | KEYBOARDS | 2 | 0 | 8 |
| 024 | Pulse Clav | KEYBOARDS | 2 | 1 |  |
| 025 | Celesta | KEYBOARDS | 1 | 0 | 9 |
| 026 | Glockenspiel | BELL | 1 | 0 | 10 |
| 027 | Music Box | BELL | 2 | 0 | 11 |
| 028 | Vibraphone | MALLET | 1 | 0 | 12 |
| 029 | Vibraphone w | MALLET | 1 | 1 |  |
| 030 | Marimba | MALLET | 1 | 0 | 13 |
| 031 | Marimba w | MALLET | 1 | 1 |  |
| 032 | Xylophone | MALLET | 1 | 0 | 14 |
| 033 | Tubular-bell | BELL | 1 | 0 | 15 |
| 034 | Church Bell | BELL | 1 | 1 |  |
| 035 | Carillon | BELL | 4 | 2 |  |
| 036 | Santur | PLUCKED | 4 | 0 | 16 |
| 037 | Organ 1 | ORGAN | 3 | 0 | 17 |
| 038 | Trem. Organ | ORGAN | 2 | 1 |  |
| 039 | 60's Organ 1 | ORGAN | 1 | 2 |  |
| 040 | 70's E.Organ | ORGAN | 2 | 3 |  |
| 041 | Organ 2 | ORGAN | 3 | 0 | 18 |
| 042 | Chorus Or. 2 | ORGAN | 3 | 1 |  |
| 043 | Perc. Organ | ORGAN | 4 | 2 |  |
| 044 | Organ 3 | ORGAN | 4 | 0 | 19 |
| 045 | Church Org. 1 | ORGAN | 2 | 0 | 20 |
| 046 | Church Org. 2 | ORGAN | 4 | 1 |  |
| 047 | Church Org. 3 | ORGAN | 6 | 2 |  |
| 048 | Reed Organ | ORGAN | 3 | 0 | 21 |
| 049 | Puff Organ | ORGAN | 1 | 1 |  |
| 050 | Accordion Fr | ACCRDION | 3 | 0 | 22 |
| 051 | Accordion It | ACCRDION | 3 | 1 |  |
| 052 | Harmonica | HARMONICA | 2 | 0 | 23 |
| 053 | Bandoneon | ACCRDION | 3 | 0 | 24 |
| 054 | Nylon-str.G $\dagger$ | AC.GUITAR | 1 | 0 | 25 |
| 055 | Ukulele | AC.GUITAR | 1 | 1 |  |
| 056 | Nylon Gt.o | AC.GUITAR | 2 | 2 |  |
| 057 | Nylon Gt. 2 | AC.GUITAR | 1 | 3 |  |
| 058 | Steel-str.G $\dagger$ | AC.GUITAR | 4 | 0 | 26 |
| 059 | 12-str.Gt | AC.GUITAR | 3 | 1 |  |
| 060 | Mandolin | AC.GUITAR | 2 | 2 |  |
| 061 | Steel + Body | AC.GUITAR | 4 | 3 |  |
| 062 | Jazz Gt. | EL.GUITAR | 1 | 0 | 27 |
| 063 | Pedal Steel | EL.GUITAR | 1 | 1 |  |
| 064 | Clean Gt. | EL.GUITAR | 1 | 0 | 28 |


| No | Name | Category | Voices | LSB | PC |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 065 | Chorus Gt. | EL.GUITAR | 2 | 1 |  |
| 066 | Mid Tone GTR | EL.GUITAR | 1 | 2 |  |
| 067 | Muted Gt. | EL.GUITAR | 1 | 0 | 29 |
| 068 | Funk Pop | EL.GUITAR | 1 | 1 |  |
| 069 | Funk Gt. 2 | EL.GUITAR | 1 | 2 |  |
| 070 | Jazz Man | EL.GUITAR | 1 | 3 |  |
| 071 | Overdrive G $\dagger$ | DIST.GUITAR | 2 | 0 | 30 |
| 072 | Guitar Pinch | DIST.GUITAR | 1 | 1 |  |
| 073 | DistortionG $\dagger$ | DIST.GUITAR | 1 | 0 | 31 |
| 074 | Feedback Gt. | DIST.GUITAR | 2 | 1 |  |
| 075 | Dist Rtm GTR | DIST.GUITAR | 2 | 2 |  |
| 076 | Gt.Harmonics | EL.GUITAR | 2 | 0 | 32 |
| 077 | Gt. Feedback | EL.GUITAR | 1 | 1 |  |
| 078 | Acoustic Bs. | BASS | 1 | 0 | 33 |
| 079 | Fingered Bs . | BASS | 3 | 0 | 34 |
| 080 | Finger Slap | BASS | 3 | 1 |  |
| 081 | Picked Bass | BASS | 3 | 0 | 35 |
| 082 | Fretless Bs. | BASS | 2 | 0 | 36 |
| 083 | Slap Bass 1 | BASS | 2 | 0 | 37 |
| 084 | Slap Bass 2 | BASS | 3 | 0 | 38 |
| 085 | Synth Bass 1 | SYNTH BASS | 1 | 0 | 39 |
| 086 | SynthBass 101 | SYNTH BASS | 1 | 1 |  |
| 087 | Acid Bass | SYNTH BASS | 1 | 2 |  |
| 088 | Clavi Bass | SYNTH BASS | 2 | 3 |  |
| 089 | Hammer | SYNTH BASS | 2 | 4 |  |
| 090 | Synth Bass 2 | SYNTH BASS | 3 | 0 | 40 |
| 091 | Beef FM Bass | SYNTH BASS | 2 | 1 |  |
| 092 | RubberBass 2 | SYNTH BASS | 2 | 2 |  |
| 093 | Attack Pulse | SYNTH BASS | 1 | 3 |  |
| 094 | Violin | STRINGS | 1 | 0 | 41 |
| 095 | Slow Violin | STRINGS | 1 | 1 |  |
| 096 | Viola | STRINGS | 1 | 0 | 42 |
| 097 | Cello | STRINGS | 1 | 0 | 43 |
| 098 | Contrabass | STRINGS | 1 | 0 | 44 |
| 099 | Tremolo Str | STRINGS | 4 | 0 | 45 |
| 100 | PizzicatoStr | STRINGS | 4 | 0 | 46 |
| 101 | Harp | PLUCKED | 2 | 0 | 47 |
| 102 | Yang Qin | PLUCKED | 3 | 1 |  |
| 103 | Timpani | PERCUSSION | 4 | 0 | 48 |
| 104 | Strings | STRINGS | 4 | 0 | 49 |
| 105 | Orchestra | ORCHESTRA | 7 | 1 |  |
| 106 | 60s Strings | STRINGS | 4 | 2 |  |
| 107 | Slow Strings | STRINGS | 4 | 0 | 50 |
| 108 | Syn.Strings 1 | STRINGS | 3 | 0 | 51 |
| 109 | Syn.Strings3 | STRINGS | 3 | 1 |  |
| 110 | Syn.Strings2 | SOFT PAD | 2 | 0 | 52 |
| 111 | Choir Aahs | VOX | 4 | 0 | 53 |
| 112 | Chorus Aahs | VOX | 4 | 1 |  |
| 113 | Voice Oohs | VOX | 4 | 0 | 54 |
| 114 | Humming | VOX | 4 | 1 |  |
| 115 | SynVox | VOX | 4 | 0 | 55 |
| 116 | Analog Voice | VOX | 2 | 1 |  |
| 117 | OrchestraHit | HIT\&STAB | 2 | 0 | 56 |
| 118 | Bass Hit | HIT\&STAB | 2 | 1 |  |
| 119 | 6th Hit | HIT\&STAB | 2 | 2 |  |
| 120 | Euro Hit | HIT\&STAB | 2 | 3 |  |
| 121 | Trumpet | AC.BRASS | 2 | 0 | 57 |
| 122 | Dark Trumpet | AC.BRASS | 1 | 1 |  |
| 123 | Trombone | AC.BRASS | 1 | 0 | 58 |
| 124 | Trombone 2 | AC.BRASS | 2 | 1 |  |
| 125 | Bright Tb | AC.BRASS | 2 | 2 |  |
| 126 | Tuba | AC.BRASS | 1 | 0 | 59 |
| 127 | MutedTrumpet | AC.BRASS | 3 | 0 | 60 |
| 128 | MuteTrumpet2 | AC.BRASS | 1 | 1 |  |


| No | Name | Category | Voices | LSB | PC |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 129 | French Horns | AC.BRASS | 3 | 0 | 61 |
| 130 | Fr.Horn 2 | AC.BRASS | 1 | 1 |  |
| 131 | Brass 1 | AC.BRASS | 4 | 0 | 62 |
| 132 | Brass 2 | AC.BRASS | 4 | 1 |  |
| 133 | Synth Brass 1 | SYNTH BRASS | 4 | 0 | 63 |
| 134 | JP Brass | SYNTH BRASS | 4 | 1 |  |
| 135 | Oct SynBrass | SYNTH BRASS | 4 | 2 |  |
| 136 | Jump Brass | SYNTH BRASS | 3 | 3 |  |
| 137 | Synth Brass2 | SYNTH BRASS | 3 | 0 | 64 |
| 138 | SynBrass sfz | SYNTH BRASS | 2 | 1 |  |
| 139 | Velo Brass 1 | SYNTH BRASS | 2 | 2 |  |
| 140 | Soprano Sax | SAX | 1 | 0 | 65 |
| 141 | Alto Sax | SAX | 1 | 0 | 66 |
| 142 | Tenor Sax | SAX | 1 | 0 | 67 |
| 143 | Baritone Sax | SAX | 1 | 0 | 68 |
| 144 | Oboe | WIND | 3 | 0 | 69 |
| 145 | English Horn | WIND | 1 | 0 | 70 |
| 146 | Bassoon | WIND | 1 | 0 | 71 |
| 147 | Clarinet | WIND | 2 | 0 | 72 |
| 148 | Piccolo | FLUTE | 2 | 0 | 73 |
| 149 | Flute | FLUTE | 2 | 0 | 74 |
| 150 | Recorder | FLUTE | 1 | 0 | 75 |
| 151 | Pan Flute | FLUTE | 1 | 0 | 76 |
| 152 | Bottle Blow | FLUTE | 2 | 0 | 77 |
| 153 | Shakuhachi | ETHNIC | 2 | 0 | 78 |
| 154 | Whistle | FLUTE | 2 | 0 | 79 |
| 155 | Ocarina | FLUTE | 3 | 0 | 80 |
| 156 | Square Wave | HARD LEAD | 2 | 0 | 81 |
| 157 | MG Square | HARD LEAD | 1 | 1 |  |
| 158 | 2600 Sine | HARD LEAD | 1 | 2 |  |
| 159 | Saw Wave | HARD LEAD | 2 | 0 | 82 |
| 160 | OB2 Saw | HARD LEAD | 1 | 1 |  |
| 161 | Doctor Solo | HARD LEAD | 2 | 2 |  |
| 162 | Natural Lead | HARD LEAD | 2 | 3 |  |
| 163 | SequencedSaw | HARD LEAD | 2 | 4 |  |
| 164 | Syn.Calliope | SOFT LEAD | 2 | 0 | 83 |
| 165 | Chiffer Lead | SOFT LEAD | 2 | 0 | 84 |
| 166 | Charang | HARD LEAD | 2 | 0 | 85 |
| 167 | Wire Lead | HARD LEAD | 2 | 1 |  |
| 168 | Solo Vox | SOFT LEAD | 2 | 0 | 86 |
| 169 | 5th Saw Wave | HARD LEAD | 2 | 0 | 87 |
| 170 | Bass \& Lead | HARD LEAD | 2 | 0 | 88 |
| 171 | Delayed Lead | HARD LEAD | 2 | 1 |  |
| 172 | Fantasia | OTHER SYNTH | 4 | 0 | 89 |
| 173 | Warm Pad | SOFT PAD | 1 | 0 | 90 |
| 174 | Sine Pad | SOFT PAD | 2 |  |  |
| 175 | Polysynth | OTHER SYNTH | 2 | 0 | 91 |
| 176 | Space Voice | VOX | 4 | 0 | 92 |
| 177 | Itopia | VOX | 3 | 1 |  |
| 178 | Bowed Glass | SOFT PAD | 3 | 0 | 93 |
| 179 | Metal Pad | BRIGHT PAD | 4 | 0 | 94 |
| 180 | Halo Pad | BRIGHT PAD | 3 | 0 | 95 |
| 181 | Sweep Pad | SOFT PAD | 3 | 0 | 96 |
| 182 | Ice Rain | OTHER SYNTH | 3 | 0 | 97 |
| 183 | Soundtrack | SOFT PAD | 5 | 0 | 98 |
| 184 | Crystal | BELL | 2 | 0 | 99 |
| 185 | Syn Mallet | BELL | 2 | 1 |  |
| 186 | Atmosphere | AC.GUITAR | 3 | 0 | 100 |
| 187 | Brightness | OTHER SYNTH | 4 | 0 | 101 |
| 188 | Goblin | PULSATING | 3 | 0 | 102 |
| 189 | Echo Drops | BRIGHT PAD | 2 | 0 | 103 |
| 190 | Echo Bell | BRIGHT PAD | 3 | 1 |  |
| 191 | Echo Pan | BRIGHT PAD | 2 | 2 |  |
| 192 | Star Theme | BRIGHT PAD | 3 | 0 | 104 |


| No | Name | Category | Voices | LSB | PC |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 193 | Sitar | PLUCKED | 2 | 0 | 105 |
| 194 | Sitar 2 | PLUCKED | 5 | 1 |  |
| 195 | Banjo | FRETTED | 2 | 0 | 106 |
| 196 | Shamisen | PLUCKED | 2 | 0 | 107 |
| 197 | Koto | PLUCKED | 4 | 0 | 108 |
| 198 | Taisho Koto | PLUCKED | 3 | 1 |  |
| 199 | Kalimba | PLUCKED | 1 | 0 | 109 |
| 200 | Bagpipe | ETHNIC | 3 | 0 | 110 |
| 201 | Fiddle | STRINGS | 1 | 0 | 111 |
| 202 | Shanai | ETHNIC | 2 | 0 | 112 |
| 203 | Tinkle Bell | BELL | 3 | 0 | 113 |
| 204 | Agogo | PERCUSSION | 1 | 0 | 114 |
| 205 | Steel Drums | MALLET | 2 | 0 | 115 |
| 206 | Woodblock | PERCUSSION | 1 | 0 | 116 |
| 207 | Castanets | PERCUSSION | 1 | 1 |  |
| 208 | Taiko | PERCUSSION | 3 | 0 | 117 |
| 209 | Concert BD | PERCUSSION | 4 | 1 |  |
| 210 | Melo. Tom 1 | PERCUSSION | 1 | 0 | 118 |
| 211 | Melo. Tom 2 | PERCUSSION | 1 | 1 |  |
| 212 | Synth Drum | PERCUSSION | 1 | 0 | 119 |
| 213 | 808 Tom | PERCUSSION | 1 | 1 |  |
| 214 | Elec Perc | PERCUSSION | 1 | 1 |  |
| 215 | Reverse Cym. | PERCUSSION | 1 | 0 | 120 |
| 216 | Gt.FretNoise | AC.GUITAR | 1 | 0 | 121 |
| 217 | Gt.Cut Noise | AC.GUITAR | 1 | 1 |  |
| 218 | String Slap | AC.GUITAR | 1 | 2 |  |
| 219 | Breath Noise | SYNTH FX | 1 | 0 | 122 |
| 220 | Fl.Key Click | SYNTH FX | 1 | 1 |  |
| 221 | Seashore | SOUND FX | 2 | 0 | 123 |
| 222 | Rain | SOUND FX | 2 | 1 |  |
| 223 | Thunder | SOUND FX | 1 | 2 |  |
| 224 | Wind | SOUND FX | 2 | 3 |  |
| 225 | Stream | SOUND FX | 2 | 4 |  |
| 226 | Bubble | SOUND FX | 2 | 5 |  |
| 227 | Bird | SOUND FX | 2 | 0 | 124 |
| 228 | Dog | SOUND FX | 1 | 1 |  |
| 229 | Horse-Gallop | SOUND FX | 1 | 2 |  |
| 230 | Bird 2 | SOUND FX | 1 | 3 |  |
| 231 | Telephone 1 | SOUND FX | 1 | 0 | 125 |
| 232 | Telephone 2 | SOUND FX | 1 | 1 |  |
| 233 | DoorCreaking | SOUND FX | 1 | 2 |  |
| 234 | Door | SOUND FX | 1 | 3 |  |
| 235 | Scratch | SOUND FX | 1 | 4 |  |
| 236 | Wind Chimes | SOUND FX | 2 | 5 |  |
| 237 | Helicopter | SOUND FX | 1 | 0 | 126 |
| 238 | Car-Engine | SOUND FX | 1 | 1 |  |
| 239 | Car-Stop | SOUND FX | 1 | 2 |  |
| 240 | Car-Pass | SOUND FX | 1 | 3 |  |
| 241 | Car-Crash | SOUND FX | 2 | 4 |  |
| 242 | Siren | SOUND FX | 1 | 5 |  |
| 243 | Train | SOUND FX | 1 | 6 |  |
| 244 | Jetplane | SOUND FX | 3 | 7 |  |
| 245 | Starship | SOUND FX | 4 | 8 |  |
| 246 | Burst Noise | SOUND FX | 2 | 9 |  |
| 247 | Applause | SOUND FX | 2 | 0 | 127 |
| 248 | Laughing | SOUND FX | 1 | 1 |  |
| 249 | Screaming | SOUND FX | 1 | 2 |  |
| 250 | Punch | SOUND FX | 1 | 3 |  |
| 251 | Heart Beat | SOUND FX | 1 | 4 |  |
| 252 | Footsteps | SOUND FX | 1 | 5 |  |
| 253 | Gun Shot | SOUND FX | 1 | 0 | 128 |
| 254 | Machine Gun | SOUND FX | 1 | 1 |  |
| 255 | Lasergun | SOUND FX | 1 | 2 |  |
| 256 | Explosion | SOUND FX | 2 | 3 |  |

## Rhythm Set List

## USER (User Group)

| No | Name |
| :--- | :--- |
| 001 | SF Std Kit |
| 002 | WD Std Kit |
| 003 | LD Std Kit |
| 004 | TY Std Kit |
| 005 | StandardKit1 |
| 006 | StandardKit2 |
| 007 | StandardKit3 |
| 008 | Rock Kit 1 |
| 009 | Rock Kit 2 |
| 010 | Brush Jz Kit |
| 011 | Orch Kit |
| 012 | 909 808 Kit |
| 013 | Limiter Kit |
| 014 | HipHop Kit 1 |
| 015 | R\&B Kit |
| 016 | HiFi R\&B Kit |
| 017 | Machine Kit1 |
| 018 | Kit-Euro:POP |
| 019 | House Kit |
| 020 | Nu Technica |
| 021 | Machine Kit2 |
| 022 | ArtificalKit |
| 023 | Noise Kit |
| 024 | Kick Menu |
| 025 | Snare Menu |
| 026 | Snr/Rim Menu |
| 027 | HiHat Menu |
| 028 | Tom Menu |
| 029 | Clp\&Cym\&Hit |
| 030 | FX/SFX Menu |
| 031 | Percussion |
| 032 | Scrh\&Vox\&Wld |
|  |  |

PRST (Preset Group)

| No | Name |
| :--- | :--- |
| 001 | SF Std Kit |
| 002 | WD Std Kit |
| 003 | LD Std Kit |
| 004 | TY Std Kit |
| 005 | StandardKit 1 |
| 006 | StandardKit2 |
| 007 | StandardKit3 |
| 008 | Rock Kit 1 |
| 009 | Rock Kit 2 |
| 010 | Brush Jz Kit |
| 011 | Orch Kit |
| 012 | 909 808 Kit |
| 013 | Limiter Kit |
| 014 | HipHop Kit 1 |
| 015 | R\&B Kit |
| 016 | HiFi R\&B Kit |
| 017 | Machine Kit1 |
| 018 | Kit-Euro:POP |
| 019 | House Kit |
| 020 | Nu Technica |
| 021 | Machine Kit2 |
| 022 | ArtificalKit |
| 023 | Noise Kit |
| 024 | Kick Menu |
| 025 | Snare Menu |
| 026 | Snr/Rim Menu |
| 027 | HiHat Menu |
| 028 | Tom Menu |
| 029 | Clp\&Cym\&Hit |
| 030 | FX/SFX Menu |
| 031 | Percussion |
| 032 | Scrh\&Vox\&Wld |
|  |  |
| 02 |  |

GM (GM2 Group)

| No | Name |
| :--- | :--- |
| 001 | GM2 STANDARD |
| 002 | GM2 ROOM |
| 003 | GM2 POWER |
| 004 | GM2 ELECTRIC |
| 005 | GM2 ANALOG |
| 006 | GM2 JAZZ |
| 007 | GM2 BRUSH |
| 008 | GM2 ORCHESTRA |
| 009 | GM2 SFX |

* Rhythm Set are common to Preset Group and User Group.

Rhythm Set List

USER (User Group)/PRST (Preset Group)

| Prst: | 001 | 002 | 003 | 004 | 005 | 006 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| User: | 001 | 002 | 003 | 004 | 005 | 006 |
| Note No. | SF Std Kit | WD Std Kit | LD Std Kit | TY Std Kit | StandardKit1 | StandardKit2 |
| 28 | Dance Kick | Dance Kick | Dance Kick | Dance Kick | MaxLow Kick2 | Dance Kick |
|  | Dry Kick 1 | Dry Kick 1 | Dry Kick 1 | Dry Kick 1 | Rk CmpKick | Dry Kick 1 |
| ${ }^{29} 30$ | Snr Roll | Snr Roll | Snr Roll | Snr Roll | Gospel Clap | Snr Roll |
| 31 | Power Kick | Power Kick | Power Kick | Power Kick | Sweep Bass | Power Kick |
| 32 | Amb.Snr 2 | Amb.Snr 2 | Amb.Snr 2 | Amb.Snr2 p | Sff Snr Gst | Amb.Snr 2p |
| 33 | Power Kick | Reg.Kick 2 | Reg.Kick 2 | Power Kick | HipHop Kick2 | Power Kick |
| 3534 | Reg.PHH | Reg.PHH | Reg.PHH | Reg.PHH | Reg.PHH | Reg.PHH |
| 35 | Reg.Kick | Reg.Kick 1 | Reg.Kick 1 | Reg.Kick | Reg.Kick 1 | Reg.Kick 1 |
| 36 | SF Kick 1 | WD Kick | LD Kick | TY Kick | Reg.Kick 2 | Reg.Kick 2 |
| $\bigcirc 3$ | SF CStk | WD CStk | LD CStk | TY CStk | Reg.Stick | Wild Stick |
| 38 | SF Snr | WD Snr | LD Snr | TY Snr | Reg.Snr 2 | Amb.Snr 1 |
| 39 | SF Snr Gst | SF Snr Gst | Reg.Snr Gst | SF SnrGst | Reg.Snr Gst | Reg.Snr Gst |
| 40 | SF Rim | WD Rim | LD Rim | TY Rim | Reg.Snr 1 | Amb.Snr 2 |
|  | RR F.Tom | RR F.Tom | RR F.Tom | RR F.Tom | Reg.F.Tom | Reg.F.Tom |
| 42 | Reg.CHH 1 |
| 43 | SF L.Tom | TY L.Tom | LD L.Tom | TY L.Tom | Reg.L.Tom | Reg.L.Tom |
| 44 | Reg.CHH 2 |
| 45 | SF M.Tom | TY M.Tom | LD M.Tom | TY M.Tom | Reg.M.Tom 1 | Reg.M.Tom |
| 4746 | Reg. OHH |
| 47 | SF MT FIm | TY M.Tom | LD M.Tom | TY M.Tom | Reg.M.Tom 2 | Reg.M.TomFlm |
| 4 | SF H.Tom | TY H.Tom | LD H.Tom | TY H.Tom | Reg.H.Tom 1 | Reg.H.Tom |
| 49 | Crash Cymla | Crash Cymla | Crash Cymla | Crash Cym 2 | Crash Cyml | Crash Cymla |
| 50 | SF HT Flm | TY H.Tom | LD H.Tom | TY H.Tom | Reg.H.Tom 2 | Reg.H.TomFlm |
| 51 | Rock Ride 1 | Rock Ride 1 | Rock Ride 1 | Rock Ride 1 | Rock Ride | Rock Ride 1 |
| 52 | China Cymbal |
|  | Splash Cym | Splash Cym | Splash Cym | Splash Cym | Ride Edge | Splash Cym |
| 54 | Tamborine2 | Tamborine 3 | Tamborine 3 | Tamborine2 | Tamborine | Tamborine |
| 55 | Rock Crash 1 | Rock Crash 1 | Rock Crash 1 | Crash Cymla | Crash Cym2a | Rock Crash 1 |
| 56 | Cowbell3 | Cowbell3 | Cowbell3 | Cowbell3 | Cowbell Low | Cowbell Hi |
| 57 | Crash Cym lb | Crash Cym lb | Crash Cym 1 | Crash Cym 1 b | Crash Cym2b | Crash Cym 1b |
| 558 | Cowbell2 Lng | Cowbell2 1 Lng | Cowbell | Cowbell 2 Lng | Cowbell Hi | Cowbell Low |
| 59 | Rock Ride 2 | Rock Ride 2 | Rock Ride 2 | Rock Ride 2 | Ride Bell. | Rock Ride 2 |
| 60 | Conga 2H Mt | Conga Hi Mt | Conga 2 H Mt | Conga 2H Mt | Conga Hi Mt | Conga Hi Mt |
| 61 | Conga 2L Mt | Conga Lo Mt | Conga 2L Mt | Conga 2L Mt | Conga Lo Mt | Conga Lo Mt |
| 62 | Conga 2H Slp | Conga Hi Slp | Conga 2H Slp | Conga 2H Slp | Conga Lo | Conga Hi Slp |
| 63 | Conga 2H Op | Conga Hi Op | Conga 2H Op | Conga 2H Op | Conga Hi Op | Conga Hi Op |
| 64 | Conga 2L Op | Conga Lo Op | Conga Lo Op | Conga 2L Op | Conga Lo Op | Conga Lo Op |
|  | Timbale 4 | Timbale Hi | Timbale 1 | Timbale 4 | Timbale Hi | Timbale Hi |
| ${ }^{65} 66$ | Timbale 3 | Timbale Low | Timbale 2 | Timbale 3 | Timbale Low | Timbale Low |
| 67 | Agogo 2 Hi | Mild Agogo H | Agogo 2 Hi | Agogo 2 Hi | Agogo Bell H | Mild Agogo H |
| 68 | Agogo 2 Low | Mild Agogo L | Agogo 2 Low | Agogo 2 Low | Agogo Bell L | Mild Agogo L |
| 69 | Cabasa 2 | Cabasa Up | Cabasa 2 | Cabasa 2 | Cabasa Up | Cabasa Up |
| 70 | Shaker 2 | Maracas | Shaker 2 | Shaker 1 | Maracas | Maracas |
| 71 | Whistle Shrt |
| C5 72 | Whistle Long | Whistle Long | Whistle | Whistle Long | Whistle Long | Whistle Long |
| ${ }_{7} 73$ | Guiro 2 Up | Guiro Short | Guiro 2 Up | Guiro 2 Up | Guiro Short | Guiro Short |
| 74 | Guiro 2 Down | Guiro Long | Guiro Long | Guiro 2 Down | Guiro Long | Guiro Long |
| 75 | Claves 2 | Claves | Claves 2 | Claves 2 | Claves | Claves |
| 76 | Wood Block2H | Wood Block H | Wood Block2H | Wood Block2H | Wood Block H | Wood Block H |
|  | Wood Block2L | Wood Block L | Wood Block2L | Wood Block2L | Wood Block L | Wood Block L |
| 78 | Cuica 2 Low | Cuica Mute | Cuica 2 Low | Cuica 2 Low | Cuica Mute | Cuica Mute |
| 79 | Cuica 2 Hi | Cuica Open | Cuica 2 Hi | Cuica 2 Hi | Cuica Open | Cuica Open |
| 80 | Triangle Mt |
| 81 | Triangle Op |
| 82 | Cabasa2 Cut | Cabasa Cut | Cabasa2 Cut | Cabasa2 Cut | Cabasa Cut | Cabasa Cut |
| 83 | DigiSpectrum | DigiSpectrum | DigiSpectrum | DigiSpectrum | Castanet | DigiSpectrum |
| C6 84 | Wind Chime | Wind Chime | Wind Chime | Wind Chime | Bongo Hi Mt | Wind Chime |
| 85 | Wood Block2M | Wood Block M | Wood Block2M | Wood Block2M | Bongo Hi Slp | Wood Block M |
| 86 | Cajon 2 | Cajon 2 | Cajon 2 | Cajon 2 | Bongo Lo Slp | Cajon 2 |
| 87 | ConcertBD | ConcertBD | ConcertBD | ConcertBD | Bongo Hi Op | ConcertBD |
| 88 | R\&B Kick | R\&B Kick | R\&B Kick | R\&B Kick | Bongo Lo Op | R\&B Kick |
|  | Dry Kick 2 | Dry Kick 2 | Dry Kick 2 | Dry Kick 2 | Cajon 1 | Dry Kick 2 |
| 90 | Old Kick | Old Kick | Old Kick | Old Kick | Cajon 2 | Old Kick |
| 91 | Jazz Doos | Jazz Doos | Jazz Doos | Jazz Doos | Cajon 3 | Jazz Doos |
| 92 | Agogo Noise | Agogo Noise | Agogo Noise | Agogo Noise | Vint Snr 2 | Agogo Noise |
| 93 | Rock OHH | Rock OHH | Rock OHH | Rock OHH | Shaker 3 | Rock OHH |
| 9594 | JD Anklungs | JD Anklungs | JD Anklungs | JD Anklungs | WD Rim | JD Anklungs |
| 95 | Rock OHH | Rock OHH | Rock OHH | Rock OHH | Mix Kick 1. | Rock OHH |
| C796 | Cajon 3 | Cajon 3 | Cajon 3 | Cajon 3 | Mix Kick 2 | Mix Kick 1 |
| 96 | Cajon 1 | Cajon 1 | Cajon 1 | Cajon 1 | Mix Kick 3 | Cajon 1 |
| 98 | Mix Kick 4 | Mix Clap | Mix Kick 4 | TY Rim f | Mix Kick 4 | Mix Kick 2 |
| 99 | Gospel Clap | Gospel Clap | Gospel Clap | Gospel Clap | Mix Kick 5 | Gospel Clap |
| 100 | Bright Clap | Bright Clap | Bright Clap | Bright Clap | Mix Clap 1 | Bright Clap |
| 101 | Rock Rd Cup | Rock Rd Cup | Rock Rd Cup | Rock Rd Cup | Wind Chime | Rock Rd Cup |
| 102 | Cowbell | Cowbell | Cowbell | Cowbell | Tibet Cymbal | Cowbell |
| 103 | Crash Cym 2 | Crash Cym 2 | Crash Cym 2 | Crash Cym 2 | Crotale | Crash Cym 2 |

Rhythm Set List

| Prst: | 007 | 008 | 009 | 010 | 011 | 012 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| User: | 007 | 008 | 009 | 010 | 011 | 012 |
| Note No. | StandardKi+3 | Rock Kit 1 | Rock Kit 2 | Brush Jz Kit | Orch Kit | 909808 Kit |
| 28 | HipHop Kick2 | R\&B Kick | MaxLow Kick2 | TR909 Kickla | Timpani Roll | TR909 Kick 2 |
|  | Syn Swt Atk 1 | Rk CmpKick | MaxLow Kick 1 | TR909 Kicklb | ConcertBD 2 | TR909 Kick 4 |
| 2930 | Lo-Bit Stk 1 | Sft Snr Gst | LD Rim mf | Jazz Snr | R8 Shaker 1 | Urbn Sn Roll |
| 31 | TR707 Kick | Dry Kick 4 | Power Kick | Reg.Kick 1 | Jngl pkt Snr | TR909 Kick 5 |
| 32 | TR808 Snr 5 | Snr Roll | Mix Clap 2 | Soft Jz Roll | Reverse Cym | TR909 Snr 3 |
| 33 | Vint Kick 1 | SH32 Kick | Vint Kick | Reg.Kick 2 | Snr Roll | TR909 Kick 3 |
| 34 | Reg.PHH | Reg.PHH | Rock CHH2 | Reg.PHH | Jazz Ride | TR909 PHH 2 |
| 35 | Vint Kick 2 | Reg:Kick 1. | Rock Kick | Jazz Kick 1. | Timpani Roll | TR909 Kick 6 |
| C2 36 | Old Kick 1 | Reg.Kick 2 | Rk CmpKick | Jazz Kick 2 | ConcertBD 1 | TR909 Kick 1 |
| ${ }^{26} 37$ | Lo-Bit Stk 4 | Reg.Stick | Wild Stick | Hard Stick | Hard Stick | TR909 Rim |
| 38 | Reg.Snr 1 | Reg.Snr2 | Maple Snr | Jazz Rim | Amb.Snr 2 | TR909 Snr 1 |
| 39 | Amb Clap | Reg.Snr Gst | Sft Snr Gst | Jz Brsh Swsh | Gospel Clap | TR909 Clap 1 |
| 40 | TY Rim | Reg.Snr 1 | Reg. Snr 1 | Jazz Snr | Concert SD | TR909 Snr 2 |
|  | Jazz Lo Tom 1 | Reg.F.Tom | Sharp L.Tom 1 | Reg.F.Tom 1 | Timpani F | TR909 Tom L |
| 42 | Reg.CHH 1 | Reg.CHH 1 | Rock CHH 1 | Reg.CHH 1 | Timpani F\# | TR909 CHH 1 |
| 43 | Jazz Lo Tom2 | Reg.L.Tom | Sharp L.Tom2 | Reg.L.Tom 1 | Timpani G | TR909 Tom L |
| 44 | Reg.CHH 2 | Reg.CHH 2 | Reg.PHH | Reg.CHH 2 | Timpani G\# | TR909 PHH 1 |
| 45 | Jazz Mid Tom | Reg.M.Tom | Sharp L.Tom3 | Reg.M.Tom 1 | Timpani A | TR909 Tom M |
| 4746 | Reg. OHH | Reg. OHH | Rock OHH | Reg. OHH | Timpani A\# | TR909 OHH 2 |
| 47 | Jazz Mid Tom | Reg.M.TomFlm | Sharp H Tom 1 | Reg.M.Tom 1 | Timpani B | TR909 Tom M |
| C3 48 | Jazz Hi Tom | Reg.H.Tom | Sharp H.Tom2 | Reg.H.Tom 1 | Timpani C | TR909 Tom H |
| 49 | Crash Cym 1 | Crash Cymla | Crash Cym 1 | Jazz Crash | Timpani C\# | TR909 Crash |
| 50 | Jazz Hi Tom | Reg.H.TomFlm | Sharp H.Tom3 | Reg.H.Tom 1 | Timpani D | TR909 Tom H |
| 51 | Rock Rd Edge | Rock Ride 1 | Ride Cymbal | Jazz Ride 1 | Timpani D\# | TR909 Ride 1 |
| 52 | China Cymbal | China Cymbal | China Cymbal | China Cym 1 | Timpani E | TR909 Crash 1 |
|  | Rock Rd Cup | Splash Cym | Ride Bell | Ride Edge | Timpanif | TR909 Ride 2 |
| 54 | Tamborine | Tamborine | Tamborine 3 | Tamborine | Tamborine 3 | CR78 Tamb 1 |
| 55 | Splash Cym | Rock Crash 1 | Rock Crash 2 | Crash Cym | Concert Cym | TR909 Crash2 |
| 56 | Cowbell | Cowbell Hi | Cowbell Mute | Cowbell Low | Cowbell Mute | JD Sm Metal |
| 57 | Rock Crash 2 | Crash Cym 1b | Splash Cym | Crash Cym | Concert Cym 2 | TR909 Ride 3 |
| 5958 | TR808 Cym | Cowbell Low | Cowbell | Cowbell Hi | Ride Cymbal | Syn Swt Atk3 |
| 59 | Jazz Ride. | Rock Ride 2 | Rook Rd Cup. | Ride Bell | Crash Cyml. | TR808 Kick 1. |
| C4 60 | Bongo Hi | Conga Hi Mt | Conga Hi Mt | Conga Hi Mt | Bongo Hi Op | TR808 Kick 2 |
| ${ }^{64} 61$ | Bongo Lo | Conga Lo Mt | Conga Lo Mt | Conga Lo Mt | Bongo Lo Op | TR808 Rim |
| 62 | Conga Hi Mt | Conga Hi Slp | Conga Slp Op | Conga Lo Slp | Conga Hi Mt | TR808 Snr 2 |
| 63 | Conga Hi | Conga Hi Op | Conga Hi Op | Conga Hi Op | Conga Hi Op | TR808 Clap 2 |
| 64 | Conga Lo | Conga Lo Op | Conga Lo Op | Conga Lo Op | Conga Lo Op | TR808 Snr 4 |
|  | Timbale Hi | TR808 Tom L |
| 66 | Timbale Low | TR808 CHH 1 |
| 67 | Cowbell Hi | Agogo Bell H | Agogo Bell H | Agogo Bell H | Agogo Bell H | TR808 Tom L |
| 68 | Cowbell Low | Agogo Bell L | Agogo Bell L | Agogo Bell L | Agogo Bell L | TR808 CHH 2 |
| 69 | Cabasa | Cabasa Up | Cabasa Up | Cabasa Up | Cabasa Up | TR808 Tom M |
| 70 | Shaker | Maracas | Maracas | Maracas | Maracas | TR808 OHH 1 |
| 71 | Noise OHH 2 | Whistle Shrt | Whistle Shrt | Jazz Kick 1 | Whistle Shrt | TR808 Tom M |
| 72 | Scratch 5 | Whistle Long | Whistle Long | Jazz Kick 2 | Whistle Long | TR808 Tom H |
| 73 | Syn Low Atk2 | Guiro Short | Guiro Short | Hard Stick | Guiro Short | TR808Cowbell |
| 74 | MG Zap 3 | Guiro Long | Guiro Long | Jazz Rim | Guiro Long | TR808 Tom H |
| 75 | Syn Swt Atk 1 | Claves | Claves | Sft Snr Gst | Claves | TR606 Cym |
| 76 | Syn Swt Atk 4 | Wood Block H | Wood Block H | Jazz Snr | Wood Block H | TR606 OHH 1 |
|  | Bongo Hi Slp | Wood Block L | Wood Block L | Reg.F.Tom 2 | Wood Block L | TR606 OHH 2 |
| 78 | Noise OHH | Cuica Mute | Cuica Mute | Reg.CHH 1 | Cuica Mute | CR78 Tamb 2 |
| 79 | Noise CHH | Cuica Open | Cuica Open | Reg.L.Tom 2 | Cuica Open | CR78 OHH 1 |
| 80 | Triangle 1 | Triangle Mt | Triangle Mt | Reg.CHH 2 | Triangle Mt | Cowbell Mute |
| 81 | Triangle 2 | Triangle Op | Triangle Op | Reg.M.Tom 2 | Triangle Op | CR78 OHH 2 |
| 8382 | Cajon 1 | Cabasa Cut | Cabasa Cut | Reg. OHH | Cabasa Cut | Syn Swt Atk5 |
| 83 | Cajon 3 | DigiSpectrum | Wind Chime | Reg.M.TomFIm | Finger Snap | TR808 OHH 2 |
| 8 | Wind Chime | Wind Chime | Dist Chord 1 | Reg.H.Tom 2 | Wind Chime | 808 Maracas |
| 85 | SprgDrm Hit | Dist Chord 1 | Dist Chord 2 | Jazz Cymbal | Tibet Cymbal | TR808 Claves |
| 86 | Crotale | Dist Chord 2 | Dist Chord 3 | Reg.H.TomFlm | Vibraslap | Triangle Mt |
| 87 | R8 Click | Dist Chord 3 | Dist Chord 4 | Jazz Ride 2 | Crotale | Triangle Op |
| 88 | Metro Bell | Dist Chord 4 | Dist Chord 5 | China Cym 2 | Applause | Narrow Hit 2 |
|  | DR202 Beep | Dist Chord 5 | Dist Chord 6 | Cajon 1 | TubulrBel F | TR808 Cym 1 |
| 90 | Reverse Cym | Rock CHH 2 | Rock CHH 2 | Cajon 2 | TubulrBel F\# | MG Zap 4 |
| 91 | Xylo Seq. | Cowbell 2 a | Dist Chord 7 | Cajon 3 | TubulrBel G | Scratch 1 |
| 92 | Vinyl Noise | Rock CHH 1 | DistGtr Nz 1 | Vint Snr 2 | TubulrBel G\# | MG Zap 1 |
| 93 | Mobile Phone | Cowbell 2b | DistGrr Nz 2 | Shaker 3 | TubulrBel A | TR606 Snr 2 |
| 9594 | Group Snap | Rock OHH | DistGrinz 3 | WD Rim f | TubulrBel A\# | Synth Saw |
| 95 | Laser | Fng:EB2 Sld | JD Switch | Mix Kick 1. | TubulrBel B | Digi Breath |
| 96 | Siren | Cajon 3 | Cajon 3 | Mix Kick 2 | TubulrBel C | TR808 Cym2 |
| 97 | AnalogKick 3 | Cajon 2 | Cajon 2 | Mix Kick 3 | TubulrBel C\# | TR808 Congal |
| 98 | Old Kick 2 | Cajon 1 | Cajon 1 | Mix Kick 4 | TubulrBel D | TR808 Conga2 |
| 99 | Reg.Kick | Gospel Clap | Real Clap | Mix Kick 5 | TubulrBel D\# | Cajon 1 |
| 100 | TR909 Snr 4 | Rock Crash 2 | Gospel Clap | Mix Clap 1 | TubulrBel E | Vint Snr 3 |
| 101 | TR808 Snr 2 | Rock Rd Cup | Tibet Cymbal | Wind Chime | TubulrBel f | Door Creak |
| 102 | Short Snr 1 | Club FinSnap | Tamborine 1 | Tibet Cymbal | Church Bell 1 | Vint.Phone |
| 103 | Vint Snr 4 | TR909 Snr 6 | Tamborine 2 | Crotale | Church Bell2 | Door Creak |

Rhythm Set List


Rhythm Set List

| Prst: | 019 | 020 | 021 | 022 | 023 | 024 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| User: | 019 | 020 | 021 | 022 | 023 | 024 |
| Note No. | House Kit | Nu Technica | Machine Kit2 | Arrificalkit | Noise Kit | Kick Menu |
| 28 | TR909 Kick 3 | SH32 Kick 1 | AnalogKick 5 | TR909 Kick 2 | TR909 Kick 2 | - |
|  | SH32 Kick | JD EML 5th 1 | AnalogKick6a | AnalogKick 2 | TR909 Kick 4 |  |
| ${ }^{29} 30$ | Urbn Sn Roll | AnalogKick 6 | Analog Snr 1 | TR808 Snr 5 | Urbn SnRolll |  |
|  | TR909 Kick 2 | TR909 Kick 5 | AnalogKickla | TR909 Kick 3 | TR909 Kick 5 | - |
| 32 | TR909 Snr 6 | Plastic Kc3a | TR808 Snr 4 | Vint Snr 3 | Door Creak 1 |  |
| 33 | TR909 Kick 5 | R\&B Kick | FB Kick | FB Kick | TR909 Kick 1 |  |
| 3534 | TR909 PHH 2 | TR707 Kick | TR808 PHH | TR606 Cym 2a | SynSwt Atk7a | - |
|  | TR9099 Kick4a | Plastic Kc3b | AnologKick6b | AnalogKick 3 | Caion 3a | Reg. Kick p. |
|  | TR909 Kick 4 b | SH32 Kick 2 | AnalogKickóc | TVF Trigger | Cajon 3b | Reg.Kick $\dagger$ |
| 37 | TR909 Rim | TR909 Snr 5 | R\&B Shrikim2 | TR909 Rim | Laser | Reg.Kick ff |
| 38 | TR909 Snr 4 | Syn Mil Atk2 | TR909 Snr 1 | TR909 Snr 1 | Door Creak2a | Rock Kick p |
|  | TR909 Clap 2 | Flange Snr | TR707 Clap | Claptail | Train Pass | Rock Kick f |
| 40 | TR909 Snr 5 | TR909 Snr 3 | Lo-Bit Snr 2 | TR909 Snr 3 | Door Creak2b | Jazz Kick p |
|  | TR909 Tom L | Dance CHH | Deep Tom L | TR909 Tom L2 | Syn Swt Atkl | Jazz Kick mf |
| 4142 | TR909 CHH 2 | TR606DstCHH1 | TR606 CHH 1 | TR909 CHH 1 | SynSwt Atk7b | Jazz Kick f |
|  | TR909 Tom L | TR909 PHH 2 | Deep Tom L | TR909 Tom L1 | Syn Swt AtkL | Dry Kick 1 |
| 44 | TR909 PHH 2 | TR606 PHH 2 a | TR606 PHH 1 | TR909 PHH 1 | Syn Mil Atk2 | Tight Kick |
| 45 | TR909 Tom M | TR909 OHH 1 | Deep Tom M | TR909 Tom M2 | Syn Swt AtkM | Old Kick |
| 46 | TR909 OHH 2 | Lite OHH | TR909 OHH 2 | TR909 OHH 2 | White Noise | Jz Dry Kick |
|  | TR909 Tom M | Rock Rd Cup | Deep Tom M | TR909 Tom M1 | Syn Swt AtkM | Dry Kick 2 |
|  | TR909 Tom H | Syn Hrd Atk4 | Deep Tom H | TR909 Tom H2 | Syn Swt AtkH | Dry Kick 3 |
| 49 | TR909 Crash 1 | MG Zap 7a | Lite OHH | TR909 Crash | Syn Mtl Atk 1 | Power Kick |
| 50 | TR909 Tom H | MG Zap 9 | Deep Tom H | TR909 Tom H1 | Syn Swt AtkH | R\&B Kick L |
| 51 | TR909 Ride 1 | MG Zap 8 | TR808 OHH 1 | TR909 Ride | SynLow Atkla | Rk CmpKick |
| 52 | TR909 Crash2 | MG Zap 10 | TR606 Cym 2a | White Noise 1 | Crotale 1 | Dance Kick |
|  | TR909 Ride 2 | HipHop CHH 2 | TR909 Ride 1 | CR78 Beat | Laser 1 | HipHop Kick 1 |
| 54 | CR78 Tamb | Syn Swt Atk3 | CR78 Tamb | Tamborine 3 | MG Zap 11 | HipHop Kick2 |
|  | MG Zap 4 | Reg.PHH | TR606 Cym 2b | Atmosphere | Laser 2 | TR909 Kick 1 |
| 56 | JD Sm Metal | Syn Swt Atk6 | JD Sm Metal | Cowbell Mute | MG Zap 4a | TR808 Kick |
| 57 | MG Zap 5 | HipHop OHH | TR909 Ride 2 | Syn Swt Atk 1 | Digi Loop 1 | TR909 Kick 4 |
| 55 | Syn Swt Atk3 | TR909 OHH 2 | Syn Swt Atk 3 | Cowbell | MG Zap 6a | WD Kick mf |
|  | AnalogKick 2 | TR909 R C Crsh | AnologKick 1 b | Reverse Cym | Synlow Atk2a | WD Kick f |
|  | TR909 Kick 2 | TR909 Crash | AnalogKick 4 | AnalogKick 5 | SynLow Atk2b | WD Kick ff |
|  | TR909 Rim | Rock Crash 1 | Urbn SnRoll 1 | Metal Vox W1 | MG Attack | LD Kick mf |
| 62 | TR909 Snr 1 | MG Zap 2 | Analog Snr 2 | Metal Vox W2 | Syn Hrd Atk4 | LD Kick f |
| 63 | TR909 Clap 1 | MG Zap 9 | Dist Clap | Metal Vox W3 | Train Pass | LD Kick ff |
|  | TR909 Snr 2 | Smear Hit 2 | Analog Snr 3 | White Noise2 | Syn Mil Atk 1 | TY Kick mf |
|  | TR909 D.TomL | Low Square | R8 Shaker | White Noise3 | Syn Swt AtkL | TY Kick f |
|  | TR909 CHH 1 | JD WoodCrak 1 | TR909 CHH 2 | TR606 Cym 2b | Syn Swt Atk7 | TY Kick ff |
|  | TR909 D.TomL | Piano Atk Nz | R8 Shaker | MG Blip | Syn Swt AtkL | SF Kick 1 |
| 68 | TR808 CHH 2 | JD WoodCrak2 | TR909 PHH 2 | MG Blip Rev. | Syn Mil Atk2 | SF Kick 2 |
| 69 | TR909 D.TomM | DR202 Beep 1 | Syn Hrd Atk 1 | DigiSpectrum | Syn Swt AtkM | MaxLow Kick 1 |
| 70 | TR909 OHH 1 | JD WoodCrak3 | TR909 OHH 2 | Ice Crash | DigiSpectrum | MaxLow Kick2 |
|  | TR909 D.TomM | Syn Pulse 2 | SynHrd Atkla | Metal Vox L2 | Syn Swt AtkM | Dist Kick |
|  | TR909 D.TomH | DR202 Beep 2 | SynHrd Atk 1b | Thin Beef | Syn Swt AtkH | FB Kick |
|  | TR909 Crash3 | Narrow Hit2a | TR909 Crash | LoFi Min Hit | Digi Loop 1 | Rough Kick 1 |
|  | TR909 D.TomH | E.Gtr Harm | SynHrd Atk 1 c | Trance Saw | Syn Swt AtkH | Rough Kick2 |
| 75 | TR909 Ride 3 | Narrow Hit2b | TR909 Ride 3 | TB DstSqr | SynLow Atklb | Rough Kick3 |
|  | TR909 Crash4 | Euro Hit | TR909 Crash | Finger Snap | Crotale 2 | PlasticKickl |
|  | TR909 Ride 4 | Jazz Lo Tom 1 | TR909 Ride 1 | Conga Slp Op | Laser 3 | 70's Kick |
| 78 | Tamborine 2 | TR909 D.TomL | CR78 Tamb | Conga lo Op | MG Zap 11 | AnalogKick 1 |
|  | MG Zap 2 | Jazz Lo Tom2 | MG Zap 2 | Conga Hi Op | Laser 4 | Plastickick2 |
| 80 | Cowbell Low | TR909 D.TomM | JD Sm Metal | Triangle Mt | MG Zap 4b | PlasticKick3 |
|  | MG Zap 6 | Jazz Lo Tom3 | MG Zap 6 | Triangle Op | Crotale 3 | TR909 Kick 2 |
| 8382 | Cowbell Hi | TR909 D.TomH | Syn Swt Atk 1 | Cabasa Cut | MG Zap 6b | AnalogKick 2 |
|  | MG Zap 7 | AnalogKick 3 | MG Zap 7 | R8 Shaker | Syn Low Atk2 | TR909 Kick 3 |
|  | Conga Hi Mt | AnalogKick 5 | 808 Maracas | AnalogKick 1 | 808 Maracas | AnalogKick 3 |
|  | Conga Lo Mt | Club Clap | TR808 Claves | PlasticKick2 | TR808 Claves | AnalogKick 4 |
|  | Conga Lo Slp | TR808 Snr 7 | Triangle Mt | PlasticKick3 | Triangle Mt | AnalogKick 5 |
| 87 | Conga Hi Op | TR808 Snr 3 | Triangle Op | TR909 Kick 1 | Triangle Op | AnalogKick 6 |
|  | Conga Lo Op | TR909 Snr 6 a | Euro Hit | AnalogKick 4 | Dry Lo Tom | TR606DstKick |
|  | Timbale Hi | TR909 CHH 2 | Scratch 4 | AnalogKick 6 | Conga Thumb | TR909 Kick 5 |
| 90 | Timbale Low | TR606DstCHH2 | Brt Strat C | TR909 Snr 2 | Funk Gtr | SH32 Kick |
|  | Agogo Bell H | Dance CHH | Crotale | TR909 Snr 4 | Digi Loop 1 | TR707 Kick |
| 92 | Agogo Bell L | TR606 PHH 2b | MG Zap 4 | TR909 Snr 5 | MG Zap 4c | TR909 Kick 6 |
| 93 | Cabasa Down | TR909 OHH 2 | Urbn SnRoll2 | TR909 Snr 6 | Urbn SnRoll2 | Mix Kick 1 |
| 94 | Maracas | TR606 OHH | Calc.Saw | TR808 Snr 1 | Sweep Saw | Mix Kick 2 |
|  | Guiro Short | CR78 OHH | White Noise | TR808 Snr 2 | White Noise | Mix Kick 3 |
|  | Guiro Long | Juno Sqr HD | Blow Loop | TR808 ${ }^{\text {CHH }} 1$ | Monsoon | Mix Kick 4 |
|  | Claves | TR909 Snr 6b | Shaker 2 | TR808 OHH 1 | Shaker 3 | Mix Kick 5 |
|  | Wood Block L | TR808 Kick | Shaker 3 | TR909 CHH 2 | Scream | Dry Kick 4 |
| 99 | Wood Block H | JD EML 5th 2 | Cajon 1 | TR909 OHH 2 | Cajon 1 | Sweep Bass |
| 100 | Triangle Mt | TR707 Clap | Euro Hit | Lite CHH | Euro Hit | Vint Kick |
|  | Triangle Op | Dist Clap | Laugh | Lite OHH | Laugh | Small Kick |
| 102 | Castanet | MG Zap 5 | Office Phone | TR606 Cym 2c | ConcertBD | - |
| 103 | Whistle | MG Zap 7b | Door Creak | China Cymbal | Timpani | - |

Rhythm Set List

| Prst: | 025 | 026 | 027 | 028 | 029 | 030 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| User: | 025 | 026 | 027 | 028 | 029 | 030 |
| Note No. | Snare Menu | Snr/Rim Menu | HiHat Menu | Tom Menu | Clp\&Cym\&Hit | FX/SFX Menu |
| 28 | - | - | - | - | - | - |
|  | - | - | - | - | - |  |
| ${ }^{29} 30$ |  |  |  |  |  |  |
| 31 | - | - | - | - | - | - |
| 32 | - | - |  | - |  |  |
| 33 | - | - | - | - | - |  |
| 3534 | $\overline{\text { Reg.Snrlp }}$ | GoodOld Snr 1 | $\overline{\text { Reg.CHH } 1 \mathrm{p}}$ | $\overline{\text { Reg.F.Tom } \mathrm{p}}$ | $\overline{\text { Hand Clap }}$ | $\bar{M} G$ Zap 1 |
|  | Reg.Snilmf | Goodölid Sni2 | Reg.CHH 1 mf | Reg.f.tom $f$ | Clüb Cliap | MG Zap 2 |
| 33 | Reg.Snrl f | GoodOld Snr3 | Reg.CHH 1 f | Reg.L.Tom p | Real Clap | MG Zap 3 |
| 38 | Reg.Snriff | GoodOld Snr4 | Reg.CHH 1 ff | Reg.L.Tom $f$ | Bright Clap | MG Zap 4 |
| 439 | Reg.Snr2 p | GoodOld Snr5 | Reg.CHH 2 mf | Reg.M.Tom p | R8 Clap | MG Zap 5 |
| 40 | Reg. Snr2 f | GoodOld Snr6 | Reg.CHH 2 f | Reg.M.Tom f | Gospel Clap | MG Zap 6 |
|  | Reg.Snr2ff | Dirty Snr 1 | Reg. CHH 2 ff | Reg.H.Tom p | Amb Clap | MG Zap 7 |
| 4142 | Amb.Snrlp | Dirty Snr 2 | Reg.PHH mf | Reg.H.Tom f | TR808 Clap 1 | MG Zap 8 |
|  | Amb. Snr 1 f | Dirty Snr 4 | Reg.PHH f | Reg.L.TomFlm | TR808 Clap 2 | MG Zap 9 |
| 44 | Amb. $\operatorname{snr} 2 \mathrm{p}$ | Dirty Snr 5 | Reg. OHH mf | Reg.M.TomFlm | TR909 Clap 1 | MG Zap 10 |
| 45 | Amb. Snr2 f | Dirty Snr 6 | Reg. OHH f | Reg.H.TomFlm | TR909 Clap 2 | MG Zap 11 |
| 4746 | Piccolo Snr | Dirty Snr 7 | Reg. OHH ff | Jazz Lo Tom | TR707 Clap | MG Blip |
|  | Maple Snr | Grit Snril | Rock CHH1 mf | Jazz Mid Tom | Cheap Clap | Beam HiQ |
|  | Reg.Snr Gst | Grit Snr 2 | Rock $\mathrm{CHH}_{1} \mathrm{f}$ | Jazz Hi Tom | Mix Clap 1 | MG Attack |
| 49 | Sft Snr Gst | Grit Snr 3 | Rock CHH 2 mf | Jazz Lo Flm | Mix Clap 2 | Syn Low Atk 1 |
| 50 | Jazz Snr p | LoBit SnrFlm | Rock CHH2 f | Jazz Mid Flm | Mix Clap 3 | Syn Low Atk2 |
| 51 | Jz Brsh Slap | Lo-Bit Snr 1 | Rock OHH | Jazz Hi Flm | Mix Clap 4 | Syn Hrd Atk 1 |
| 52 | Jz Brsh Swsh | Dirty Snr 3 | Lo-Bit CHH 1 | Sharp Lo Tom | Dist Clap | Syn Hrd Atk2 |
|  | Swish\&Turn p | Lo-Bit Snr 2 | Lo-Bit CHH 2 | Sharp Hi Tom | Dist Clap 2 | Syn Hrd Atk3 |
| 53 | Swish\&Turn f | Analog Snr 1 | Lo-Bit CHH 3 | Dry Lo Tom | Crash Cym 1 p | Syn Hrd Atk4 |
|  | Concert SD | Tiny Snare | Lo-Bit CHH 4 | TR909 Tom | Crash Cymlf | Syn Mil Atkl |
| 56 | Snr Roll Lp | R\&B ShriSnr 1 | Lo-Bit CHH 5 | TR909 DstTom | Crash Cym 2 | Syn Mil Atk2 |
| 57 | BrushRoll Lp | TR808 Snr 1 | HipHop CHH | TR808 Tom | Rock Crash 1 | Syn Swt Atk 1 |
| 558 | WD Snr p | TR808 Snr 2 | TR909 CHH 1 | TR606 Tom | Rock Crash 2 | Syn Swt Atk2 |
|  | WD Snrmf | TR800 Snr 3 | TR909 CHH 2 | Deep Tom | S. Splash Cym. | Syn Swt Atk 3 |
|  | WD Snr f | TR606 Snr 1 | TR808 CHH 1 | RR F.Tom mp | Jazz Crash | Syn Swt Atk4 |
| 61 | WD Snrff | MrchCmp Snr | TR808 CHH 2 | RR F.Tom f | Ride Cymbal | Syn Swt Atk5 |
| 62 | WD Rim p | Reggae Snr | TR606 CHH 1 | RR F.Tom ff | Ride Bell | Syn Swt Atk6 |
| 63 | WD Rim mf | DR660 Snr | TR606 CHH 2 | LD L.Tom mf | Rock Rd Cup | Syn Swt Atk 7 |
|  | WD Rim f | Jngl pkt Snr | TR606 DstCHH | LD L.Tom f | Rock Rd Edge | R8 Click |
|  | WD Rim ff | Pocket Snr | Noise CHH | LD L.Tom ff | Jazz Ride p | MC500 Beep 1 |
| ${ }^{65} 6$ | LD Snrp | Flange Snr | Lite CHH | LD M. Tom mf | Jazz Ride mf | MC500 Beep 2 |
| 67 | LD Snr mf | Analog Snr 2 | CR78 CHH | LD M.Tom f | China Cymbal | DR202 Beep |
| 68 | LD Snrf | Analog Snr 3 | Dance CHH | LD M.Tom ff | TR909 Crash | JD Switch |
| 69 | LD Snrff | TR909 Snr 1 | Lo-Bit PHH | LD H.Tom mf | TR909 Ride | Cutting Nz |
| 7170 | LD Rim mf | TR909 Snr 2 | Hip PHH | LD H.Tom f | Concert Cym 1 | Vinyl Noise |
|  | LD Rim $f$ | TR909 Snr 3 | TR909 PHH 1 | LD H.Tom ff | Concert Cym2 | Applause |
|  | LD Rim ff | TR909 Snr 4 | TR909 PHH 2 | TY L.Tom mf | TR606 Cym | River |
| 73 | TY Snrp | TR909 Snr 5 | TR808 PHH | TY L.Tom f | TR808 Cym | Thunder |
| 74 | TY Snr mf | TR909 Snr 6 | TR606 PHH 1 | TY L.Tom ff | Reverse Cym | Monsoon |
| 75 | TY Snrf | TR808 Snr 4 | TR606 PHH 2 | TY M. Tom mf | ClassichseHt | Stream |
|  | TY Snr ff | Lite Snare | HipHop OHH | TY M.Tom f | Narrow Hit 1 | Bubble |
|  | TY Rim $p$ | TR808 Snr 5 | TR909 OHH 1 | TY M.Tom ff | Narrow Hit 2 | Bird Song |
| 78 | TY Rim mf | TR808 Snr 6 | TR909 OHH 2 | TY H.Tom mf | Euro Hit | Dog Bark |
|  | TY Rim $f$ | TR606 Snr 2 | TR808 OHH 1 | TY H.Tom f | Dist Hit | Gallop |
| 80 | TY Rim ff | CR78 Snare | TR808 OHH 2 | TY H.Tom ff | Thin Beef | Vint.Phone |
|  | SF Snrp | Urbn Sn Roll | TR606 OHH | SF L.Tom mf | Tao Hit | Office Phone |
| 8382 | SF Snr mf | Reg.Stick | Lo-Bit OHH 1 | SF L.Tom ff | Smear Hit 1 | Mobile Phone |
|  | SF Snrf | Soft Stick | Lo-bit OHH 2 | SF. M. Tom mf | Smear Hit 2 | Door Creak |
|  | SF Snr ff | Hard Stick | Lo-Bit OHH 3 | SF M.Tom f | LoFi Min Hit | Door Slam |
| ${ }^{64}$ | SF SnrGst1 | Wild Stick | Lite OHH | SF M.Tom ff | Orch. Hit | Car Engine |
|  | SF SnrGst2 | R\&B ShriRim 1 | CR78 OHH | SF H.Tom mf | Punch Hit | Car Slip |
| 87 | SF Rim p | R\&B ShriRim2 | Noise OHH 1 | SF H.Tom f | O'Skool Hit | Car Pass |
|  | SF Rim mf | WD CStk mf | Noise OHH 2 | SF H.Tom ff | Philly Hit | Crash Seq. |
|  | SF Rim $f$ | WD CStk f | - | RR FT Flm ff | - | Gun Shot |
| 90 | SF Rim ff | LD CStk mf | - | SF LT Flm ff | - | Siren |
|  | Light Snr ff | LD CStk f | - | SF MT Flm f | - | Train Pass |
| 92 | Click Snr p | TY CStk mf | - | SF HT FIm p | - | Airplane |
|  | Click Snr ff | TY CStk f | - | SF HT FIm f | - | Laugh |
| 959 | $\begin{aligned} & \text { Jazz Snr mf } \\ & \text { Jazz Snr f } \end{aligned}$ | SfCrsStk p | 二 | SF HT Flm ff | - | Scream Punch |
|  | Jazz Rim p | Lo-bit Stik 1 | - | - | - | Hearibeat |
| 97 | Soff Jz Roll | Lo-Bit Stk 2 | - | - | - | Footsteps |
| 98 | - | Dry Stick 1 | - | - | - | Machine Gun |
| 99 | - | Dry Stick 2 | - | - | - | Laser |
| 100 | - | Dry Stick 3 | - | - | - | Thunder Lp |
|  | - | R8 Comp Rim | - | - | - | Metro Bell |
| 102 | - | TR909 Rim | - | - | - | Metro Click |
| 103 | - | TR808 Rim | - | - | - | - |


| Prst: | 031 | 032 |
| :---: | :---: | :---: |
| User: | 031 | 032 |
| Note No. | Percussion | Scrh\&Vox\&Wld |
| 28 | Cowbell | - |
|  | Cowbell Mute | - |
| 30 | Cowbell2 Lng | - |
| 31 | Cowbell2 Edg | - |
| 32 | Cowbell 3 mf | - |
| 33 | Cowbell3 f | - |
| 34 | Wood Block | - |
| 35 | Wood Block2H | Scratch 1 |
| C2 36 | Wood Block2L | Scratch 2 |
| ${ }^{36} 37$ | Claves | Scratch 3 |
| 38 | TR808 Claves | Scratch 4 |
| 39 | Claves 2 | Scratch 5 |
| 40 | CR78 Beat | Scratch 6 |
|  | Castanet | Scratch 7 |
| 42 | Whistle | Scratch 9 |
| 43 | Whistle Long | Scratch 10 |
| 44 | Whistle Shrt | Aah Formant |
| 45 | Bongo Hi Mt | Eeh Formant |
| 46 | Bongo Hi Slp | lih Formant |
| 47 | Bongo Lo Slp | Ooh Formant |
| C3 48 | Bongo Hi Op | Uuh Formant |
| 49 | Bongo Lo Op | Metal Vox W1 |
| 50 | Conga Hi Mt | Metal Vox W2 |
| 51 | Conga Lo Mt | Metal Vox W3 |
| 52 | Conga Hi Slp | JD Gamelan 1 |
| 53 | Conga Lo Slp | JD Gamelan 2 |
| 54 | Conga Hi Op | JD Gamelan 3 |
| 55 | Conga Lo Op | JD Gamelan 4 |
| 56 | Conga Slp Op | JD Gamelan 5 |
| 57 | Conga Efx | JD Gamelan 6 |
| 58 | Conga Thumb | JD Gamelan 7 |
| 59 | Conga 2H Op | JD Gamelan 8 |
| C4 60 | Conga 2H Mt | JD Gamelan 9 |
| ${ }^{6} 61$ | Conga 2H Slp | JD Gamelan 10 |
| 62 | Conga 2L Op | JD Gamelan 11 |
| 63 | Conga 2L Mt | JD Gamelan 12 |
| 64 | Timbale 1 | Cajon 1 |
|  | Timbale 2 | Cajon 2 |
| 66 | Timbale 3 | Cajon 3 |
| 67 | Timbale 4 | Cajon 4 |
| 68 | Cabasa Up | SprgDrm Hit |
| 69 | Cabasa Down | Cuica |
| 70 | Cabasa Cut | Cuica 2 Hi |
| 71 | Cabasa2 | Cuica 2 Low |
| C5 72 | Cabasa2 Cut | - |
| 73 | Shaker | - |
| 74 | Maracas | - |
| 75 | 808 Maracas | - |
| 76 | R8 Shaker | - |
| 77 | Guiro 1 | - |
| 78 | Guiro 2 | - |
| 79 | Guiro Long | - |
| 80 | Guiro 2 Up | - |
| 81 | Guiro 2 Down | - |
| 82 | Guiro 2 Fast | - |
| 83 | Vibraslap |  |
|  | Tamborine 1 | - |
| 85 | Tamborine 2 | - |
| 86 | Tamborine 3 | - |
| 87 | Tamborine4 f | - |
| 88 | Tamborine4 p | - |
|  | CR78 Tamb | - |
| 89 | Timpanip | - |
| 91 | Timpanif | - |
| 92 | Timpani Roll | - |
| 93 | Timpani Lp | - |
| 94 | ConcertBD p | - |
| 95 | ConcertBD f |  |
| C7 96 | ConcertBD ff | - |
| $\bigcirc 97$ | ConcertBD Lp | - |
| 98 | Triangle 10p | - |
| 99 | Triangle 1Mt | - |
| 100 | Triangle 2 | - |
| 101 | Tibet Cymbal | - |
| 102 | Wind Chime | - |
| 103 | Crotale | - |
|  |  |  |

## GM (GM2 Group)




[^2]
## Waveform List

In waveform numbers 0001-0027 and 0061-0087, note numbers 91-108 are set to Damper Free in order to accurately reproduce the characteristics of an acoustic piano.

| No. | Wave Name |
| :---: | :---: |
| 001 | HM-Pno*mpA L |
| 002 | HM-Pno*mpA R |
| 003 | HM-Pno*mpA M |
| 004 | HM-Pro*mpB L |
| 005 | HM-Pro*mpB R |
| 006 | HM-Pno*mpB M |
| 007 | HM-Pno*mpC L |
| 008 | HM-Pno*mpC R |
| 009 | HM-Pno*mpC M |
| 010 | HM-Pno*mfA L |
| 011 | HM-Pro*mfA R |
| 012 | HM-Pno*mfA M |
| 013 | HM-Pno*mfB L |
| 014 | HM-Pno*mfB R |
| 015 | HM-Pno* ${ }^{\text {mfB }}$ M |
| 016 | HM-Pno*mfC L |
| 017 | HM-Pno*mFC R |
| 018 | HM-Pno*mfC M |
| 019 | HM-Pno*f A L |
| 020 | HM-Pno*f A R |
| 021 | HM-Pno*fA M |
| 022 | HM-Pno*f B L |
| 023 | HM-Pno*F B R |
| 024 | HM-Pro*fB M |
| 025 | HM-Pno*f CL |
| 026 | HM-Pno*f C R |
| 027 | HM-Pno*f CM |
| 028 | HM-Pno mpA L |
| 029 | HM-Pno mpA R |
| 030 | HM-Pno mpA M |
| 031 | HM-Pno mpB L |
| 032 | HM-Pno mpB R |
| 033 | HM-Pno mpB M |
| 034 | HM-Pno mpC L |
| 035 | HM-Pno mpC R |
| 036 | HM-Pno mpC M |
| 037 | HM-Pno mfA L |
| 038 | HM-Pno mfA R |
| 039 | HM-Pno mfA M |
| 040 | HM-Pno mfB L |
| 041 | HM-Pno mfB R |
| 042 | HM-Pno mfB M |
| 043 | HM-Pno mfC L |
| 044 | HM-Pno mfC R |
| 045 | HM-Pno mFC M |
| 046 | HM-Pnofal |
| 047 | HM-Pnofar |
| 048 | HM-Pnofam |
| 049 | HM-PnofBL |
| 050 | HM-PnofBR |
| 051 | HM-Pno f B M |
| 052 | HM-PnofCL |
| 053 | HM-PnofCR |
| 054 | HM-PnofCM |
| 055 | HM-Pno mp L+ |
| 056 | HM-Pno mp R+ |
| 057 | HM-Pno mf L+ |
| 058 | HM-Pno mf R+ |
| 059 | HM-Pnof L+ |
| 060 | HM-Pnof R+ |
| 061 | Pop P*mp A L |
| 062 | Pop P*mp AR |
| 063 | Pop P*mp A M |
| 064 | Pop P*mp B L |
| 065 | Pop P*mp B R |
| 066 | Pop P*mp B M |
| 067 | Pop P*mp CL |
| 068 | Pop P*mp C R |
| 069 | Pop P*mp CM |
| 070 | Pop P* fal |
| 071 | Pop P* far |
| 072 | Pop P* fAM |
| 073 | Pop P ${ }^{*} f B L$ |
| 074 | Pop $P^{*} f B R$ |
| 075 | Pop P* $\mathrm{FB}^{\text {M }}$ |
| 076 | Pop $\mathrm{P}^{*} \mathrm{fCL}$ |
| 077 | Pop $\mathrm{P}^{*} \mathrm{fCR}$ |
| 078 | Pop P* $f C M$ |
| 079 | Pop P*FfA L |
| 080 | Pop P*ff AR |


| No. | Wave Name |
| :---: | :---: |
| 081 | Pop P*Ff A M |
| 082 | Pop P**f B L |
| 083 | Pop P*FfB R |
| 084 | Pop P*ff B M |
| 085 | Pop P*FfCL |
| 086 | Pop P*Ff CR |
| 087 | Pop P*FFCM |
| 088 | Pop PmpAL |
| 089 | Pop Pmpar |
| 090 | Pop P mp A M |
| 091 | Pop P mp B L |
| 092 | Pop P mp B R |
| 093 | Pop P mp B M |
| 094 | Pop Pmp CL |
| 095 | Pop Pmp CR |
| 096 | Pop P mp CM |
| 097 | Pop PfAL |
| 098 | Pop PfAR |
| 099 | Pop P f AM |
| 100 | Pop P fBL |
| 101 | Pop $P$ f $\mathrm{BR}^{\text {R }}$ |
| 102 | Pop PfBM |
| 103 | Pop PfCL |
| 104 | Pop PfCR |
| 105 | Pop P fCM |
| 106 | Pop Pff AL |
| 107 | Pop Pff AR |
| 108 | Pop PffAM |
| 109 | Pop P ff B L |
| 110 | Pop P ff B R |
| 111 | Pop Pff BM |
| 112 | Pop P ff C L |
| 113 | Pop Pff CR |
| 114 | Pop PffCM |
| 115 | JD Piano A |
| 116 | JD Piano B |
| 117 | JD Piano C |
| 118 | Piano Atk Nz |
| 119 | MKS Piano A |
| 120 | MKS Piano B |
| 121 | MKS Piano C |
| 122 | Vint.EP pp A |
| 123 | Vint.EP pp B |
| 124 | Vint.EPpp C |
| 125 | Vint.EP mp A |
| 126 | Vint.EP mp B |
| 127 | Vint.EP mp C |
| 128 | Vint.EP f A |
| 129 | Vint.EP f B |
| 130 | Vint.EP f C |
| 131 | Vint.EP ff A |
| 132 | Vint.EP ff B |
| 133 | Vint.EP ff C |
| 134 | Stage EP p A |
| 135 | Stage EP p B |
| 136 | Stage EP p C |
| 137 | Stage EP f A |
| 138 | Stage EP f B |
| 139 | Stage EP fC |
| 140 | Tine EP p A |
| 141 | Tine EPp B |
| 142 | Tine EPp C |
| 143 | Tine EP mf A |
| 144 | Tine EP mf B |
| 145 | Tine EP mf C |
| 146 | Tine EP ff A |
| 147 | Tine EP ff B |
| 148 | Tine EP ff C |
| 149 | Dyno EP mp A |
| 150 | Dyno EP mp B |
| 151 | Dyno EP mp C |
| 152 | Dyno EP mf A |
| 153 | Dyno EP mf B |
| 154 | Dyno EP mf C |
| 155 | Dyno EP ff A |
| 156 | Dyno EP ff B |
| 157 | Dyno EP ff C |
| 158 | Wurly DI p A |
| 159 | Wurly DIp B |
| 160 | Wurly DIp C |


| No. | Wave Name |
| :---: | :---: |
| 161 | Wurly DIfA |
| 162 | Wurly DIf B |
| 163 | Wurly DIfC |
| 164 | Wurly DI ffi |
| 165 | Wurly DI ff |
| 166 | Wurly DI ffC |
| 167 | Wurly mp A |
| 168 | Wurly mp B |
| 169 | Wurly mp C |
| 170 | Wurly mf A |
| 171 | Wurly mf B |
| 172 | Wurly mf C |
| 173 | Wurly ff A |
| 174 | Wurly ff B |
| 175 | Wurly ff C |
| 176 | Soft SA EP A |
| 177 | Soft SA EP B |
| 178 | Soft SA EP C |
| 179 | Hard SA EP A |
| 180 | Hard SA EP B |
| 181 | Hard SA EP C |
| 182 | SA E.Piano A |
| 183 | SA E.Piano B |
| 184 | SA E.Piano C |
| 185 | 80's E.Pno 1 |
| 186 | 80's E.Pno 2 |
| 187 | 80's E.Pnolf |
| 188 | 80's E.Pno2f |
| 189 | Hard E.Pno |
| 190 | Celesta |
| 191 | Music Box |
| 192 | ClavDB Brt A |
| 193 | ClavDB Brt B |
| 194 | ClavDB Brt C |
| 195 | Reg.Clav A |
| 196 | Reg.Clav B |
| 197 | Reg.Clav C |
| 198 | Retro Clav A |
| 199 | Retro Clav B |
| 200 | Retro Clav C |
| 201 | Tight Clav A |
| 202 | Tight Clav B |
| 203 | Tight Clav C |
| 204 | Hard Clav A |
| 205 | Hard Clav B |
| 206 | Hard Clav C |
| 207 | ClvMtRs DB f |
| 208 | Harpsi A |
| 209 | Harpsi B |
| 210 | Harpsi C |
| 211 | JLOrg Slow L |
| 212 | JLOrg Slow R |
| 213 | JLOrg Fast L |
| 214 | JLOrg Fast R |
| 215 | JD Full Draw |
| 216 | Org Basic 1 |
| 217 | Org Basic 2 |
| 218 | Ballad Org |
| 219 | 3rd Perc Org |
| 220 | Perc Organ |
| 221 | Rock Organ A |
| 222 | Rock Organ B |
| 223 | Rock Organ C |
| 224 | RryOrg A L |
| 225 | RtryOrg 1 A R |
| 226 | RtryOrgl B L |
| 227 | RtryOrgl B R |
| 228 | RtryOrgl C L |
| 229 | RryOrg 1 C R |
| 230 | RtryOrg2 A L |
| 231 | RryOrg2 A R |
| 232 | RtryOrg2 B L |
| 233 | RryOrg2 B R |
| 234 | RtryOrg2 C L |
| 235 | RtryOrg2 C R |
| 236 | LoFi RtryOrg |
| 237 | Vint.Org 1 |
| 238 | Vint.Org 2 |
| 239 | Vint.Org 3 |
| 240 | Vint.Org 4 |


| No. | Wave Name |
| :---: | :---: |
| 241 | Positive '8 |
| 242 | Pipe Organ |
| 243 | Cathedrl Org |
| 244 | BrN. Gtrp A |
| 245 | BrtN. $\operatorname{trp} \mathrm{p}$ B |
| 246 | BrtN. $G$ trp C |
| 247 | BriN.Gtr mfA |
| 248 | BrtN. Gtr mfB |
| 249 | BrtN.Gtr mfC |
| 250 | BriN. Grr ffa |
| 251 | BrtN. Gtr ff |
| 252 | BriN.Gtr ffC |
| 253 | BrtN. GrrsldA |
| 254 | BrtN.GtrsldB |
| 255 | Br+N. GrrsldC |
| 256 | Nylon Gtrl A |
| 257 | Nylon Gtrl B |
| 258 | Nylon Grrl C |
| 259 | Nylon Gtr2 A |
| 260 | Nylon Gtr2 B |
| 261 | Nylon Gtr2 C |
| 262 | Bright Gtr A |
| 263 | Bright Gtr B |
| 264 | Bright Gtr C |
| 265 | Ac.Gtr mp A |
| 266 | Ac. $\operatorname{tr} \mathrm{mp}$ B |
| 267 | Ac. Gr mp C |
| 268 | Ac. Grr mf A |
| 269 | Ac.Gtr mf B |
| 270 | Ac. $\operatorname{Grgmf} \mathrm{C}$ |
| 271 | Ac.Gtr ff A |
| 272 | Ac.Gtr ff B |
| 273 | Ac. Grr ff C |
| 274 | Ac.Gtr Sld A |
| 275 | Ac.Gtr Sld B |
| 276 | Ac.Gtr Sld C |
| 277 | Ac.Grr Hrm A |
| 278 | Ac.Grr Hrm B |
| 279 | Ac.Grr Hrm C |
| 280 | Jazz Gtr A |
| 281 | Jazz Gtr B |
| 282 | Jazz Grr C |
| 283 | Clean Gtr A |
| 284 | Clean Gtr B |
| 285 | Clean Gtr C |
| 286 | Clr Mr Grr A |
| 287 | Clr Mr Grr B |
| 288 | Clr Mr Grr C |
| 289 | E.Gtr Ld |
| 290 | Brt Strat A |
| 291 | Brt Strat B |
| 292 | Brt Strat C |
| 293 | FstPick70s A |
| 294 | FstPick70s B |
| 295 | FstPick70s C |
| 296 | Funk Gtr A |
| 297 | Funk Grr B |
| 298 | Funk Gtr C |
| 299 | Funk M+Gtr A |
| 300 | Funk M 1 Grr B |
| 301 | Funk M+Grr C |
| 302 | Nasty Gtr |
| 303 | Overdrive A |
| 304 | Overdrive C |
| 305 | Distortion A |
| 306 | Distortion B |
| 307 | Distortion C |
| 308 | Dist Chord A |
| 309 | Dist Chord B |
| 310 | Dist Chord C |
| 311 | E.Gtr Harm |
| 312 | Harp A |
| 313 | Harp B |
| 314 | Harp C |
| 315 | Banjo A |
| 316 | Banjo B |
| 317 | Banjo C |
| 318 | Sitar A |
| 319 | Sitar B |
| 320 | Sitar C |


| No. | Wave Name |
| :---: | :---: |
| 321 | Sitar Drn A |
| 322 | Sitar Drn B |
| 323 | Sitar Drn C |
| 324 | E. Sitar A |
| 325 | E.Sitar B |
| 326 | E. Sitar C |
| 327 | Santur A |
| 328 | Santur B |
| 329 | Santur C |
| 330 | Dulcimer A |
| 331 | Dulcimer B |
| 332 | Dulcimer C |
| 333 | Shamisen A |
| 334 | Shamisen B |
| 335 | Shamisen C |
| 336 | Koto A |
| 337 | Koto B |
| 338 | Koto C |
| 339 | FatAc.Bs p A |
| 340 | FatAc.Bsp B |
| 341 | FatAc.Bs p C |
| 342 | FatAc.Bs f $A$ |
| 343 | FatAc.Bs f $B$ |
| 344 | FatAc.Bs fC |
| 345 | Ac.Bass A |
| 346 | Ac.Bass B |
| 347 | Ac.Bass C |
| 348 | Fng.EB1 mf A |
| 349 | Fng.EB1 mf B |
| 350 | Fng.EB1 mf C |
| 351 | Fng.EB1 ff A |
| 352 | Fng.EB1 ff B |
| 353 | Fng.EB1 ff C |
| 354 | Fng.EB2 mf A |
| 355 | Fng.EB2 mf B |
| 356 | Fng.EB2 mf C |
| 357 | Fng.EB2 f A |
| 358 | Fng.EB2 f $B$ |
| 359 | Fng.EB2 fC |
| 360 | FngrCmp Bs A |
| 361 | FngrCmp Bs B |
| 362 | FngrCmp Bs C |
| 363 | Finger Bs A |
| 364 | Finger Bs B |
| 365 | Finger Bs C |
| 366 | P.Bass |
| 367 | ThumbM+Bs pA |
| 368 | ThumbM ${ }^{\text {a }}$ s pB |
| 369 | ThumbM+Bs pC |
| 370 | Fretlss Bs A |
| 371 | Fretlss Bs B |
| 372 | Fretls Bs C |
| 373 | Fretlss SttA |
| 374 | Fretlss SffB |
| 375 | Fretlss SffC |
| 376 | Pick EBfA |
| 377 | Pick EBfB |
| 378 | Pick EBfC |
| 379 | Pick Bass |
| 380 | Slp.E.BassA |
| 381 | Slp.E.BassB |
| 382 | Slp.E.BassC |
| 383 | Slp.EB HO A |
| 384 | Slp.EB HO B |
| 385 | Slp.EB HOC |
| 386 | Pul.E.BassA |
| 387 | Pul.E.BassB |
| 388 | Pul.E.BassC |
| 389 | Pul.EB HO A |
| 390 | Pul.EB HO B |
| 391 | Pul.EB HOC |
| 392 | Slap Bass |
| 393 | Slap +Pull 1 |
| 394 | Slap +Pull 2 |
| 395 | Slap +Pull 3 |
| 396 | Jz Slap Bass |
| 397 | Jz Slp+Pull 1 |
| 398 | Jz Slp+Pull2 |
| 399 | Jz Slp+Pull3 |
| 400 | Jungle Bass |

Waveform List

| No. | Wave Name |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 401 | Garage Bass | 481 | Trumpet B | 561 | JV Strings R | 641 | Jazz Doos B | 721 | TB DstSqr 1C |
| 402 | SH-101 Bs A | 482 | Trumpet C | 562 | JV Strings A | 642 | Jazz Doos C | 722 | Dist SquareA |
| 403 | SH-101 Bs B | 483 | Wide Tp A | 563 | JV Strings C | 643 | Jz Doos Lp A | 723 | Dist SquareB |
| 404 | SH-101 Bs C | 484 | Wide Tp B | 564 | F.Str mf A L | 644 | Jz Doos Lp B | 724 | Dist SquareC |
| 405 | Organ Bass | 485 | Wide Tp C | 565 | F.Str mf AR | 645 | Jz Doos Lp C | 725 | Juno Pls HD |
| 406 | MG Bass 1 A | 486 | Mute Tp A | 566 | F.Str mf B L | 646 | Gospel Hum A | 726 | JP8 Pls 10HD |
| 407 | MG Bass 1 B | 487 | Mute Tp B | 567 | F.Str mf B R | 647 | Gospel Hum B | 727 | JP8 Pls 15HD |
| 408 | MG Bass 1 C | 488 | Mute Tp C | 568 | F.Str mf CL | 648 | Gospel Hum C | 728 | JP8 Pls 25HD |
| 409 | MG Bass 2 | 489 | Trombone A | 569 | F.Str mf CR | 649 | Soprano Vox | 729 | JP8 Pls 30HD |
| 410 | MG Bass 3 | 490 | Trombone B | 570 | F. Str mflpl | 650 | Kalimba | 730 | JP8 Pls 40HD |
| 411 | MC Bass A | 491 | Trombone C | 571 | F.Str mf lpR | 651 | JD Klmba Atk | 731 | JP8 Pls 45HD |
| 412 | MC Bass B | 492 | Tbn mf A | 572 | F.Str ff A L | 652 | JD Wood Crak | 732 | Syn Pulse 1 |
| 413 | MC Bass C | 493 | Tbn mf B | 573 | F.Str ff A R | 653 | JD Gamelan 1 | 733 | Syn Pulse 2 |
| 414 | Atk Syn Bass | 494 | Tbn mf C | 574 | F. Str ff B L | 654 | JD Gamelan 2 | 734 | SH-1000 Puls |
| 415 | Flute A | 495 | Tuba A | 575 | F. Str ff B R | 655 | JD Log Drum | 735 | 700 Triangle |
| 416 | Flute B | 496 | Tuba B | 576 | F. Str ff C L | 656 | JD Xylo | 736 | Syn Triangle |
| 417 | Flute C | 497 | Tuba C | 577 | F. Str ff C R | 657 | Marimba | 737 | JD Triangle |
| 418 | Piccolo A | 498 | Sft F.Horn A | 578 | F.Str fflpl | 658 | Vibraphone | 738 | VS-Triangle |
| 419 | Piccolo B | 499 | Sft F.Horn B | 579 | F. Str fflpR | 659 | Glocken | 739 | Mild Form |
| 420 | Piccolo C | 500 | Sft F.Horn C | 580 | F.StrStacA L | 660 | Steel Drums | 740 | VS-Ramp |
| 421 | Pan Flute | 501 | French Hrn A | 581 | F. StrStacA R | 661 | D-50 Bell A | 741 | Sync Sweep |
| 422 | Shakuhachi | 502 | French Hrn C | 582 | F.StrStacB L | 662 | D-50 Bell B | 742 | Sine |
| 423 | JD Fl Push | 503 | XP Horn A | 583 | F.StrStacB R | 663 | D-50 Bell C | 743 | JD Fine Wine |
| 424 | Clarinet A | 504 | XP Horn B | 584 | F.StrStacC L | 664 | D-50 Bell Lp | 744 | Digi Loop |
| 425 | Clarinet B | 505 | F.HornSect A | 585 | F.StrStacC R | 665 | Agogo Bell | 745 | JD MetalWind |
| 426 | Clarinet C | 506 | F.HornSect B | 586 | ChmbrStrAtkA | 666 | Agogo 2 Hi | 746 | Atmosphere |
| 427 | Oboe Mezzo A | 507 | F. HornSect C | 587 | ChmbrStrAtkB | 667 | Agogo 2 Low | 747 | DigiSpectrum |
| 428 | Oboe Mezzo B | 508 | Tp Section A | 588 | ChmbrStrAtkC | 668 | Finger Bell | 748 | JD Vox Noise |
| 429 | Oboe Mezzo C | 509 | Tp Section B | 589 | ChmbrStrRevA | 669 | JD Cowbell | 749 | SynVox Noise |
| 430 | Oboe Forte A | 510 | Tp Section C | 590 | ChmbrStrRevB | 670 | Tubular Bell | 750 | Shaku Noise |
| 431 | Oboe Forte B | 511 | OctBrspAL | 591 | ChmbrStrRevC | 671 | Church Bell | 751 | Digi Breath |
| 432 | Oboe Forte C | 512 | OctBrsp A R | 592 | Vls Pizz A | 672 | Mild CanWave | 752 | Agogo Noise |
| 433 | E.Horn A | 513 | OctBrsp B L | 593 | Vls Pizz B | 673 | JD Crystal | 753 | Vinyl Noise |
| 434 | E.Horn B | 514 | OctBrsp B R | 594 | Vls Pizz C | 674 | Bell Organ | 754 | White Noise |
| 435 | E.Horn C | 515 | OctBrsp $\mathrm{CL}^{\text {L }}$ | 595 | VlsPizzRev A | 675 | Old DigiBell | 755 | Pink Noise |
| 436 | Bassoon A | 516 | OctBrsp CR | 596 | VlsPizzRev B | 676 | JD Bell Wave | 756 | Aah Formant |
| 437 | Bassoon B | 517 | OctBrs f AL | 597 | VlsPizzRev C | 677 | TinyBellWave | 757 | Eeh Formant |
| 438 | Bassoon C | 518 | OctBrs far | 598 | Vcs Pizz A | 678 | Vib Wave | 758 | lih Formant |
| 439 | Recorder A | 519 | OctBrs f B L | 599 | Vcs Pizz B | 679 | JD Brt Digi | 759 | Ooh Formant |
| 440 | Recorder B | 520 | OctBrs f B R | 600 | Vcs Pizz C | 680 | Bagpipe | 760 | Uuh Formant |
| 441 | Recorder C | 521 | OctBrs f C L | 601 | Unison Saw A | 681 | Digital Vox | 761 | Metal Vox W1 |
| 442 | SopranoSax A | 522 | OctBrs f C R | 602 | Unison Saw B | 682 | JD WallyWave | 762 | Metal Vox L1 |
| 443 | SopranoSax B | 523 | XP Brass | 603 | Unison Saw C | 683 | JD Brusky Lp | 763 | Metal Vox W2 |
| 444 | SopranoSax C | 524 | OrchUnis A L | 604 | Super Saw A | 684 | Bright Form | 764 | Metal Vox L2 |
| 445 | Alto Sax Vib | 525 | OrchUnis A R | 605 | Super Saw B | 685 | JD Nasty | 765 | Metal Vox W3 |
| 446 | Soft Alto A | 526 | OrchUnis B L | 606 | Super Saw C | 686 | JD Spark Vox | 766 | Metal Vox L3 |
| 447 | Soft Alto B | 527 | OrchUnis B R | 607 | Trance Saw A | 687 | JD Cutters | 767 | JD Rattles |
| 448 | Soft Alto C | 528 | OrchUnis CL | 608 | Trance Saw B | 688 | SBF Hrd Ld | 768 | Xylo Seq. |
| 449 | Wide Sax A | 529 | OrchUnis C R | 609 | Trance Saw C | 689 | JD EML 5th | 769 | JD Anklungs |
| 450 | Wide Sax B | 530 | Violin f A | 610 | Warm Pad A | 690 | Juno Saw HD | 770 | JD Shami |
| 451 | Wide Sax C | 531 | Violin fB | 611 | Warm Pad B | 691 | TB303 Saw HD | 771 | SynBassClick |
| 452 | BreathySax A | 532 | Violin f C | 612 | Warm Pad C | 692 | Custm Saw HD | 772 | JD EP Atk |
| 453 | BreathySax B | 533 | Violin Vib A | 613 | OB2 Pad 1 A | 693 | MG Saw HD | 773 | Key On Click |
| 454 | BreathySax C | 534 | Violin Vib B | 614 | OB2 Pad 1 B | 694 | DigitalSawHD | 774 | Org Click 1 |
| 455 | TenorBreathy | 535 | Violin Vib C | 615 | OB2 Pad 1 C | 695 | P5 Saw HD | 775 | Org Click 2 |
| 456 | Tenor Sax A | 536 | Cello f A | 616 | OB2 Pad 2 A | 696 | Calc.Saw | 776 | Org Click 3 |
| 457 | Tenor Sax B | 537 | Cello f B | 617 | OB2 Pad 2 B | 697 | Calc.Saw inv | 777 | Org Click 4 |
| 458 | Tenor Sax C | 538 | Cello fC | 618 | OB2 Pad 2 C | 698 | Synth Saw | 778 | Org Click 5 |
| 459 | Bari.Sax 1 A | 539 | Cello Vib A | 619 | D-50 HeavenA | 699 | JD Syn Saw | 779 | JD Sm Metal |
| 460 | Bari.Sax 1 B | 540 | Cello Vib B | 620 | D-50 HeavenB | 700 | JD Fat Saw | 780 | Ise Crash |
| 461 | Bari.Sax 1 C | 541 | Cello Vib C | 621 | D-50 HeavenC | 701 | JP-8 Saw | 781 | JD Switch |
| 462 | Bari.Sax 2 A | 542 | VI Sect. A L | 622 | SBF Vox A | 702 | D-50 Saw | 782 | JD Tuba Slap |
| 463 | Bari.Sax 2 B | 543 | Vl Sect. A R | 623 | SBF Vox B | 703 | SH-1000 Saw | 783 | JD Plink |
| 464 | Bari.Sax 2 C | 544 | VI Sect. B L | 624 | SBF Vox C | 704 | SH-2 Saw | 784 | JD Plunk |
| 465 | Musette | 545 | Vl Sect. B R | 625 | Syn Vox 1 A | 705 | LA-Saw | 785 | TVF Trigger |
| 466 | Accord 4' A | 546 | VI Sect. C L | 626 | Syn Vox 1 B | 706 | Air Wave | 786 | Hi Q |
| 467 | Accord 4' B | 547 | Vl Sect. C R | 627 | Syn Vox 1 C | 707 | GR-300 Saw 1 | 787 | Slap |
| 468 | Accord 4' C | 548 | Vc Sect. A L | 628 | Syn Vox 2 A | 708 | GR-300 Saw 2 | 788 | Stick |
| 469 | Accord 8' A | 549 | Vc Sect. A R | 629 | Syn Vox 2 B | 709 | TB Dst Saw A | 789 | Click |
| 470 | Accord 8' B | 550 | Vc Sect. B L | 630 | Syn Vox 2 C | 710 | TB Dst Saw B | 790 | Cutting Nz |
| 471 | Accord 8' C | 551 | Vc Sect. B R | 631 | Female Ahs A | 711 | TB Dst Saw C | 791 | Ac.Bass Body |
| 472 | Accord PadNz | 552 | Vc Sect. C L | 632 | Female Ahs B | 712 | Juno Sqr HD | 792 | Flute Pad Nz |
| 473 | Harmonica A | 553 | Vc Sect. C R | 633 | Female Ahs C | 713 | P5 Sqr HD | 793 | Applause |
| 474 | Harmonica B | 554 | Full Str A L | 634 | Female Oos A | 714 | Fat Square | 794 | River |
| 475 | Harmonica C | 555 | Full Str A R | 635 | Female Oos B | 715 | JP-8 Square | 795 | Thunder |
| 476 | Blues G-harp | 556 | Full Str B L | 636 | Female Oos C | 716 | SH-2 Square | 796 | Monsoon |
| 477 | Flugel A | 557 | Full Str B R | 637 | Male Aahs A | 717 | TB303 Sqr HD | 797 | Stream |
| 478 | Flugel $B$ | 558 | Full Str C L | 638 | Male Aahs B | 718 | LA-Square | 798 | Bubble |
| 479 | Flugel C | 559 | Full Str C R | 639 | Male Aahs C | 719 | TB DstSqr 1A | 799 | Bird Song |
| 480 | Trumpet A | 560 | JV Strings L | 640 | Jazz Doos A | 720 | TB DstSqr 1B | 800 | Dog Bark |


| No. | Wave Name |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 801 | Gallop | 881 | Syn Mtl Atk 1 | 961 | SH32 Kick | 1041 | Reg.Snr1 fl | 1121 | TR808 Snr 3 |
| 802 | Vint.Phone | 882 | Syn Mtl Atk2 | 962 | TR707 Kick | 1042 | Reg.Snr 1 fR | 1122 | TR808 Snr 4 |
| 803 | Office Phone | 883 | Syn Swt Atk 1 | 963 | TR909 Kick 6 | 1043 | Reg.Snr1ff L | 1123 | Lite Snare |
| 804 | Mobile Phone | 884 | Syn Swt Atk2 | 964 | Mix Kick 1 L | 1044 | Reg.Snr1ff R | 1124 | TR808 Snr 5 |
| 805 | Door Creak | 885 | Syn Swt Atk 3 | 965 | Mix Kick 1 R | 1045 | Reg. Snr 2 p L | 1125 | TR808 Snr 6 |
| 806 | Door Slam | 886 | Syn Swt Atk4 | 966 | Mix Kick 2 L | 1046 | Reg. Sn 2 p p | 1126 | TR606 Snr 1 |
| 807 | Car Engine | 887 | Syn Swt Atk5 | 967 | Mix Kick 2 R | 1047 | Reg. Snr2fL | 1127 | TR606 Snr 2 |
| 808 | Car Slip | 888 | Syn Swt Atk6 | 968 | Mix Kick 3 | 1048 | Reg.Snr2fR | 1128 | CR78 Snare |
| 809 | Car Pass | 889 | Syn Swt Atk 7 | 969 | Mix Kick 4 | 1049 | Reg.Snr2ff L | 1129 | Urbn Sn Roll |
| 810 | Crash Seq. | 890 | WD Kick mf L | 970 | Mix Kick 5 | 1050 | Reg.Snr2ff R | 1130 | Vint Snr 1 |
| 811 | Gun Shot | 891 | WD Kick mf R | 971 | Dry Kick 4 | 1051 | Amb. Snrlpl | 1131 | Vint Snr 2 |
| 812 | Siren | 892 | WD Kick fL | 972 | Small Kick | 1052 | Amb.Snrl p R | 1132 | Vint Snr 3 |
| 813 | Train Pass | 893 | WD Kick fr | 973 | Vint Kick | 1053 | Amb. Snrl fL | 1133 | Vint Snr 4 |
| 814 | Airplane | 894 | WD Kick ff L | 974 | Sweep Bass | 1054 | Amb. Snrl fR | 1134 | Dist Snr |
| 815 | Helicopter | 895 | WD Kick ff R | 975 | WD Snrpl | 1055 | Amb. Snr2pL | 1135 | Short Snr 1 |
| 816 | Space Voyage | 896 | LD Kick mf L | 976 | WD Snrp R | 1056 | Amb. Snr2pR | 1136 | Short Snr2 |
| 817 | Blow Loop | 897 | LD Kick mf R | 977 | WD Snr mf L | 1057 | Amb. $\mathrm{Sn}^{2} \mathrm{fL}$ | 1137 | WD CStk mf L |
| 818 | Laugh | 898 | LD Kick ft | 978 | WD Snr mf R | 1058 | Amb. Sn 2 fR | 1138 | WD CStk mf R |
| 819 | Scream | 899 | LD Kick fR | 979 | WD Snrft | 1059 | Piccolo Snr | 1139 | WD CStk fL |
| 820 | Punch | 900 | LD Kick ff L | 980 | WD SnrfR | 1060 | Maple Snr | 1140 | WD CStk fR |
| 821 | Heartbeat | 901 | LD Kick ff R | 981 | WD Snr ff L | 1061 | Light Snr ff | 1141 | LD CStk mf L |
| 822 | Footsteps | 902 | TY Kick mf L | 982 | WD Snrff | 1062 | Click Snr p | 1142 | LD CStk mf R |
| 823 | Machine Gun | 903 | TY Kick mf R | 983 | WD Rimpl | 1063 | Click Snr ff | 1143 | LD CStk fL |
| 824 | Laser | 904 | TY Kick fL | 984 | WD Rim p R | 1064 | SF SnrGstl L | 1144 | LD CStk fr |
| 825 | Thunder Lp | 905 | TY Kick fr | 985 | WD Rim mf L | 1065 | SF SnrGstl R | 1145 | TY CStk mf L |
| 826 | Ac.Bass Nz | 906 | TY Kick ff L | 986 | WD Rim mf R | 1066 | SF SnrGst2 L | 1146 | TY CStk mf R |
| 827 | E. Bass Nz 1 | 907 | TY Kick ff R | 987 | WD Rimft | 1067 | SF SnrGst2 R | 1147 | TY CStk fL |
| 828 | E.Bass Nz 2 | 908 | SF Kick 1 L | 988 | WD Rim fR | 1068 | Reg.SnrGst L | 1148 | TY CStk fr |
| 829 | E.Bass Slide | 909 | SF Kick 1 R | 989 | WD Rim ff L | 1069 | Reg.SnrGst R | 1149 | SF CStk p L |
| 830 | Fng.EB2 Sld | 910 | SF Kick 21 | 990 | WD Rim ff R | 1070 | Sff Snr Gst | 1150 | SF CStk pR |
| 831 | DistGtr Nz 1 | 911 | SF Kick 2 R | 991 | LD Snrpl | 1071 | Jazz Snr p | 1151 | SF CStk fL |
| 832 | DistGtr Nz 2 | 912 | Reg.Kick p L | 992 | LD SnrpR | 1072 | Jazz Snr mf | 1152 | SF CStk fR |
| 833 | DistGtr Nz 3 | 913 | Reg.Kick p R | 993 | LD Snr mf L | 1073 | Jazz Snr f | 1153 | Reg.Stick L |
| 834 | Grr Fret Nz 1 | 914 | Reg.Kick fL | 994 | LD Snr mf R | 1074 | Jazz Rim p | 1154 | Reg.Stick R |
| 835 | Gtr Fret Nz2 | 915 | Reg.Kick fR | 995 | LD Snrfl | 1075 | Jz Brsh Slap | 1155 | Soft Stick |
| 836 | ClassichseHt | 916 | Reg.Kick ffl | 996 | LD SnrfR | 1076 | Jz Brsh Swsh | 1156 | Hard Stick |
| 837 | Narrow Hit 1 | 917 | Reg.Kick ffr | 997 | LD Snrff L | 1077 | Swish\&Turn $p$ | 1157 | Wild Stick |
| 838 | Narrow Hit 2 | 918 | Rock Kick p | 998 | LD Snr ff R | 1078 | Swish\&Turn f | 1158 | Lo-Bit Stk 1 |
| 839 | Euro Hit | 919 | Rock Kick f | 999 | LD Rim mf L | 1079 | Snr Roll Lp | 1159 | Lo-Bit Stk 2 |
| 840 | Dist Hit | 920 | Jazz Kick p | 1000 | LD Rim mf R | 1080 | BrushRoll Lp | 1160 | Dry Stick 1 |
| 841 | Thin Beef | 921 | Jazz Kick mf | 1001 | LD RimfL | 1081 | Soff Jz Roll | 1161 | Dry Stick 2 |
| 842 | Tao Hit | 922 | Jazz Kick f | 1002 | LD RimfR | 1082 | Concert SD | 1162 | Dry Stick 3 |
| 843 | Smear Hit 1 | 923 | Dry Kick 1 | 1003 | LD Rim ff L | 1083 | GoodOld Snr 1 | 1163 | R8 Comp Rim |
| 844 | Smear Hit 2 | 924 | Tight Kick | 1004 | LD Rimff R | 1084 | GoodOld Snr2 | 1164 | R\&B ShrtRim 1 |
| 845 | LoFi Min Hit | 925 | Old Kick | 1005 | TY Snrpl | 1085 | GoodOld Snr3 | 1165 | R\&B ShrtRim2 |
| 846 | Orch. Hit | 926 | Jz Dry Kick | 1006 | TY SnrpR | 1086 | GoodOld Snr4 | 1166 | TR909 Rim |
| 847 | Punch Hit | 927 | Dry Kick 2 | 1007 | TY Snr mf L | 1087 | GoodOld Snr5 | 1167 | TR808 Rim |
| 848 | O'Skool Hit | 928 | Dry Kick 3 | 1008 | TY Snr mf R | 1088 | GoodOld Snr6 | 1168 | LD L.Tom mf |
| 849 | Philly Hit | 929 | Power Kick | 1009 | TY Snrfl | 1089 | Dirty Snr 1 | 1169 | LD L.Tom f |
| 850 | Scratch 1 | 930 | R\&B Kick L | 1010 | TY SnrfR | 1090 | Dirty Snr 2 | 1170 | LD L.Tom ff |
| 851 | Scratch 2 | 931 | R\&B Kick R | 1011 | TY Snrff L | 1091 | Dirty Snr 3 | 1171 | LD M.Tom mf |
| 852 | Scratch 3 | 932 | Rk CmpKick L | 1012 | TY Snr ff R | 1092 | Dirty Snr 4 | 1172 | LD M.Tom f |
| 853 | Scratch 4 | 933 | Rk CmpKick R | 1013 | TY Rimpl | 1093 | Dirty Snr 5 | 1173 | LD M.Tom ff |
| 854 | Scratch 5 | 934 | MaxLow Kick1 | 1014 | TY Rimp R | 1094 | Dirty Snr 6 | 1174 | LD H.Tom mf |
| 855 | Scratch 6 | 935 | MaxLow Kick2 | 1015 | TY Rim mf L | 1095 | Dirty Snr 7 | 1175 | LD H.Tom f |
| 856 | Scratch 7 | 936 | Dist Kick | 1016 | TY Rim mf R | 1096 | Grit Snr 1 | 1176 | LD H.Tom ff |
| 857 | Scratch 9 | 937 | FB Kick | 1017 | TY Rim fL | 1097 | Grit Snr 2 | 1177 | TY L.Tom mf |
| 858 | Scratch 10 | 938 | Rough Kickl | 1018 | TY RimfR | 1098 | Grit Snr 3 | 1178 | TY L.Tom f |
| 859 | Scratch Push | 939 | Rough Kick2 | 1019 | TY Rim ff L | 1099 | LoBit SnrFlm | 1179 | TY L.Tom ff |
| 860 | Scratch Pull | 940 | Rough Kick3 | 1020 | TY Rim ff R | 1100 | Lo-Bit Snr 1 | 1180 | TY M.Tom mf |
| 861 | MG Zap 1 | 941 | PlasticKick1 | 1021 | SF Snrpl | 1101 | Lo-Bit Snr 2 | 1181 | TY M.Tom f |
| 862 | MG Zap 2 | 942 | 70's Kick | 1022 | SF Snrp R | 1102 | MrchCmp Snr | 1182 | TY M.Tom ff |
| 863 | MG Zap 3 | 943 | Dance Kick | 1023 | SF Snr mf L | 1103 | Reggae Snr | 1183 | TY H.Tom mf |
| 864 | MG Zap 4 | 944 | HipHop Kick1 | 1024 | SF Snr mf R | 1104 | DR660 Snr | 1184 | TY H.Tom f |
| 865 | MG Zap 5 | 945 | HipHop Kick2 | 1025 | SF Snrfl | 1105 | Jngl pkt Snr | 1185 | TY H.Tom ff |
| 866 | MG Zap 6 | 946 | AnalogKick 1 | 1026 | SF SnrfR | 1106 | Pocket Snr | 1186 | RR F.Tom mp |
| 867 | MG Zap 7 | 947 | PlasticKick2 | 1027 | SF Snrff | 1107 | Flange Snr | 1187 | RR F.Tom f |
| 868 | MG Zap 8 | 948 | PlasticKick3 | 1028 | SF Snr ff R | 1108 | Analog Snr 1 | 1188 | RR F.Tom ff |
| 869 | MG Zap 9 | 949 | TR909 Kick 1 | 1029 | SF Rimpl | 1109 | Analog Snr 2 | 1189 | SF L.Tom mf |
| 870 | MG Zap 10 | 950 | TR909 Kick 2 | 1030 | SF Rim p R | 1110 | Analog Snr 3 | 1190 | SF L.Tom ff |
| 871 | MG Zap 11 | 951 | AnalogKick 2 | 1031 | SF Rim mf L | 1111 | Tiny Snare | 1191 | SF M.Tom mf |
| 872 | MG Blip | 952 | TR909 Kick 3 | 1032 | SF Rim mf R | 1112 | R\&B ShriSnr 1 | 1192 | SF M.Tom f |
| 873 | Beam HiQ | 953 | AnalogKick 3 | 1033 | SF Rim fL | 1113 | TR909 Snr 1 | 1193 | SF M.Tom ff |
| 874 | MG Attack | 954 | AnalogKick 4 | 1034 | SF RimfR | 1114 | TR909 Snr 2 | 1194 | SF H.Tom mf |
| 875 | Syn Low Atk1 | 955 | AnalogKick 5 | 1035 | SF Rim ff L | 1115 | TR909 Snr 3 | 1195 | SF H.Tom f |
| 876 | Syn Low Atk2 | 956 | AnalogKick 6 | 1036 | SF Rim ff R | 1116 | TR909 Snr 4 | 1196 | SF H.Tom ff |
| 877 | Syn Hrd Atkl | 957 | TR606DstKick | 1037 | Reg. Snrl pl | 1117 | TR909 Snr 5 | 1197 | RR FT Flm ff |
| 878 | Syn Hrd Atk2 | 958 | TR808 Kick | 1038 | Reg.Snrl p R | 1118 | TR909 Snr 6 | 1198 | SF LT Flm ff |
| 879 | Syn Hrd Atk 3 | 959 | TR909 Kick 4 | 1039 | Reg.Snr1mf L | 1119 | TR808 Snr 1 | 1199 | SF MT Flm f |
| 880 | Syn Hrd Atk4 | 960 | TR909 Kick 5 | 1040 | Reg.Snr1mf R | 1120 | TR808 Snr 2 | 1200 | SF HT Flm p |

Waveform List

| No. | Wave Name | No. | Wave Name | No. | Wave Name |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1201 | SF HT Flm f | 1281 | Noise OHH 2 | 1361 | Conga Lo Op |
| 1202 | SF HT Flm ff | 1282 | Crash Cyml p | 1362 | Conga Slp Op |
| 1203 | Reg.F.Tom p | 1283 | Crash Cyml f | 1363 | Conga Efx |
| 1204 | Reg.F.Tom f | 1284 | Crash Cym 2 | 1364 | Conga Thumb |
| 1205 | Reg.L.Tom p | 1285 | Rock Crash 1 | 1365 | Conga 2H Op |
| 1206 | Reg.L.Tom f | 1286 | Rock Crash 2 | 1366 | Conga 2H Mt |
| 1207 | Reg.M.Tom $p$ | 1287 | Splash Cym | 1367 | Conga 2H Slp |
| 1208 | Reg.M.Tom $f$ | 1288 | Jazz Crash | 1368 | Conga 2L Op |
| 1209 | Reg.H.Tom p | 1289 | TR909 Crash | 1369 | Conga 2L Mt |
| 1210 | Reg.H.Tom f | 1290 | TR909 Crash2 | 1370 | TR808 Congal |
| 1211 | Reg.L.TomFlm | 1291 | TR808 Cym | 1371 | TR808 Conga2 |
| 1212 | Reg.M.TomFlm | 1292 | TR606 Cym 2 | 1372 | Timbale 1 |
| 1213 | Reg.H.TomFlm | 1293 | Ride Cymbal | 1373 | Timbale 2 |
| 1214 | Jazz Lo Tom | 1294 | Ride Bell | 1374 | Timbale 3 |
| 1215 | Jazz Mid Tom | 1295 | Rock Rd Cup | 1375 | Timbale 4 |
| 1216 | Jazz Hi Tom | 1296 | Rock Rd Edge | 1376 | Cabasa Up |
| 1217 | Jazz Lo Flm | 1297 | Jazz Ride p | 1377 | Cabasa Down |
| 1218 | Jazz Mid Flm | 1298 | Jazz Ride mf | 1378 | Cabasa Cut |
| 1219 | Jazz Hi Flm | 1299 | TR909 Ride | 1379 | Cabasa 2 |
| 1220 | Sharp Lo Tom | 1300 | China Cymbal | 1380 | Cabasa 2 Cut |
| 1221 | Sharp Hi Tom | 1301 | Concert Cym | 1381 | Maracas |
| 1222 | Dry Lo Tom | 1302 | Concert Cym2 | 1382 | 808 Maracas |
| 1223 | TR909 Tom | 1303 | Hand Clap | 1383 | R8 Shaker |
| 1224 | TR909 DstTom | 1304 | Club Clap | 1384 | Shaker 1 |
| 1225 | TR808 Tom | 1305 | Real Clap | 1385 | Shaker 2 |
| 1226 | TR606 Tom | 1306 | Bright Clap | 1386 | Shaker 3 |
| 1227 | Deep Tom | 1307 | R8 Clap | 1387 | Guiro 1 |
| 1228 | Reg.CHH 1 p | 1308 | Gospel Clap | 1388 | Guiro 2 |
| 1229 | Reg.CHH 1 mf | 1309 | Amb Clap | 1389 | Guiro Long |
| 1230 | Reg.CHH 1 f | 1310 | Hip Clap | 1390 | Guiro 2 Up |
| 1231 | Reg.CHH 1 ff | 1311 | Funk Clap | 1391 | Guiro 2 Down |
| 1232 | Reg.CHH 2 mf | 1312 | Claptail | 1392 | Guiro 2 Fast |
| 1233 | Reg. CHH 2 f | 1313 | TR808 Clap 1 | 1393 | Vibraslap |
| 1234 | Reg.CHH 2 ff | 1314 | Disc Clap | 1394 | Tamborine 1 |
| 1235 | Reg.PHH mf | 1315 | Dist Clap | 1395 | Tamborine 2 |
| 1236 | Reg.PHH f | 1316 | Dist Clap 2 | 1396 | Tamborine 3 |
| 1237 | Reg. OHH mf | 1317 | Old Clap | 1397 | Tamborine4p |
| 1238 | Reg. OHH f | 1318 | TR909 Clap 1 | 1398 | Tamborine 4 f |
| 1239 | Reg. OHH ff | 1319 | TR909 Clap 2 | 1399 | CR78 Tamb |
| 1240 | Rock $\mathrm{CHH1} \mathrm{mf}$ | 1320 | TR808 Clap 2 | 1400 | Cajon 1 |
| 1241 | Rock CHH1 f | 1321 | TR707 Clap | 1401 | Cajon 2 |
| 1242 | Rock CHH2 mf | 1322 | Cheap Clap | 1402 | Cajon 3 |
| 1243 | Rock CHH2 f | 1323 | Mix Clap 1 L | 1403 | Cajon 4 |
| 1244 | Rock OHH | 1324 | Mix Clap 1 R | 1404 | SprgDrm Hit |
| 1245 | Lo-Bit CHH 1 | 1325 | Mix Clap 2 L | 1405 | Cuica |
| 1246 | Lo-Bit CHH 2 | 1326 | Mix Clap 2 R | 1406 | Cuica 2 Hi |
| 1247 | Lo-Bit CHH 3 | 1327 | Mix Clap 3 | 1407 | Cuica 2 Low |
| 1248 | Lo-Bit CHH 4 | 1328 | Mix Clap 4 | 1408 | Timpanip |
| 1249 | Lo-Bit CHH 5 | 1329 | Finger Snap | 1409 | Timpani f |
| 1250 | HipHop CHH | 1330 | Club FinSnap | 1410 | Timpani Roll |
| 1251 | TR909 CHH 1 | 1331 | Snap | 1411 | Timpani Lp |
| 1252 | TR909 CHH 2 | 1332 | Group Snap | 1412 | ConcertBD p |
| 1253 | TR808 CHH 1 | 1333 | Cowbell | 1413 | ConcertBD f |
| 1254 | TR808 CHH 2 | 1334 | Cowbell Mute | 1414 | ConcertBD ff |
| 1255 | TR606 CHH 1 | 1335 | Cowbell 2 Lng | 1415 | ConcertBD Lp |
| 1256 | TR606 CHH 2 | 1336 | Cowbell 2 Edg | 1416 | Triangle 1 |
| 1257 | TR606 DstCHH | 1337 | Cowbell 3 mf | 1417 | Triangle 2 |
| 1258 | Lite CHH | 1338 | Cowbelll f | 1418 | Tibet Cymbal |
| 1259 | CR78 CHH | 1339 | TR808Cowbell | 1419 | Slight Bell |
| 1260 | Dance CHH | 1340 | Wood Block | 1420 | Wind Chime |
| 1261 | Noise CHH | 1341 | Wood Block2H | 1421 | Crotale |
| 1262 | Hip PHH | 1342 | Wood Block2L | 1422 | R8 Click |
| 1263 | TR909 PHH 1 | 1343 | Claves | 1423 | Metro Bell |
| 1264 | TR909 PHH 2 | 1344 | Claves 2 | 1424 | Metro Click |
| 1265 | TR808 PHH | 1345 | TR808 Claves | 1425 | MC500 Beep 1 |
| 1266 | TR606 PHH 1 | 1346 | CR78 Beat | 1426 | MC500 Beep 2 |
| 1267 | TR606 PHH 2 | 1347 | Castanet | 1427 | DR202 Beep |
| 1268 | Lo-Bit PHH | 1348 | Whistle | 1428 | Low Square |
| 1269 | Lo-Bit OHH 1 | 1349 | Whistle Long | 1429 | Low Sine |
| 1270 | Lo-Bit OHH 2 | 1350 | Whistle Shrt | 1430 | DC |
| 1271 | Lo-Bit OHH 3 | 1351 | Bongo Hi Mt | 1431 | Reverse Cym |
| 1272 | HipHop OHH | 1352 | Bongo Hi Slp |  |  |
| 1273 | TR909 OHH 1 | 1353 | Bongo Hi Op |  |  |
| 1274 | TR909 OHH 2 | 1354 | Bongo Lo Op |  |  |
| 1275 | TR808 OHH 1 | 1355 | Bongo Lo Slp |  |  |
| 1276 | TR808 OHH 2 | 1356 | Conga Hi Mt |  |  |
| 1277 | TR606 OHH | 1357 | Conga Lo Mt |  |  |
| 1278 | Lite OHH | 1358 | Conga Hi Slp |  |  |
| 1279 | CR78 OHH | 1359 | Conga Lo Slp |  |  |
| 1280 | Noise OHH | 1360 | Conga Hi Op |  |  |

## Arpeggio Style List

## PRST (Preset Group) <br> USER (User Group)

* Arpeggio Styles are common between Preset Group and User Group.

| No. | Name | No. | Name |
| :---: | :---: | :---: | :---: |
| 001 | Basic 1 (A) | 061 | Seq Ptn 55 (P) |
| 002 | Basic 2 (A) | 062 | Seq Ptn 56 (P) |
| 003 | Basic 3 (A) | 063 | Seq Ptn 57 (P) |
| 004 | Basic 4 (A) | 064 | Seq Ptn 58 (P) |
| 005 | Basic 5 (A) | 065 | Seq Ptn 59 (P) |
| 006 | Basic 6 (A) | 066 | Seq Ptn 60 (P) |
| 007 | Seq Ptn 1 (2) | 067 | Bassline 1 (1) |
| 008 | Seq Ptn 2 (2) | 068 | Bassline 2 (1) |
| 009 | Seq Ptn 3 (2) | 069 | Bassline 3 (1) |
| 010 | Seq Ptn 4 (2) | 070 | Bassline 4 (1) |
| 011 | Seq Ptn 5 (2) | 071 | Bassline 5 (1) |
| 012 | Seq Ptn 6 (3) | 072 | Bassline 6 (1) |
| 013 | Seq Ptn 7 (3) | 073 | Bassline 7 (1) |
| 014 | Seq Ptn 8 (3) | 074 | Bassline 8 (1) |
| 015 | Seq Ptn 9 (3) | 075 | Bassline 9 (1) |
| 016 | Seq Ptn 10 (3) | 076 | Bassline 10 (2) |
| 017 | Seq Ptn 11 (3) | 077 | Bassline 11 (2) |
| 018 | Seq Ptn 12 (3) | 078 | Bassline 12 (2) |
| 019 | Seq Ptn 13 (3) | 079 | Bassline 13 (2) |
| 020 | Seq Ptn 14 (3) | 080 | Bassline 14 (2) |
| 021 | Seq Ptn 15 (3) | 081 | Bassline 15 (2) |
| 022 | Seq Ptn 16 (3) | 082 | Bassline 16 (3) |
| 023 | Seq Ptn 17 (3) | 083 | Bassline 17 (3) |
| 024 | Seq Ptn 18 (4) | 084 | Bassline 18 (3) |
| 025 | Seq Ptn 19 (4) | 085 | Bassline 19 (3) |
| 026 | Seq Ptn 20 (4) | 086 | Bassline 20 (3) |
| 027 | Seq Ptn 21 (4) | 087 | Bassline 21 (3) |
| 028 | Seq Ptn 22 (4) | 088 | Bassline 22 (P) |
| 029 | Seq Ptn 23 (4) | 089 | Bassline 23 (P) |
| 030 | Seq Ptn 24 (4) | 090 | Bassline 24 (P) |
| 031 | Seq Ptn 25 (4) | 091 | Bassline 25 (P) |
| 032 | Seq Ptn 26 (4) | 092 | Bassline 26 (P) |
| 033 | Seq Ptn 27 (4) | 093 | Bassline 27 (P) |
| 034 | Seq Ptn 28 (4) | 094 | Bassline 28 (P) |
| 035 | Seq Ptn 29 (4) | 095 | Bassline 29 (P) |
| 036 | Seq Ptn 30 (5) | 096 | Bassline 30 (P) |
| 037 | Seq Ptn 31 (5) | 097 | Bassline 31 (P) |
| 038 | Seq Ptn 32 (6) | 098 | Bassline 32 (P) |
| 039 | Seq Ptn 33 (P) | 099 | Bassline 33 (P) |
| 040 | Seq Ptn 34 (P) | 100 | Bassline 34 (P) |
| 041 | Seq Ptn 35 (P) | 101 | Bassline 35 (P) |
| 042 | Seq Ptn 36 (P) | 102 | Bassline 36 (P) |
| 043 | Seq Ptn 37 (P) | 103 | Bassline 37 (P) |
| 044 | Seq Ptn 38 (P) | 104 | Bassline 38 (P) |
| 045 | Seq Ptn 39 (P) | 105 | Bassline 39 (P) |
| 046 | Seq Ptn 40 (P) | 106 | Bassline 40 (P) |
| 047 | Seq Ptn 41 (P) | 107 | Bassline 41 (P) |
| 048 | Seq Ptn 42 (P) | 108 | Sliced 1 (A) |
| 049 | Seq Ptn 43 (P) | 109 | Sliced 2 (A) |
| 050 | Seq Ptn 44 (P) | 110 | Sliced 3 (A) |
| 051 | Seq Ptn 45 (P) | 111 | Sliced 4 (A) |
| 052 | Seq Ptn 46 (P) | 112 | Sliced 5 (A) |
| 053 | Seq Ptn 47 (P) | 113 | Sliced 6 (A) |
| 054 | Seq Ptn 48 (P) | 114 | Sliced 7 (A) |
| 055 | Seq Ptn 49 (P) | 115 | Sliced 8 (A) |
| 056 | Seq Ptn 50 (P) | 116 | Sliced 9 (A) |
| 057 | Seq Ptn 51 (P) | 117 | Sliced 10 (A) |
| 058 | Seq Ptn 52 (P) | 118 | Gtr Arp 1 (4) |
| 059 | Seq Ptn 53 (P) | 119 | Gtr Arp 2 (5) |
| 060 | Seq Ptn 54 (P) | 120 | Grr Arp 3 (6) |


| No. | Name |
| :--- | :--- |
| 121 | Gtr Backing 1(A) |
| 122 | Gtr Backing 2 (A) |
| 123 | Key Bckng 1 (A) |
| 124 | Key Bckng2 (A) |
| 125 | Key Bckng3 (1-3) |
| 126 | $1 / 1$ Note Trg (1) |
| 127 | $1 / 2$ Note Trg (1) |
| 128 | $1 / 4$ Note Trg (1) |

## Recommended number of notes to press

(1) - (6): One to six notes
(1-3): One bass note + three-note chord
(A): As desired
(P): One note, with Motif (p. 62) set to "Phrase"

## Rhythm Group List

## PRST (Preset Group)

USER (User Group)

* Rhythm Groups are common between Preset Group and User Group.

| No. | Name | Recommended Rhythm Set |  |
| :--- | :--- | :--- | :--- |
| 001 | Pop 1 | PRSTO01 | SF Std Kit |
| 002 | Pop 2 | PRST002 | WD Std Kit |
| 003 | Pop 3 | PRST005 | StandardKit1 |
| 004 | Pop 4 | PRST006 | StandardKit2 |
| 005 | Pop 5 | PRST003 | LD Std Kit |
| 006 | Pop 6 | PRST005 | StandardKit1 |
| 007 | Pop 7 | PRST006 | StandardKit2 |
| 008 | Pop 8 | PRST004 | TY Std Kit |
| 009 | Pop 9 | PRST006 | StandardKit2 |
| 010 | Rock1 | PRST008 | Rock Kit 1 |
| 011 | Rock2 | PRST005 | StandardKit1 |
| 012 | Funk | PRST004 | TY Std Kit |
| 013 | Fusion | PRST001 | SF Std Kit |
| 014 | Jazz | PRST010 | Brush Jz Kit |
| 015 | Bossa | PRST003 | LD Std Kit |
| 016 | HipHop | PRST017 | Machine Kit1 |
| 017 | R\&B | PRST016 | HiFi R\&B Kit |
| 018 | Reggae | PRST018 | Kit-Euro:POP |
| 019 | Trance 1 | PRSTO21 | Machine Kit2 |
| 020 | Trance 2 | PRST018 | Kit-Euro:POP |
| 021 | Techno | PRST022 | ArtificalKit |
| 022 | House 1 | PRST019 | House Kit |
| 023 | House 2 | PRST018 | Kit-Euro:POP |
| 024 | Drum'n Bs | PRST007 | StandardKit3 |
| 025 | Disco | PRST007 | StandardKit3 |
| 026 | NuTeknica | PRST020 | Nu Technica |

## Rhythm Pattern List

## PRST (Preset Group) <br> USER (User Group)

* Rhythm Patterns are common between Preset Group and User Group.
* Recommended tempo is shown in parentheses ()

| No. | Name | Recommended Rhythm Set | No. | Name | Recommended Rhythm Set | No. | Name | Recommended Rhythm Set |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 001 | Pop 1-1 (120) | PRST:001 | 057 | Pop 8-1 (130) | PRST:004 | 113 | Bossa 1 (160) | PRST:003 |
| 002 | Pop 1-2 (120) | SF Std Kit | 058 | Pop 8-2 (130) | TY Std Kit | 114 | Bossa 2 (160) | LD Std Kit |
| 003 | Pop 1-3 (120) |  | 059 | Pop 8-3 (130) |  | 115 | Bossa 3 (160) |  |
| 004 | Pop 1-4 (120) |  | 060 | Pop 8-4 (130) |  | 116 | Bossa 4 (160) |  |
| 005 | Pop 1-5 (120) |  | 061 | Pop 8-5 (130) |  | 117 | Bossa 5 (160) |  |
| 006 | Pop 1-6 (120) |  | 062 | Pop 8-6 (130) |  | 118 | Bossa 6 (160) |  |
| 007 | Pop 1-7 (120) |  | 063 | Pop 8-7 (130) |  | 119 | Bossa 7 (160) |  |
| 008 | Pop 1-8 (120) |  | 064 | Pop 8-8 (130) |  | 120 | Bossa 8 (160) |  |
| 009 | Pop 2-1 (120) | PRST:002 | 065 | Pop 9-1 (125) | PRST:006 | 121 | HipHop 1-A (100) | PRST:012 |
| 010 | Pop 2-2 (120) | WD Std Kit 1 | 066 | Pop 9-2 (125) | StandardKit2 | 122 | HipHop 1-B (105) | 909808 Kit |
| 011 | Pop 2-3 (120) |  | 067 | Pop 9-3 (125) |  | 123 | HipHop 1-C (100) |  |
| 012 | Pop 2-4 (120) |  | 068 | Pop 9-4 (125) |  | 124 | HipHop 1-D (095) |  |
| 013 | Pop 2-5 (120) |  | 069 | Pop 9-5 (125) |  | 125 | HipHop 1-E (092) |  |
| 014 | Pop 2-6 (120) |  | 070 | Pop 9-6 (125) |  | 126 | HipHop 1-F (092) |  |
| 015 | Pop 2-7 (120) |  | 071 | Pop 9-7 (125) |  | 127 | HipHop 1-G (100) |  |
| 016 | Pop 2-8 (120) |  | 072 | Pop 9-8 (125) |  | 128 | HipHop 1-H (097) |  |
| 017 | Pop 3-1 (150) | PRST:005 | 073 | Rock 1-1 (120) | PRST:008 | 129 | HipHop 2-A (095) | PRST:017 |
| 018 | Pop 3-2 (150) | StandardKit 1 | 074 | Rock 1-2 (120) | Rock Kit 1 | 130 | HipHop 2-B (095) | Machine Kit 1 |
| 019 | Pop 3-3 (150) |  | 075 | Rock 1-3 (120) |  | 131 | HipHop 2-C (095) |  |
| 020 | Pop 3-4 (150) |  | 076 | Rock 1-4 (120) |  | 132 | HipHop 2-D (095) |  |
| 021 | Pop 3-5 (150) |  | 077 | Rock 1-5 (120) |  | 133 | HipHop 2-E (095) |  |
| 022 | Pop 3-6 (150) |  | 078 | Rock 1-6 (120) |  | 134 | HipHop 2-F (095) |  |
| 023 | Pop 3-7 (150) |  | 079 | Rock 1-7 (120) |  | 135 | HipHop 2-G (095) |  |
| 024 | Pop 3-8 (150) |  | 080 | Rock 1-8 (120) |  | 136 | HipHop 2-H (095) |  |
| 025 | Pop 4-1 (120) | PRST:006 | 081 | Rock 2-1 (114) | PRST:005 | 137 | R\&B 1-A (100) | PRST:017 |
| 026 | Pop 4-2 (120) | StandardKit2 | 082 | Rock 2-2 (114) | StandardKit1 | 138 | $R \& B 1-B(100)$ | Machine Kit1 |
| 027 | Pop 4-3 (120) |  | 083 | Rock 2-3 (114) |  | 139 | R\&B 1-C (100) |  |
| 028 | Pop 4-4 (120) |  | 084 | Rock 2-4 (114) |  | 140 | R\&B 1-D (100) |  |
| 029 | Pop 4-5 (120) |  | 085 | Rock 2-5 (114) |  | 141 | R\&B 1-E (100) |  |
| 030 | Pop 4-6 (120) |  | 086 | Rock 2-6 (114) |  | 142 | R\&B 1-F (100) |  |
| 031 | Pop 4-7 (120) |  | 087 | Rock 2-7 (114) |  | 143 | R\&B 1-G (100) |  |
| 032 | Pop 4-8 (120) |  | 088 | Rock 2-8 (114) |  | 144 | R\&B 1-H (100) |  |
| 033 | Pop 5-1 (103) | PRST:003 | 089 | Funk 1 (115) | PRST:004 | 145 | R\&B 2-A (140) | PRST:016 |
| 034 | Pop 5-2 (103) | LD Std Kit | 090 | Funk 2 (115) | TY Std Kit | 146 | R\&B 2-B (140) | HiFi R\&B Kit |
| 035 | Pop 5-3 (103) |  | 091 | Funk 3 (115) |  | 147 | R\&B 2-C (140) |  |
| 036 | Pop 5-4 (103) |  | 092 | Funk 4 (115) |  | 148 | R\&B 2-D (140) |  |
| 037 | Pop 5-5 (103) |  | 093 | Funk 5 (115) |  | 149 | R\&B 2-E (140) |  |
| 038 | Pop 5-6 (103) |  | 094 | Funk 6 (115) |  | 150 | R\&B 2-F (140) |  |
| 039 | Pop 5-7 (103) |  | 095 | Funk 7 (115) |  | 151 | R\&B 2-G (140) |  |
| 040 | Pop 5-8 (103) |  | 096 | Funk 8 (115) |  | 152 | R\&B 2-H (140) |  |
| 041 | Pop 6-1 (096) | PRST:005 | 097 | Fusion 1 (100) | PRST:001 | 153 | Reggae A (105) | PRST:018 |
| 042 | Pop 6-2 (096) | StandardKit 1 | 098 | Fusion 2 (100) | SF Std Kit | 154 | Reggae B (094) | Kit-Euro:POP |
| 043 | Pop 6-3 (096) |  | 099 | Fusion 3 (100) |  | 155 | Reggae C (094) |  |
| 044 | Pop 6-4 (096) |  | 100 | Fusion 4 (100) |  | 156 | Reggae D (090) |  |
| 045 | Pop 6-5 (096) |  | 101 | Fusion 5 (100) |  | 157 | Reggae E (089) |  |
| 046 | Pop 6-6 (096) |  | 102 | Fusion 6 (100) |  | 158 | Reggae F (105) |  |
| 047 | Pop 6-7 (096) |  | 103 | Fusion 7 (100) |  | 159 | Reggae G (105) |  |
| 048 | Pop 6-8 (096) |  | 104 | Fusion 8 (100) |  | 160 | Reggae H (100) |  |
| 049 | Pop 7-1 (104) | PRST:002 | 105 | Jazz 1 (136) | PRST:010 | 161 | Trance 1-A (140) | PRST:021 |
| 050 | Pop 7-2 (104) | StandardKit2 | 106 | Jazz 2 (136) | Brush Jz Kit | 162 | Trance 1-B (138) | Machine Kit2 |
| 051 | Pop 7-3 (104) |  | 107 | Jazz 3 (136) |  | 163 | Trance 1-C (142) |  |
| 052 | Pop 7-4 (104) |  | 108 | Jazz 4 (136) |  | 164 | Trance 1-D (142) |  |
| 053 | Pop 7-5 (104) |  | 109 | Jazz 5 (136) |  | 165 | Trance 1-E (142) |  |
| 054 | Pop 7-6 (104) |  | 110 | Jazz 6 (136) |  | 166 | Trance 1-F (142) |  |
| 055 | Pop 7-7 (104) |  | 111 | Jazz 7 (136) |  | 167 | Trance 1-G (138) |  |
| 056 | Pop 7-8 (104) |  | 112 | Jazz 8 (136) |  | 168 | Trance 1-H (138) |  |

## Rhythm Pattern List

| No. | Name | Recommended Rhythm Set | No. | Name | Recommended Rhythm Set |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 169 | Trance 2-A (143) | PRST:018 | 233 | NuTeknica A (110) | PRST:020 |
| 170 | Trance 2-B (142) | Kit-Euro:POP | 234 | NuTeknica B (110) | Nu Technica |
| 171 | Trance 2-C (135) |  | 235 | NuTeknica C (110) |  |
| 172 | Trance 2-D (140) |  | 236 | NuTeknica D (110) |  |
| 173 | Trance 2-E (130) |  | 237 | NuTeknica E (110) |  |
| 174 | Trance 2-F (154) |  | 238 | NuTeknica F (110) |  |
| 175 | Trance 2-G (140) |  | 239 | NuTeknica G (110) |  |
| 176 | Trance 2-H (138) |  | 240 | NuTeknica H (110) |  |
| 177 | Techno 1-A (132) | PRST:022 | 241 | Tabla Phr A (120) | - |
| 178 | Techno 1-B (142) | ArtificalKit | 242 | Tabla Phr B (120) |  |
| 179 | Techno 1-C (138) |  | 243 | Tabla Phr C (120) |  |
| 180 | Techno 1-D (141) |  | 244 | Tabla Phr D (120) |  |
| 181 | Techno 1-E (136) |  | 245 | Tabla Phr E (120) |  |
| 182 | Techno 1-F (143) |  | 246 | Tabla Phr F (120) |  |
| 183 | Techno 1-G (140) |  | 247 | Tabla Phr G (120) |  |
| 184 | Techno 1-H (140) |  | 248 | Tabla Phr H (120) |  |
| 185 | Techno 2-A (132) | - | 249 | Perc Phr A (120) | - |
| 186 | Techno 2-B (126) |  | 250 | Perc Phr B (120) |  |
| 187 | Techno 2-C (128) |  | 251 | Perc Phr C (120) |  |
| 188 | Techno 2-D (128) |  | 252 | Perc Phr D (120) |  |
| 189 | Techno 2-E (128) |  | 253 | Perc Phr E (120) |  |
| 190 | Techno 2-F (130) |  | 254 | Perc Phr F (120) |  |
| 191 | Techno 2-G (134) |  | 255 | Perc Phr G (120) |  |
| 192 | Techno 2-H (130) |  | 256 | Perc Phr H (120) |  |
| 193 | House 1-A (126) | PRST:019 |  |  |  |
| 194 | House 1-B (126) | House Kit |  |  |  |
| 195 | House 1-C (124) |  |  |  |  |
| 196 | House 1-D (128) |  |  |  |  |
| 197 | House 1-E (125) |  |  |  |  |
| 198 | House 1-F (128) |  |  |  |  |
| 199 | House 1-G (126) |  |  |  |  |
| 200 | House 1-H (126) |  |  |  |  |
| 201 | House 2-A (125) | PRST:018 |  |  |  |
| 202 | House 2-B (130) | Kit-Euro:POP |  |  |  |
| 203 | House 2-C (134) |  |  |  |  |
| 204 | House 2-D (127) |  |  |  |  |
| 205 | House 2-E (128) |  |  |  |  |
| 206 | House 2-F (128) |  |  |  |  |
| 207 | House 2-G (128) |  |  |  |  |
| 208 | House 2-H (128) |  |  |  |  |
| 209 | Drum'n Bs A (170) | PRST:007 |  |  |  |
| 210 | Drum'n Bs B (160) | StandardKit3 |  |  |  |
| 211 | Drum'n Bs C (180) |  |  |  |  |
| 212 | Drum'n Bs D (160) |  |  |  |  |
| 213 | Drum'n Bs E (170) |  |  |  |  |
| 214 | Drum'n Bs F (170) |  |  |  |  |
| 215 | Drum'n Bs G (170) |  |  |  |  |
| 216 | Drum'n Bs H (170) |  |  |  |  |
| 217 | BrkBts A (130) | - |  |  |  |
| 218 | BrkBts B (130) |  |  |  |  |
| 219 | BrkBts C (130) |  |  |  |  |
| 220 | BrkBts D (130) |  |  |  |  |
| 221 | BrkBts E (130) |  |  |  |  |
| 222 | BrkBts F (130) |  |  |  |  |
| 223 | BrkBts G (130) |  |  |  |  |
| 224 | BrkBts H (130) |  |  |  |  |
| 225 | Disco A (125) | PRST:007 |  |  |  |
| 226 | Disco B (125) | StandardKit3 |  |  |  |
| 227 | Disco C (125) |  |  |  |  |
| 228 | Disco D (120) |  |  |  |  |
| 229 | Disco E (130) |  |  |  |  |
| 230 | Disco F (124) |  |  |  |  |
| 231 | Disco G (125) |  |  |  |  |
| 232 | Disco H (125) |  |  |  |  |

## 1. Data Reception

## ■Channel Voice Messages

* Not received in Performance mode when the Receive Switch parameter (PERFORM/ MIDI) is OFF.


## - Note off

| Status | 2nd byte | 3rd byte |
| :---: | :---: | :---: |
| 8 nH | kkH | vvH |
| 9 nH | kkH | 00H |
| $\mathrm{n}=$ MIDI channel number: |  | 0H-FH (ch.1-16) |
| $\mathrm{kk}=$ note number: |  | 00H-7FH (0-127) |
| $\mathrm{vv}=$ note off velocity: |  | 00H-7FH (0-127) |

* Not received when the Tone Env Mode parameter (PATCH/MISC and RHYTHM/ CONTROL) is NSUS/NO-SUS


## -Note on

| Status | 2nd byte | 3rd byte |
| :---: | :---: | :---: |
| 9 nH | kkH | vvH |
| $\mathrm{n}=$ MIDI channel number: |  | 0H-FH (ch.1-16) |
| $\mathrm{kk}=$ note number: |  | 00H - 7FH (0-127) |
| $\mathrm{vv}=$ note on velocity: |  | 01H - 7FH ( $1-127$ ) |

## -Polyphonic Key Pressure

| Status | 2nd byte | 3rd byte |
| :--- | :--- | :--- |
| AnH | kkH | vvH |
| $\mathrm{n}=$ MIDI channel number: | $0 \mathrm{H}-\mathrm{FH}(\mathrm{ch} .1-16)$ |  |
| $\mathrm{kk}=$ note number: |  | $00 \mathrm{H}-7 \mathrm{FH}(0-127)$ |
| $\mathrm{vv}=$ Polyphonic | Key Pressure: | $00 \mathrm{H}-7 \mathrm{FH}(0-127)$ |

* Not received in Performance mode when the Receive Poly Key Pressure parameter (PERFORM/MIDI) is OFF


## -Control Change

* If the corresponding Controller number is selected for the Patch Control Source 1,2,3 or 4 parameter (PATCH/CONTROL/CTRL1-4), the corresponding effect will occur
* If a Controller number that corresponds to the System Control Source 1, 2, 3 or 4 parameter (SYSTEM/CTRL) is selected, the specified effect will apply if Patch Control Source 1,2,3 or 4 parameter (PATCH/CONTROL/CTRL1-4) is set to SYS-CTRL1, SYS CTRL2, SYS-CTRL3 or SYS-CTRL4.

OBank Select (Controller number 0, 32)

| Status | 2nd byte | 3 3rd byte |
| :---: | :---: | :---: |
| BnH | 00H | mmH |
| BnH | 20 H | 11 H |
| $\mathrm{n}=$ MIDI channel number: |  | 0H-FH (ch.1-16) |
| $\mathrm{mm}, \mathrm{ll}=$ |  | $0000 \mathrm{H}-7 \mathrm{~F} 7 \mathrm{FH}$ (bank. 1 - bank.16384) |

* Not received in Performance mode when the Receive Bank Select (PERFORM/MIDI) is OFF.
* The Performances, Patches, and Rhythms corresponding to each Bank Select are as follows.
* The SRX series corresponding to each Bank Select are to see the SRX series owner's manual.

| $\begin{aligned} & \text { BANK } \\ & \text { MSB } \end{aligned}$ | $\begin{aligned} & \text { SELECT } \\ & \text { LSB } \end{aligned}$ | PROGRAM NUMBER | GROUP | NUMBER |
| :---: | :---: | :---: | :---: | :---: |
| 000 |  | 001-128 | GM Patch | 001-256 |
| $\begin{gathered} \vdots \\ 063 \end{gathered}$ |  | 001-128 | GM Patch | 001-256 |
| 085 | 000 | 001-064 | User Performance | 001-064 |
|  | 064 | 001-064 | Preset Performance | 001-064 |
| 086 | 000 | 001-032 | User Rhythm | 001-032 |
|  | 064 | 001-036 | Preset Rhythm | 001-036 |
| 087 | 000 | 001-128 | User Patch | 001-128 |
|  | 001 | 001-128 | User Patch | 129-256 |
|  | 064 | 001-128 | Preset Patch A | 001-128 |
|  | 065 | 001-128 | Preset Patch B | 001-128 |
| 092 | 000 - | 001 - | SRX Rhythm | 001 |
| 093 | $000-$ | 001 - | SRX Patch |  |
|  | : |  | SRX Patch | 001 |
| 120 |  | 001-057 | GM Rhythm | 001-009 |
| 121 | 000 | 001-128 | GM Patch | 001-256 |

OModulation (Controller number 1)


## OBreath type (Controller number 2)

| Status | 2nd byte | 3rd byte |
| :---: | :---: | :---: |
| BnH | 02H | vvH |
| $\mathrm{n}=$ MIDI channel number: |  | 0H-FH (ch. $1-16$ ) |
| $\mathrm{vv}=\mathrm{C}$ |  | 00H - 7FH (0-127) |

* JUNO-STAGE receives it as ACTIVE EXPRESSION.

OFoot type (Controller number 4)

| Status | 2nd byte | 3rd byte |
| :---: | :---: | :---: |
| BnH | 04H | vvH |
| $\mathrm{n}=$ MIDI channel number:$\mathrm{vv}=$ Control value: |  | 0H-FH (ch. $1-16$ ) |
|  |  | 00H - 7FH (0-127) |

OPortamento Time (Controller number 5)

| Status | 2nd byte | 3rd byte |
| :---: | :---: | :---: |
| BnH | 05H | vvH |
| $\mathrm{n}=\mathrm{MID}$ | mber: | 0H- FH (ch.1-16) |
| $\mathrm{vv}=$ Por |  | 00H-7FH (0-127) |

* In Performance mode, the Part Portament Time parameter (PERFORM/PART VIEW/ KEY MOD) will change.

OData Entry (Controller number 6, 38)

| Status | $\underline{\text { 2nd byte }}$ |  | 3rd byte |
| :--- | :--- | :--- | :--- |
|  | 06 H |  | mmH |
| BnH | 26 H | 11 H |  |

$\mathrm{n}=$ MIDI channel number: $0 \mathrm{H}-\mathrm{FH}$ (ch.1-16)
$\mathrm{mm}, \mathrm{ll}=$ the value of the parameter specified by RPN/NRPN
$\mathrm{mm}=\mathrm{MSB}, \mathrm{ll}=\mathrm{LSB}$

OVolume (Controller number 7)

| Status | 2nd byte | 3 3rd byte |
| :---: | :---: | :---: |
| BnH | 07H | vvH |
| $\mathrm{n}=$ MID | mber: | 0H-FH (ch.1-16) |
| $\mathrm{vv}=\mathrm{V}$ |  | 00H-7FH (0-127) |

* Not received in Performance mode when the Receive Volume parameter (PERFORM/ MIDI) is OFF
* In Performance mode, the Part Level parameter (PERFORM/PART VIEW/LV\&PAN) will change.


## OBalance (Controller number 8)

| Status | 2nd byte |  |  |
| :--- | :--- | :--- | :--- |
| BnH 08 H 3rd byte <br> $\mathrm{n}=$ MIDI channel number:  vvH <br> $\mathrm{vv}=$ Balance:  $0 \mathrm{H}-\mathrm{FH}(\mathrm{ch} .1-16)$ <br>    <br>   $00 \mathrm{H}-7 \mathrm{FH}(0-127)$ |  |  |  |

OPanpot (Controller number 10)

| Status | 2nd byte | 3rd byte |
| :---: | :---: | :---: |
| BnH | 0AH | vvH |
| $\mathrm{n}=$ MIDI channel number: |  | 0H-FH (ch.1-16) |
|  |  | 00H-40H-7FH (L |

* Not received in Performance mode when the Receive Pan parameter (PERFORM/MIDI) is OFF.
* In Performance mode, the Part Pan parameter (PERFORM/PART VIEW/LV\&PAN) will change.


## MIDI Implementation

OExpression (Controller number 11)

| Status | 2nd byte |  | 3rd byte |
| :--- | :--- | :--- | :--- |
| BnH OBH |  | vvH |  |
| $\mathrm{n}=\mathrm{MIDI}$ channel number: |  | $0 \mathrm{H}-\mathrm{FH}(\mathrm{ch} .1-16)$ |  |
| vv = Expression: |  |  | $00 \mathrm{H}-7 \mathrm{FH}(0-127)$ |

* Not received when Rx Expression Tone Receive Expression parameter (PATCH/MISC or RHYTHM/RECEIVE) is OFF.
* Not received in Performance mode when Rx Expression parameter (PERFORM/MISC) is OFF.


## OHold 1 (Controller number 64)

| Status | 2nd byte | 3rd byte |  |
| :---: | :---: | :---: | :---: |
| BnH | 40 H | vvH |  |
| $\mathrm{n}=\mathrm{MI}$ | mber: | 0H- FH (ch.1-16) |  |
| $\mathrm{vv}=\mathrm{C}$ |  | 00H-7FH (0-127) | $0-63=\mathrm{OFF}, 64-127=\mathrm{ON}$ |

* Not received when Rx Hold-1/Tone Receive Hold-1 parameter (PATCH/CONTROL or RHYTHM/RECEIVE) is OFF.
* Not received in Performance mode when Rx Hold-1 parameter (PERFORM/MISC) is OFF.
* When the Redamper Sw parameter (PATCH/MISC) is turned ON, 128 discrete steps are recognized for the value.


## OPortamento (Controller number 65)

| Status | 2nd byte | 3rd byte |  |
| :---: | :---: | :---: | :---: |
| BnH | 41H | vvH |  |
| $\mathrm{n}=$ MIDI channel number: |  | 0H-FH (ch.1-16) |  |
| $\mathrm{vv}=$ Control value: |  | 00H-7FH (0-127) | $0-63=\mathrm{OFF}, 64-127=\mathrm{ON}$ |

## OSostenuto (Controller number 66)

| Status | 2nd byte | 3rd byte |  |
| :---: | :---: | :---: | :---: |
| BnH | 42 H | vvH |  |
| $\mathrm{n}=$ MIDI channel number: |  | 0H- FH (ch. $1-16)$ |  |
| $\mathrm{vv}=$ Control value: |  | 00H - 7FH (0-127) | 0-63 = OFF, 64-127 = ON |
| OSoft (Controller number 67) |  |  |  |
| Status | 2nd byte | 3rd byte |  |
| BnH | 43 H | vvH |  |
| $\mathrm{n}=$ MID | umber: | 0H- FH (ch. $1-16)$ |  |
| $\mathrm{vv}=\mathrm{Co}$ |  | 00H-7FH (0-127) | 0-63 = OFF, 64-127 = ON |

## OLegato Foot Switch (Controller number 68)

| Status | 2nd byte | 3rd byte |  |
| :---: | :---: | :---: | :---: |
| BnH | 44 H | vvH |  |
| $\mathrm{n}=\mathrm{MI}$ | mber: | 0H-FH (ch.1-16) |  |
| $\mathrm{vv}=\mathrm{C}$ |  | 00H-7FH (0-127) | 0-63 = OFF, 64-127 = ON |

* In Performance mode, the Part Legato Switch parameter (PERFORM/PART VIEW/KEY MOD) will change.

OHold-2 (Controller number 69)

| Status | 2nd byte | 3rd byte |
| :---: | :---: | :---: |
| BnH | 45 H | vvH |
| $\mathrm{n}=$ MIDI channel number: |  | 0H-FH (ch.1-16) |
| $\mathrm{vv}=$ Control value: |  | 00H-7FH (0-127) |

* A hold movement isn't done.


## OResonance (Controller number 71)

| Status $\quad$ 2nd byte | 3rd byte |
| :---: | :---: |
| $\mathrm{BnH} \quad 47 \mathrm{H}$ | vvH |
| $\mathrm{n}=$ MIDI channel number: | 0H-FH (ch. 1 - 16) |
| $\mathrm{vv}=$ Resonance value (relative change): | 00H-40H-7FH (-64-0-+63), | OFFSET) will change.

ORelease Time (Controller number 72)

$\mathrm{vv}=$ Release Time value (relative change): $00 \mathrm{H}-40 \mathrm{H}-7 \mathrm{FH}(-64-0-+63)$,

* In Performance mode, the Part Release Time Offset parameter (PERFORM/PART VIEW/OFFSET) will change.

OAttack time (Controller number 73)

| Status | 2nd byte | 3rd byte |
| :---: | :---: | :---: |
| BnH | 49 H | vvH |
| $\mathrm{n}=$ MID | mber: | 0H-FH (ch. $1-16$ ) |

* In Performance mode, the Part Attack Time Offset parameter (PERFORM/PART VIEW/ OFFSET) will change.

OCutoff (Controller number 74)

| Status | 2nd byte | 3rd byte |
| :--- | :--- | :--- |
| BnH | 4 AH | vvH |
| $\mathrm{n}=\mathrm{MIDI}$ channel number: |  | $0 \mathrm{H}-\mathrm{FH}(\mathrm{ch} .1-16)$ |
| $\mathrm{vv}=$ Cutoff value (relative change): |  | $00 \mathrm{H}-40 \mathrm{H}-7 \mathrm{FH}(-64-0-+63)$ |

* In Performance mode, the Part Cutoff Offset parameter (PERFORM/PART VIEW/ OFFSET) will change.

ODecay Time (Controller number 75)

| Status | 2nd byte | 3rd byte |  |  |
| :--- | :--- | :--- | :---: | :---: |
| BnH | 4 BH |  |  |  |
| $\mathrm{n}=$ MIDI channel number: | $0 \mathrm{H}-\mathrm{FH}(\mathrm{ch} .1-16)$ |  |  |  |
| $\mathrm{vv}=$ Decay Time value (relative change) $:$ | $00 \mathrm{H}-40 \mathrm{H}-7 \mathrm{FH}(-64-0-+63)$ |  |  |  |

* In Performance mode, the Part Decay Time Offset parameter (PERFORM/PART VIEW/ OFFSET) will change.

OVibrato Rate (Controller number 76)

| $\underline{\text { Status }}$ | $\underline{\text { 2nd byte }}$ | $\underline{\text { 3rd byte }}$ |
| :--- | :--- | :--- |
| BnH | 4 CH | vvH |
| $\mathrm{n}=$ MIDI channel number: | $0 \mathrm{H}-\mathrm{FH}(\mathrm{ch} .1-16)$ |  |
| $\mathrm{vv}=$ Vibrato Rate value (relative change) $:$ | $00 \mathrm{H}-40 \mathrm{H}-7 \mathrm{FH}(-64-0-+63)$ |  |

* In Performance mode, the Part Vibrato Rate parameter (PERFORM/PART VIEW/ VIBRATO) will change.

OVibrato Depth (Controller number 77)


* In Performance mode, the Part Vibrato Depth parameter (PERFORM/PART VIEW/ VIBRATO) will change.


## OVibrato Delay (Controller number 78)



* In Performance mode, the Part Vibrato Delay parameter (PERFORM/PART VIEW/ VIBRATO) will change.

OGeneral Purpose Controller 5 (Controller number 80)

| Status | 2nd byte | 3rd byte |
| :---: | :---: | :---: |
| BnH | 50H | vvH |
| $\mathrm{n}=$ MIDI channel number: |  | 0H-FH (ch. $1-16$ ) |
| $\mathrm{vv}=$ Control value: |  | 00H - 7FH (0-127) |

[^3]
## MIDI Implementation

OGeneral Purpose Controller 6 (Controller number 81)

| Status | 2nd byte | 3rd byte |
| :---: | :---: | :---: |
| BnH | 51H | vvH |
| $\mathrm{n}=$ MIDI channel number: |  | 0H-FH (ch.1-16) |
| $\mathrm{vv}=$ Control value: |  | 00H-7FH (0-127) |

* The Tone Level parameter (PATCH/TVA PARAMETER) of Tone 2 will change.

OGeneral Purpose Controller 7 (Controller number 82)

| Status | 2nd byte | 3rd byte |
| :---: | :---: | :---: |
| BnH | 52 H | vvH |
| $\mathrm{n}=$ MIDI channel number: |  | 0H- FH (ch.1-16) |
| $\mathrm{vv}=$ Control value: |  | 00H-7FH (0-127) |

* The Tone Level parameter (PATCH/TVA PARAMETER) of Tone 3 will change.

OGeneral Purpose Controller 8 (Controller number 83)

| Status | 2nd byte |  |
| :--- | :--- | :--- |
|  | 53 H |  |
| BnH |  | 3rd byte |
| $\mathrm{n}=$ MIDI channel number: |  | $0 \mathrm{H}-\mathrm{FH}(\mathrm{ch} .1-16)$ |
| $\mathrm{vv}=$ Control value: |  | $00 \mathrm{H}-7 \mathrm{FH}(0-127)$ |

* The Tone Level parameter (PATCH/TVA PARAMETER) of Tone 4 will change.


## OPortamento control (Controller number 84)

| Status | 2nd byte | 3rd byte |
| :---: | :---: | :---: |
| BnH | 54H | kkH |
| $\mathrm{n}=$ MIDI channel number: |  | 0H-FH (ch.1-16) |
| $\mathrm{kk}=$ source note number: |  | 00H-7FH (0-127) |

* A Note-on received immediately after a Portamento Control message will change continuously in pitch, starting from the pitch of the Source Note Number.
* If a voice is already sounding for a note number identical to the Source Note Number, this voice will continue sounding (i.e., legato) and will, when the next Note-on is received, smoothly change to the pitch of that Note-on.
* The rate of the pitch change caused by Portamento Control is determined by the Portamento Time value.


## OEffect 1 (Reverb Send Level) (Controller number 91)

| Status | 2nd byte | 3rd byte |
| :---: | :---: | :---: |
| BnH | 5BH | vvH |
| $\mathrm{n}=\mathrm{MI}$ | mber: | 0H-FH (ch.1-16) |
| $\mathrm{vv}=\mathrm{Re}$ | vel: | 00H-7FH (0-127) |

* In Performance mode, the Part Reverb Send Level parameter (PERFORM/PART VIEW/ OUTPUT) will change.

OEffect 3 (Chorus Send Level) (Controller number 93)

| Status | 2nd byte |  |
| :--- | :--- | :--- |
| BnH | 3rd byte |  |
| $\mathrm{n}=$ MIDI channel number: |  | vvH |
| $\mathrm{vv}=$ Chorus Send Level: |  | $0 \mathrm{H}-\mathrm{FH}(\mathrm{ch} .1-16)$ |
|  |  | $00 \mathrm{H}-7 \mathrm{FH}(0-127)$ |

* In Performance mode, the Part Chorus Send Level parameter (PERFORM/PART VIEW/ OUTPUT) will change.

ORPN MSB/LSB (Controller number 100, 101)

| Status | $\underline{2 n d}$ byte | $\underline{3 \text { rd byte }}$ |
| :--- | :--- | :--- |
| BnH 65 H mmH <br> BnH 64 H llH <br> $\mathrm{n}=$ MIDI channel number: 0 H -FH (ch.1-16)  <br> $\mathrm{mm}=$ upper byte (MSB) of parameter number specified by RPN   <br> $\mathrm{ll}=$ lower byte (LSB) of parameter number specified by RPN   |  |  |

## <<< RPN >>>

Control Changes include RPN (Registered Parameter Numbers), which are extended. When using RPNs, first RPN (Controller numbers 100 and 101; they can be sent in any order) should be sent in order to select the parameter, then Data Entry (Controller numbers 6 and 38) should be sent to set the value. Once RPN messages are received, Data Entry messages that is received at the same MIDI channel after that are recognized as changing toward the value of the RPN messages. In order not to make any mistakes, transmitting RPN Null is recommended after setting parameters you need.

This device receives the following RPNs.

| RPN | Data entry <br> MSB, LSB |
| :--- | :--- |
| $\mathbf{M S B}$, LSB |  |

Notes
Pitch Bend Sensitivity
mm : 00H -18 H ( $0-24$ semitones)
ll: ignored (processed as 00 H )
Up to 2 octave can be specified in semitone steps.

* In Performance mode, the Part Bend Range parameter (PERFORM/PART VIEW/ PITCH) will change.
$00 \mathrm{H}, 01 \mathrm{H} \quad \mathrm{mmH}, \mathrm{llH}$
Channel Fine Tuning
mm, ll: $2000 \mathrm{H}-4000 \mathrm{H}-6000 \mathrm{H}$
( $-4096 \times 100 / 8192-0-+4096 \times 100 / 8192$ cent $)$
* In Performance mode, the Part Fine Tune parameter (PERFORM/PART VIEW/PITCH) will change.

| $00 \mathrm{H}, 02 \mathrm{H} \quad \mathrm{mmH}, \mathrm{llH}$ | Channel Coarse Tuning |
| :--- | :--- |
|  | $\mathrm{mm}: 10 \mathrm{H}-40 \mathrm{H}-70 \mathrm{H}(-48-0-+48$ semitones $)$ |

ll: ignored (processed as 00 H )

* In Performance mode, the Part Coarse Tune parameter (PERFORM/PART VIEW/ PITCH) will change.

| $00 \mathrm{H}, 05 \mathrm{H}$ | $\mathrm{mmH}, 1 \mathrm{H} \mathrm{H}$ |
| :--- | :--- |
|  | Modulation Depth Range |
|  | $\mathrm{mm}, 11: 0000 \mathrm{H}-0006 \mathrm{H}$ |
|  | $(0-16384 \times 600 / 16384$ cent $)$ |

* Not received in Patch mode.

7FH, 7FH ---, --- RPN null
RPN and NRPN will be set as "unspecified." Once this setting has been made, subsequent
Parameter values that were previously set will not change.
mm, ll: ignored

## -Program Change

| Status |  |
| :--- | :--- |
| CnH | $\quad \underline{\mathrm{ppH}} \quad$ |

$\mathrm{n}=$ MIDI channel number: $\quad 0 \mathrm{H}-\mathrm{FH}(\mathrm{ch} .1-16)$
$\mathrm{pp}=$ Program number:
$00 \mathrm{H}-7 \mathrm{FH}$ (prog. 1 - prog. 128 )

* Not received in Performance mode when the Receive Program Change parameter (PERFORM/MIDI) is OFF.


## -Channel Pressure

| Status | 2nd byte |
| :--- | :--- |
| DnH |  |
| $\mathrm{n}=$ MIDI channel number: | $0 \mathrm{H}-\mathrm{FH}$ (ch. $1-16)$ |
| vv = Channel Pressure: | $00 \mathrm{H}-7 \mathrm{FH}(0-127)$ |

* Not received in Performance mode when the Receive Channel Pressure parameter (PERFORM/MIDI) is OFF.


## OPitch Bend Change

| Status | 2nd byte | 3rd byte |
| :---: | :---: | :---: |
| EnH | 11 H | mmH |
| $\mathrm{n}=$ MIDI channel number: |  | 0H-FH (ch. $1-16$ ) |
|  |  | $0000 \mathrm{H}-4000 \mathrm{H}-7 \mathrm{~F} 7 \mathrm{FH}(-8192-0-+8191)$ |

* Not received when the Tone Receive Bender parameter (PATCH/CONTROL) is OFF
* Not received in Performance mode when the Receive Bender parameter (PERFORM/ MIDI) is OFF.


## MIDI Implementation

## Channel Mode Messages

Not received in Performance mode when the Receive Switch parameter (PERFORM/ MIDI) is OFF.

## -All Sounds Off (Controller number 120)

| Status | $\underline{2 n d}$ byte | 3rd byte <br> BnH |
| :--- | :--- | :--- |
| $\mathrm{n}=\mathrm{MIDI}$ | 00 H |  |

* When this message is received, all notes currently sounding on the corresponding channel will be turned off.
-Reset All Controllers (Controller number 121)

| Status  <br> BnH $\underline{2 n d}$ byte$\quad$3rd byte <br> $n=$ MIDI channel number: | 0 H | $-\mathrm{FH}(\mathrm{ch} .1-16)$ |
| :--- | :---: | :---: |

$\mathrm{n}=$ MIDI channel number: 0 H - FH (ch. 1 - 16)

* When this message is received, the following controllers will be set to their reset values.

| Controller | $\underline{\text { Reset value }}$ |
| :--- | :--- |
| Pitch Bend Change | $+/-0$ (center) |
| Polyphonic Key Pressure | 0 (off) |
| Channel Pressure | 0 (off) |
| Modulation | 0 (off) |
| Breath Type | 0 (min) |
| Expression | 127 (max) |
|  | However the controller will be at minimum. |
| Hold 1 | 0 (off) |
| Sostenuto | 0 (off) |
| Soft | 0 (off) |
| Hold 2 | 0 (off) |
| RPN | unset; previously set data will not change |
| NRPN | unset; previously set data will not change |

-All Notes Off (Controller number 123)

| Status | 2nd byte | 3rd byte |
| :---: | :---: | :---: |
| BnH | 7BH | 00H |
| $\mathrm{n}=$ MIDI channel number: $0 \mathrm{H}-\mathrm{FH}$ (ch. $1-16$ ) |  |  |

* When All Notes Off is received, all notes on the corresponding channel will be turned off. However, if Hold 1 or Sostenuto is ON, the sound will be continued until these are turned off.
-OMNI OFF (Controller number 124)

| Status | $\frac{\text { 2nd byte }}{}$ | 3rd byte |
| :--- | :--- | :--- |
| BnH | 7 CH | 00 H |

$\mathrm{n}=$ MIDI channel number: $0 \mathrm{H}-\mathrm{FH}(\mathrm{ch} .1-16)$

* The same processing will be carried out as when All Notes Off is received.
-OMNI ON (Controller number 125)

| Status | $\frac{\text { 2nd byte }}{\mathrm{BnH}} \quad$ | 3rd byte <br> 7 DH |
| :--- | :--- | :--- |

$\mathrm{n}=$ MIDI channel number: $0 \mathrm{H}-\mathrm{FH}$ (ch. $1-16$ )

* The same processing will be carried out as when All Notes Off is received. OMNI ON will not be turned on.


## OMONO (Controller number 126)

| Status | 2nd byte | 3 3rd byte |
| :---: | :---: | :---: |
| BnH | 7EH | mmH |
| $\mathrm{n}=$ MIDI channel number: |  | 0H-FH (ch.1-16) |
| $\mathrm{mm}=1$ |  | 00H-10H (0-16) |

* The same processing will be carried out as when All Notes Off is received.
* In Performance mode, the Part Mono/Poly parameter (PERFORM/PART VIEW/KEY MOD) will change


## OPOLY (Controller number 127)

Status $\quad$ 2nd byte $\quad$ 3rd byte
$\mathrm{BnH} \quad 7 \mathrm{FH} \quad 00 \mathrm{H}$
$\mathrm{n}=$ MIDI channel number: $0 \mathrm{H}-\mathrm{FH}($ ch. $1-16)$

* The same processing will be carried out as when All Notes Off is received.
* In Performance mode, the Part Mono/Poly parameter (PERFORM/PART VIEW/KEY MOD) will change.


## ■System Realtime Message

## -Timing Clock

Status
F8H

* Received when Sync Mode parameter (SYSTEM/TEMPO/SYNC) is set to SLAVE-MIDI.


## -Start

## Status

FAH

* Received when Sync Mode parameter (SYSTEM/TEMPO/SYNC) is set to SLAVE-MIDI or REMOTE.


## -Continue

Status
FBH

* Received when Sync Mode parameter (SYSTEM/TEMPO/SYNC) is set to SLAVE-MIDI or REMOTE.


## -Stop

## Status

FCH

* Received when Sync Mode parameter (SYSTEM/TEMPO/SYNC) is set to SLAVE-MIDI or REMOTE.


## -Active Sensing

## Status

FEH

* When Active Sensing is received, the unit will begin monitoring the intervals of all further messages. While monitoring, if the interval between messages exceeds 420 ms , the same processing will be carried out as when All Sounds Off, All Notes Off and Reset All Controllers are received, and message interval monitoring will be halted.

| ■System Exclusive Message |  |  |
| :---: | :---: | :---: |
| Status | Data byte | Status |
| FOH | iiH, ddH, ...., eeH | F7H |
| $\begin{aligned} & \text { FOH: } \\ & \text { ii = ID number: } \end{aligned}$ | System Exclusive Message status <br> an ID number (manufacturer ID) to indicate the manufacturer whose Exclusive message this is. Roland's manufacturer ID is 41 H . ID numbers 7EH and 7FH are extensions of the MIDI standard; Universal Non-realtime Messages (7EH) and Universal Realtime |  |
|  |  |  |
|  |  |  |
|  |  |  |
| dd,...ee = data: | 00H-7FH (0-127) |  |
| F7H: | EOX (End Of Excl |  |

Of the System Exclusive messages received by this device, the Universal Non-realtime messages and the Universal Realtime messages and the Data Request (RQ1) messages and the Data Set (DT1) messages will be set automatically.

## -Universal Non-realtime System Exclusive Messages

Oldentity Request Message

| $\underline{\text { Status }}$ | $\underline{\text { Data byte }} \frac{\text { Status }}{7 E H, \text { dev, 06H, 01H F7H }}$ |
| :--- | :--- |
| F0H | $\underline{\text { Explanation }}$ |
| $\underline{\text { Byte }}$ | Exclusive status |
| F0H | ID number (Universal Non-realtime Message) |
| 7 EH | Device ID (dev: 10H - 1FH, 7FH) |
| dev | Sub ID\#1 (General Information) |
| 06 H | Sub ID\#2 (Identity Request) |
| 01 H | EOX (End Of Exclusive) |

* When this message is received, Identity Reply message (p. 225) will be transmitted.

OGM1 System On

| Status | Data byte Status |
| :---: | :---: |
| F0H | 7EH, 7FH, $09 \mathrm{H}, 01 \mathrm{H}$ F7H |
| Byte | Explanation |
| F0H | Exclusive status |
| 7EH | ID number (Universal Non-realtime Message) |
| 7FH | Device ID (Broadcast) |
| 09H | Sub ID\#1 (General MIDI Message) |
| 01H | Sub ID\#2 (General MIDI 1 On) |
| F7H | EOX (End Of Exclusive) |

* When this messages is received, this instrument will turn to the Performance mode.
* Not received when the Receive GM System On parameter (SYSTEM/MIDI/RX) is OFF.


## OGM2 System On

| $\underline{\text { Status }}$ | $\underline{\text { Data byte }}$ | $\underline{\text { Status }}$ |
| :--- | :--- | :--- |
| F0H | 7EH 7FH 09H 03H | F7H |
|  |  |  |
| $\underline{\text { Byte }}$ | $\underline{\text { Explanation }}$ |  |
| F0H | Exclusive status |  |
| 7 EH | ID number (Universal Non-realtime Message) |  |
| 7 FH | Device ID (Broadcast) |  |
| 09 H | Sub ID\#1 (General MIDI Message) |  |
| 03 H | Sub ID\#2 (General MIDI 2 On) |  |
| F7H | EOX (End Of Exclusive) |  |

* When this messages is received, this instrument will turn to the Performance mode.
* Not received when the Receive GM2 System On parameter (SYSTEM/MIDI/RX) is OFF.

OGM System Off

| Status | Data byte | Status |
| :--- | :--- | :--- |
| F0H | 7EH, 7F, 09H, 02H | F7H |
|  |  |  |
| Byte | Explanation |  |
| F0H | Exclusive status |  |
| 7 EH | ID number (Universal Non-realtime Message) |  |
| 7 FH | Device ID (Broadcast) |  |
| 09 H | Sub ID\#1 (General MIDI Message) |  |
| 02 H | Sub ID\#2 (General MIDI Off) |  |
| F7H | EOX (End Of Exclusive) |  |

* When this messages is received, this instrument will return to the Performance mode.


## -Universal Realtime System Exclusive Messages

 OMaster Volume| Status | Data byte | Status |
| :---: | :---: | :---: |
| F0H | 7FH, 7FH, $04 \mathrm{H}, 01 \mathrm{H}, 1 \mathrm{H}, \mathrm{mmH}$ | F7H |
| Byte | Explanation |  |
| F0H | Exclusive status |  |
| 7FH | ID number (universal realtime message) |  |
| 7FH | Device ID (Broadcast) |  |
| 04H | Sub ID\#1 (Device Control) |  |
| 01H | Sub ID\#2 (Master Volume) |  |
| 11 H | Master Volume lower byte |  |
| mmH | Master Volume upper byte |  |
| F7H | EOX (End Of Exclusive) |  |

* The lower byte ( llH H ) of Master Volume will be handled as 00 H .
* The Master Level parameter (SYSTEM/GENERAL) will change.


## OMaster Fine Tuning

| $\underline{\text { Status }}$ | $\underline{\text { Data byte }}$ | $\underline{\text { Status }}$ |
| :--- | :--- | :--- |
| F0H | $7 \mathrm{FH}, 7 \mathrm{FH}, 04 \mathrm{H}, 03 \mathrm{H}, \mathrm{llH}, \mathrm{mmH}$ | $\mathrm{F7H}$ |
|  |  |  |
| $\underline{\text { Byte }}$ | $\underline{\text { Explanation }}$ |  |
| F0H | Exclusive status |  |
| 7 FH | ID number (universal realtime message) |  |
| 7 FH | Device ID (Broadcast) |  |
| 04 H | Sub ID\#1 (Device Control) |  |
| 03 H | Sub ID\#2 (Master Fine Tuning) |  |
| 11 H | Master Fine Tuning LSB |  |
| mmH | Master Fine Tuning MSB |  |
| F7H | EOX (End Of Exclusive) |  |

mm, ll: $0000 \mathrm{H}-4000 \mathrm{H}-7 \mathrm{~F} 7 \mathrm{FH}(-100-0-+99.9$ [cents])

* The Master Tune parameter (SYSTEM/GENERAL) will change.

| OMaster Coarse Tuning |  |  |
| :---: | :---: | :---: |
| Status | Data byte | Status |
| F0H | $7 \mathrm{FH}, 7 \mathrm{FH}, 04 \mathrm{H}, 04 \mathrm{H}, 1 \mathrm{lH}, \mathrm{mmH}$ | F7 |
| Byte | Explanation |  |
| F0H | Exclusive status |  |
| 7FH | ID number (universal realtime message) |  |
| 7FH | Device ID (Broadcast) |  |
| 04H | Sub ID\#1 (Device Control) |  |
| 04H | Sub ID\#2 (Master Coarse Tuning) |  |
| 11 H | Master Coarse Tuning LSB |  |
| mmH | Master Coarse Tuning MSB |  |
| F7H | EOX (End Of Exclusive) |  |
| 11 H : | ignored (processed as 00 H ) |  |
| mmH : | $28 \mathrm{H}-40 \mathrm{H}-58 \mathrm{H}(-24-0-+24$ [semitones]) |  |

## MIDI Implementation

## -Global Parameter Control

* Not received in Patch mode and Piano mode.

| OReverb Parameters |  |  |
| :---: | :---: | :---: |
| Status | Data byte | Status |
| F0H | $7 \mathrm{FH}, 7 \mathrm{FH}, 04 \mathrm{H}, 05 \mathrm{H}, 01 \mathrm{H}, 01 \mathrm{H}$, $01 \mathrm{H}, 01 \mathrm{H}, 01 \mathrm{H}, \mathrm{ppH}, \mathrm{vvH}$ | F7H |
| Byte | Explanation |  |
| FOH | Exclusive status |  |
| 7FH | ID number (universal realtime message) |  |
| 7FH | Device ID (Broadcast) |  |
| 04H | Sub ID\#1 (Device Control) |  |
| 05H | Sub ID\#2 (Global Parameter Control) |  |
| 01H | Slot path length |  |
| 01H | Parameter ID width |  |
| 01H | Value width |  |
| 01H | Slot path MSB |  |
| 01H | Slot path LSB (Effect 0101: Reverb) |  |
| ppH | Parameter to be controlled. |  |
| vvH | Value for the parameter. |  |
|  | $\mathrm{pp}=0 \quad$ Reverb Type |  |
|  | $\mathrm{vv}=00 \mathrm{H} \quad$ Small Room |  |
|  | $\mathrm{vv}=01 \mathrm{H} \quad$ Medium Room |  |
|  | $\mathrm{vv}=02 \mathrm{H} \quad$ Large Room |  |
|  | $\mathrm{vv}=03 \mathrm{H} \quad$ Medium Hall |  |
|  | $\mathrm{vv}=04 \mathrm{H} \quad$ Large Hall |  |
|  | $\mathrm{vv}=08 \mathrm{H} \quad$ Plate |  |
|  | $\mathrm{pp}=1 \quad$ Reverb Time |  |
|  | $\mathrm{vv}=00 \mathrm{H}-7 \mathrm{FH} \quad 0-127$ |  |
| F7H | EOX (End Of Exclusive) |  |
| OChorus Parameters |  |  |
| Status | Data byte | Status |
| F0H | $7 \mathrm{FH}, 7 \mathrm{FH}, 04 \mathrm{H}, 05 \mathrm{H}, 01 \mathrm{H}, 01 \mathrm{H}$, $01 \mathrm{H}, 01 \mathrm{H}, 02 \mathrm{H}, \mathrm{ppH}, \mathrm{vvH}$ | F7H |
| Byte | Explanation |  |
| F0H | Exclusive status |  |
| 7FH | ID number (universal realtime message) |  |
| 7FH | Device ID (Broadcast) |  |
| 04H | Sub ID\#1 (Device Control) |  |
| 05H | Sub ID\#2 (Global Parameter Control) |  |
| 01H | Slot path length |  |
| 01H | Parameter ID width |  |
| 01H | Value width |  |
| 01H | Slot path MSB |  |
| 02H | Slot path LSB (Effect 0102: Chorus) |  |
| ppH | Parameter to be controlled. |  |
| vvH | Value for the parameter. |  |
|  | $\mathrm{pp}=0 \quad$ Chorus Type |  |
|  | vv=0 Chorus1 |  |
|  | vv=1 Chorus2 |  |
|  | $\mathrm{vv}=2 \quad$ Chorus3 |  |
|  | vv=3 Chorus4 |  |
|  | $\mathrm{vv}=4 \quad$ FB Chorus |  |
|  | $\mathrm{vv}=5 \quad$ Flanger |  |
|  | $\mathrm{pp}=1 \quad$ Mod Rate |  |
|  | $\mathrm{vv}=00 \mathrm{H}-7 \mathrm{FH} \quad 0-127$ |  |
|  | $\mathrm{pp}=2 \quad$ Mod Depth |  |
|  | $\mathrm{vv}=00 \mathrm{H}-7 \mathrm{FH} \quad 0-127$ |  |
|  | $\mathrm{pp}=3 \quad$ Feedback |  |
|  | $\mathrm{vv}=00 \mathrm{H}-7 \mathrm{FH} \quad 0-127$ |  |
|  | $\mathrm{pp}=4 \quad$ Send To Reverb |  |
|  | $\mathrm{vv}=00 \mathrm{H}-7 \mathrm{FH} \quad 0-127$ |  |
| F7H | EOX (End Of Exclusive) |  |



## MIDI Implementation

## OKey-based Instrument Controllers

| Status | Data byte |  | Status |
| :---: | :---: | :---: | :---: |
| F0H | 7FH, 7FH, 0AH, 01H, 0nH, kkH, nnH, vvH |  | F7H |
| Byte | Explanation |  |  |
| F0H | Exclusive status |  |  |
| 7FH | ID number (universal realtime message) |  |  |
| 7FH | Device ID (Broadcast) |  |  |
| 0AH | Sub ID\#1 (Key-Based Instrument Control) |  |  |
| 01H | Sub ID\#2 (Controller) |  |  |
| 0nH | MIDI Channel (00-0FH) |  |  |
| kkH | Key Number |  |  |
| nnH | Control Number |  |  |
| vvH | Value |  |  |
|  | $\mathrm{nn}=07 \mathrm{H}$ Level |  |  |
|  | $\mathrm{vv}=00 \mathrm{H}-7 \mathrm{FH}$ | 0-200\% (Relative) |  |
|  | $\mathrm{nn}=0 \mathrm{AH}$ | Pan |  |
|  | $\mathrm{vv}=00 \mathrm{H}-7 \mathrm{FH}$ | Left - Right (Absolute) |  |
|  | $\mathrm{nn}=5 \mathrm{BH}$ | Reverb Send |  |
|  | $\mathrm{vv}=00 \mathrm{H}-7 \mathrm{FH}$ | 0-127 (Absolute) |  |
|  | $\mathrm{nn}=5 \mathrm{D}$ | Chorus Send |  |
|  | $\mathrm{vv}=00 \mathrm{H}-7 \mathrm{FH}$ | 0-127 (Absolute) |  |
| : | : |  |  |
| F7 | EOX (End Of Ex | ive) |  |

* This parameter affects drum instruments only.


## -Data Transmission

This instrument can use exclusive messages to exchange many varieties of internal settings with other devices.
The model ID of the exclusive messages used by this instrument is 00 H 00 H 25 H .

## OData Request 1 (RQ1)

This message requests the other device to transmit data. The address and size indicate the type and amount of data that is requested.
When a Data Request message is received, if the device is in a state in which it is able to transmit data, and if the address and size are appropriate, the requested data is transmitted as a Data Set 1 (DT1) message. If the conditions are not met, nothing is transmitted.

| Status | data byte status |
| :---: | :---: |
| F0H | $41 \mathrm{H}, \mathrm{dev}, 00 \mathrm{H}, 00 \mathrm{H}, 25 \mathrm{H}, 11 \mathrm{H}, \mathrm{aaH}, \mathrm{bbH}, \mathrm{ccH}, \mathrm{F} 7 \mathrm{H}$ ddH, ssH, ttH, uuH, vvH, sum |
| Byte | Remarks |
| F0H | Exclusive status |
| 41H | ID number (Roland) |
| dev | device ID (dev: 10H-1FH, 7FH) |
| 00H | model ID \#1 (JUNO-STAGE) |
| 00H | model ID \#2 (JUNO-STAGE) |
| 25H | model ID \#3 (JUNO-STAGE) |
| 11H | command ID (RQ1) |
| aaH | address MSB |
| bbH | address |
| ccH | address |
| ddH | address LSB |
| ssH | size MSB |
| ttH | size |
| uuH | size |
| vvH | size LSB |
| sum | checksum |
| F7H | EOX (End Of Exclusive) |

* The size of data that can be transmitted at one time is fixed for each type of data. And data requests must be made with a fixed starting address and size. Refer to the address and size given in Parameter Address Map (p. 226).
* For the checksum, refer to p. 242.
* Not received when the Receive Exclusive parameter (SYSTEM/MIDI/RX) is OFF.

OData set 1 (DT1)

| Status | Data byte Status |
| :---: | :---: |
| F0H | $41 \mathrm{H}, \mathrm{dev}, 00 \mathrm{H}, 00 \mathrm{H}, 25 \mathrm{H}, 12 \mathrm{H}, \mathrm{aaH}, \mathrm{bbH}, \mathrm{F} 7 \mathrm{H}$ $\mathrm{ccH}, \mathrm{ddH}, \mathrm{eeH}, \ldots \mathrm{ffH}$, sum |
| Byte | Explanation |
| FOH | Exclusive status |
| 41 H | ID number (Roland) |
| dev | Device ID (dev: 00H - 1FH, 7FH) |
| 00H | Model ID \#1 (JUNO-STAGE) |
| 00H | Model ID \#2 (JUNO-STAGE) |
| 25H | Model ID \#3 (JUNO-STAGE) |
| 12H | Command ID (DT1) |
| aaH | Address MSB: upper byte of the starting address of the data to be sent |
| bbH | Address: upper middle byte of the starting address of the data to be sent |
| ccH | Address: lower middle byte of the starting address of the data to be sent |
| ddH | Address LSB: lower byte of the starting address of the data to be sent. |
| eeH | Data: the actual data to be sent. Multiple bytes of data are transmitted in order starting from the address. |
| : | : |
| ffH | Data |
| sum | Checksum |
| F7H | EOX (End Of Exclusive) |

* The amount of data that can be transmitted at one time depends on the type of data, and data will be transmitted from the specified starting address and size. Refer to the address and size given in Parameter Address Map (p. 226).
* Data larger than 256 bytes will be divided into packets of 256 bytes or less, and each packet will be sent at an interval of about 20 ms .
* Regarding the checksum, please refer to p. 242.
* Not received when the Receive Exclusive parameter (SYSTEM/MIDI/RX) is OFF.

* The amount of data that can be transmitted at one time depends on the type of data, and data will be transmitted from the specified starting address and size. Refer to the address and size given in Parameter Address Map (p. 226).
* Data larger than 256 bytes will be divided into packets of 256 bytes or less, and each packet will be sent at an interval of about 20 ms
* Regarding the checksum, please refer to p. 242.
* Not received when the Receive Exclusive parameter (SYSTEM/MIDI/RX) is OFF.


## MIDI Implementation

## 2. Data Transmission

## ■Channel Voice Messages

## - Note off

| Status | 2nd byte | 3rd byte |
| :--- | :--- | :--- |
| 8nH | kkH | vvH |
| $\mathrm{n}=$ MIDI channel number: |  | $0 \mathrm{H}-\mathrm{FH}(\mathrm{ch} .1-16)$ |
| $\mathrm{kk}=$ note number: |  | $00 \mathrm{H}-7 \mathrm{FH}(0-127)$ |
| $\mathrm{vv}=$ note off velocity: |  | $00 \mathrm{H}-7 \mathrm{FH}(0-127)$ |

## -Note on

| Status | 2 nd byte | 3 rd byte |
| :---: | :---: | :---: |
| 9 nH | kkH | vvH |
| $\mathrm{n}=$ MIDI channel number: |  | 0H-FH (ch. 1 - 16) |
| $\mathrm{kk}=$ note number: |  | 00H-7FH (0-127) |
| $\mathrm{vv}=$ note on velocity: |  | 01H-7FH (1-127) |

## -Control Change

* By selecting a controller number that corresponds to the setting of parameters of controllers, the JUNO-STAGE can transmit any control change message.
OBank Select (Controller number 0, 32)

| Status | 2nd byte | 3rd byte |
| :---: | :---: | :---: |
| BnH | 00H | mmH |
| BnH | 20 H | 11 H |
| $\mathrm{n}=$ MIDI channel number: |  | 0H-FH (ch.1-16) |
| mm, 11 |  | $0000 \mathrm{H}-7 \mathrm{~F} 7 \mathrm{FH}$ (bank. 1 - bank.16384) |

* These messages are transmitted when Patch, Rhythm Set or Performance is selected. But not transmitted when Transmit Program Change or Transmit Bank Select parameter (SYSTEM/MIDI/TX) is OFF.
* In Performance mode, these messages are not transmitted when External Bank Select MSB or External Program Number parameter (PERFORMANCE/CONTROL/CTRL SW/EXT) is OFF.
* Although with the JUNO-STAGE you can select the Bank Select messages to be transmitted, be sure to refer to Bank Select and Program Change Correspondence Chart (p. 243) for the Bank Select messages transmitted when the JUNO-STAGE is select a Patch, Rhythm Set or Performance.
* The Bank Select Numbers corresponding to SRX series should be referred to the SRX series owner's manual.


## OModulation (Controller number 1)

| Status | 2nd byte |  |  |
| :--- | :--- | :--- | :---: |
| BnH | 01 H | 3rd byte |  |
| $\mathrm{n}=$ MIDI channel number: |  | vvH |  |
| $\mathrm{vv}=$ Modulation depth: |  | $0 \mathrm{H}-\mathrm{FH}($ ch. $1-16)$ |  |
|  |  |  |  |
|  |  |  |  |

## OBreath type (Controller number 2)

| Status | 2nd byte |  |
| :--- | :--- | :--- |
| BnH | 02 H | 3rd byte |
| $\mathrm{n}=$ MIDI channel number: |  | vvH |
| vv = Control value: |  | $0 \mathrm{H}-\mathrm{FH}(\mathrm{ch} .1-16)$ |
|  |  | $00 \mathrm{H}-7 \mathrm{FH}(0-127)$ |

* JUNO-STAGE transmits this message when you operate ACTIVE EXPRESSION with the D Beam controller.

| OPortamento Time (Controller number 5) |  |  |
| :---: | :---: | :---: |
| Status | 2nd byte | 3rd byte |
| BnH | 05H | vvH |
| $\mathrm{n}=$ MIDI channel number: |  | 0H- FH (ch. $1-16$ ) |
| $\mathrm{vv}=$ Portamento Time: |  | 00H-7FH (0-127) |

## OData Entry (Controller number 6, 38)

| Status | 2nd byte | 3rd byte |
| :---: | :---: | :---: |
| BnH | 06H | mmH |
| BnH | 26H | 11 H |

$\mathrm{n}=$ MIDI channel number: $0 \mathrm{H}-\mathrm{FH}$ (ch. $1-16$ )
$\mathrm{mm}, \mathrm{ll}=$ the value of the parameter specified by RPN/NRPN $\mathrm{mm}=\mathrm{MSB}, \mathrm{ll}=\mathrm{LSB}$

OVolume (Controller number 7)

| Status | 2nd byte | 3rd byte |
| :---: | :---: | :---: |
| BnH | 07H | vvH |
| $\mathrm{n}=$ MIDI channel number: |  | 0H-FH (ch.1-16) |
| $\mathrm{vv}=$ Volume: |  | 00H-7FH (0-127) |

* In Performance mode, these messages are not transmitted when External Level parameter (PERFORMANCE/CONTROL/CTRL SW/EXT) is OFF.

OPanpot (Controller number 10)

| Status | 2nd byte | 3rd byte |
| :---: | :---: | :---: |
| BnH | 0 AH | vvH |
| $\mathrm{n}=$ MIDI channel number: |  | 0H-FH (ch. $1-16$ ) |
| $\mathrm{vv}=$ Panpot: |  | 00H-40H-7FH (Left - Center - Right), |

* In Performance mode, these messages are not transmitted when External Pan parameter (PERFORMANCE/CONTROL/CTRL SW/EXT) is OFF.


## OExpression (Controller number 11)

| Status | 2nd byte |  | 3rd byte |
| :--- | :--- | :--- | :--- |
| BnH | OBH |  | vvH |
| $\mathrm{n}=$ MIDI channel number: |  | $0 \mathrm{H}-\mathrm{FH}(\mathrm{ch} .1-16)$ |  |
| vv = Expression: |  |  | $00 \mathrm{H}-7 \mathrm{FH}(0-127)$ |

## OHold 1 (Controller number 64)

| Status 2nd byte  3rd byte <br> BnH 40 H  vvH <br> $\mathrm{n}=$ MIDI channel number:   $0 \mathrm{H}-\mathrm{FH}(\mathrm{ch} .1-16)$ <br> vv = Control value:   $00 \mathrm{H}-7 \mathrm{FH}(0-127)$ | $0-63=\mathrm{OFF}, 64-127=\mathrm{ON}$ |
| :--- | :--- | :--- | :--- |

* When Continuous Hold Pedal parameter (SYSTEM/(KBD/CTRL)/PEDAL) is OFF, just only $00 \mathrm{H}(0 \mathrm{FF})$ and $7 \mathrm{FH}(0 \mathrm{~N})$ can be send as the control value.


## OPortamento (Controller number 65)

| Status | 2nd byte | 3rd byte |  |
| :---: | :---: | :---: | :---: |
| BnH | 41 H | vvH |  |
| $\mathrm{n}=$ MIDI channel number: |  | 0H- FH (ch. $1-16$ ) |  |
| $\mathrm{vv}=$ Control value: |  | 00H-7FH (0-127) | $0-63=$ OFF, $64-127=$ ON |

## OResonance (Controller number 71)

| Status | 2nd byte | 3rd byte |
| :---: | :---: | :---: |
| BnH | 47 H | vvH |
| $\mathrm{n}=$ MIDI channel number: |  | 0H-FH (ch.1-16) |
| $\mathrm{vv}=$ Resonance value (relative change): |  | 00H-40H-7FH (-6 |

ORelease Time (Controller number 72)

| Status | $\underline{\text { 2nd byte }}$ | 3rd byte <br> BnH |
| :--- | :--- | :--- |
| 48 H | vvH |  |

$\begin{array}{ll}\mathrm{n}=\text { MIDI channel number: } & 0 \mathrm{H}-\mathrm{FH}(\mathrm{ch} .1-16) \\ \mathrm{vv}=\text { Release Time value (relative change): } & 00 \mathrm{H}-40 \mathrm{H}-7 \mathrm{FH}(-64-0-+63)\end{array}$
OAttack time (Controller number 73)

| $\underline{\text { Status }}$ | $\underline{\text { 2nd byte }}$ | $\underline{\text { 3rd byte }}$ |
| :--- | :--- | :--- |
| BnH | 49 H | vvH |
| $\mathrm{n}=$ MIDI channel number: | $0 \mathrm{H}-\mathrm{FH}(\mathrm{ch} .1-16)$ |  |
| $\mathrm{vv}=$ Attack time value (relative change) $:$ | $00 \mathrm{H}-40 \mathrm{H}-7 \mathrm{FH}(-64-0-+63)$ |  |

OCutoff (Controller number 74)

| Status | 2nd byte | 3rd byte |
| :---: | :---: | :---: |
| BnH | 4AH | vvH |
| $\mathrm{n}=$ MIDI channel number: |  | 0H-FH (ch. $1-16$ ) |
| $\mathrm{vv}=$ Cutoff value (relative change): |  | 00H-40H-7FH (-6) |

OGeneral Purpose Controller 5 (Controller number 80)

| Status | 2nd byte | 3rd byte |
| :---: | :---: | :---: |
| BnH | 50 H | vvH |
| $\mathrm{n}=$ MIDI channel number: |  | 0H-FH (ch.1-16) |
| $\mathrm{vv}=$ Control value: |  | 00H-7FH (0-127) |

OGeneral Purpose Controller 6 (Controller number 81)

| Status | 2nd byte | 3rd byte |
| :--- | :--- | :--- |
| BnH | 51 H | vvH |
| $\mathrm{n}=$ MIDI channel number: |  | $0 \mathrm{H}-\mathrm{FH}$ (ch. $1-16)$ |
| vv $=$ Control value: |  | $00 \mathrm{H}-7 \mathrm{FH}(0-127)$ |

OGeneral Purpose Controller 7 (Controller number 82)

| Status | 2nd byte | 3rd byte |
| :---: | :---: | :---: |
| BnH | 52 H | vvH |
| $\mathrm{n}=$ MIDI channel number: |  | 0H-FH (ch.1-16) |
| $\mathrm{vv}=$ Control value: |  | 00H-7FH (0-127) |

OGeneral Purpose Controller 8 (Controller number 83)

| Status | 2nd byte | 3rd byte |
| :---: | :---: | :---: |
| BnH | 53H | vvH |
| $\mathrm{n}=$ MIDI channel number: |  | 0H-FH (ch. $1-16$ ) |
| $\mathrm{vv}=\mathrm{Co}$ |  | 00H-7FH (0-127) |

OPortamento control (Controller number 84)

| Status | 2nd byte | 3rd byte |
| :---: | :---: | :---: |
| BnH | 54 H | kkH |
| $\mathrm{n}=$ MIDI channel number: |  | 0H-FH (ch.1-16) |
| $\mathrm{kk}=$ source note number: |  | 00H-7FH (0-127) |

## -Program Change

| Status |  |
| :--- | :--- |
| CnH $\underline{2 n d}$ byte <br> $\mathrm{n}=\mathrm{MIDI}$  <br> $\mathrm{pp}=$ Programel number: $0 \mathrm{H}-\mathrm{FH}$ (ch. $1-16$ ) |  |
|  |  |

* These messages are transmitted when Patch, Rhythm Set or Performance is selected. But not transmitted when Transmit Program Change parameter (SYSTEM/MIDI/TX) is OFF.
* In Performance mode, these messages are not transmitted when External Program Number parameter (PERFORMANCE/CONTROL/CTRL SW/EXT) is OFF.


## ©Channel Pressure

| $\underline{\text { Status }}$ | 2nd byte |  |
| :--- | :--- | :--- |
| DnH |  |  |
| $\mathrm{nvH}=$ MIDI channel number: | $0 \mathrm{H}-\mathrm{FH}(\mathrm{ch} .1-16)$ |  |
| $\mathrm{vv}=$ Channel Pressure: | $00 \mathrm{H}-7 \mathrm{FH}(0-127)$ |  |

## ©Pitch Bend Change

| Status | 2nd byte | 3rd byte |
| :---: | :---: | :---: |
| EnH | 11 H | mmH |
| $\mathrm{n}=\mathrm{MID}$ | mber: | 0H-FH (ch.1-16) |
| mm, 11 | value: | $0000 \mathrm{H}-4000 \mathrm{H}-7 \mathrm{~F} 7 \mathrm{FH}(-8192-0-+8191)$ |

## ■Channel Mode Messages

-MONO (Controller number 126)

| Status | 2nd byte |  |
| :--- | :--- | :--- |
| BnH | 3rd byte |  |
| $\mathrm{n}=$ MIDI channel number: |  | mmH |
| $\mathrm{mm}=$ mono number: | $0 \mathrm{H}-\mathrm{FH}(\mathrm{ch} .1-16)$ |  |
|  |  | $00 \mathrm{H}-10 \mathrm{H}(0-16)$ |

-POLY (Controller number 127)

| Status | $\underline{\text { 2nd byte }}$ | 3rd byte |
| :--- | :--- | :--- |
| BnH | 7 FH | 00 H |

$\mathrm{n}=$ MIDI channel number: $0 \mathrm{H}-\mathrm{FH}(\mathrm{ch} .1-16)$

## ■System Realtime Messages

* Sent when Sync Output parameter (SYSTEM/TEMPO/SYNC) is set to ON.


## $\bullet$ Timing Clock

Status
F8H

## -Start

Status
FAH

## -Continue

Status
FBH

## -Stop

Status
FCH

## -Active Sensing

Status
FEH

* This message is transmitted at intervals of approximately 250 msec .
* This message is not sent when Transmit Active Sensing parameter (SYSTEM/MIDI/TX) is OFF.


## ■System Exclusive Messages

Universal Non-realtime System Exclusive Message" and Data Set 1 (DT1) are the only System Exclusive messages transmitted by the JUNO-STAGE.

## -Universal Non-realtime System Exclusive Message

Oldentity Reply Message (JUNO-STAGE)
Receiving Identity Request Message (p. 221), the JUNO-STAGE send this message.

| Status | Data byte Status |
| :---: | :---: |
| F0H | 7 EH, dev $, 06 \mathrm{H}, 02 \mathrm{H}, 41 \mathrm{H}, 25 \mathrm{H}, 02 \mathrm{H}, \quad$ F7H $00 \mathrm{H}, 01 \mathrm{H}, 00 \mathrm{H}, 03 \mathrm{H}, 00 \mathrm{H}, 00 \mathrm{H}$ |
| Byte | Explanation |
| F0H | Exclusive status |
| 7EH | ID number (Universal Non-realtime Message) |
| dev | Device ID (dev: 10H-1FH) |
| 06H | Sub ID\#1 (General Information) |
| 02H | Sub ID\#2 (Identity Reply) |
| 41H | ID number (Roland) |
| 25 H 02 H | Device family code |
| 00 H 01 H | Device family number code |
| 00 H 03 H 00 H 00 H | Software revision level |
| F7H | EOX (End of Exclusive) |

## -Data Transmission

## OData set 1 (DT1)

| Status | Data byte Status |
| :---: | :---: |
| F0H | $41 \mathrm{H}, \mathrm{dev}, 00 \mathrm{H}, 00 \mathrm{H}, 25 \mathrm{H}, 12 \mathrm{H}, \mathrm{aaH}, \mathrm{bbH}, \quad \mathrm{F} 7 \mathrm{H}$ $\mathrm{ccH}, \mathrm{ddH}, \mathrm{eeH}, \ldots \mathrm{ffH}$, sum |
| Byte | Explanation |
| FOH | Exclusive status |
| 41H | ID number (Roland) |
| dev | Device ID (dev: 00H - 1FH, 7FH) |
| 00H | Model ID \#1 (JUNO-STAGE) |
| 00H | Model ID \#2 (JUNO-STAGE) |
| 25H | Model ID \#3 (JUNO-STAGE) |
| 12H | Command ID (DT1) |
| aaH | Address MSB: upper byte of the starting address of the data to be sent |
| bbH | Address: upper middle byte of the starting address of the data to be sent |
| cch | Address: lower middle byte of the starting address of the data to be sent |
| ddH | Address LSB: lower byte of the starting address of the data to be sent. |
| eeH | Data: the actual data to be sent. Multiple bytes of data are transmitted in order starting from the address. |
| : | : |
| ffH | Data |
| sum | Checksum |
| F7H | EOX (End Of Exclusive) |

* The amount of data that can be transmitted at one time depends on the type of data, and data will be transmitted from the specified starting address and size. Refer to the address and size given in Parameter Address Map (p. 226)
Data larger than 256 bytes will be divided into packets of 256 bytes or less, and each packet will be sent at an interval of about 20 ms .


## 3. Parameter Address Map

* Transmission of " $\#$ " marked address is divided to some packets. For example, ABH in hexadecimal notation will be divided to 0 AH and 0 BH , and is sent/received in this order.
* "<*>" marked address or parameters are ignored when the JUNO-STAGE received them.


### 3.1 JUNO-STAGE (ModelID $=\mathbf{0 0 H} \mathbf{0 0 H} \mathbf{2 5 H}$ )

| Start Address | Description |
| :---: | :---: |
| 01000000 | Setup |
| 02000000 | System |
| OF 000000 | (for editor) |
| 10000000 | Temporary Performance |
| 11000000 | Temporary Patch/Rhythm (Performance Mode Part 1) |
| 11200000 | Temporary Patch/Rhythm (Performance Mode Part 2) |
| 14600000 | Temporary Patch/Rhythm (Performance Mode Part 16) |
| 1E 000000 | Temporary Rhythm Pattern |
| 1E 010000 | Temporary Arpeggio (Performance Mode) |
| 1 E 020000 | Temporary Chord (Performance Mode) |
| 1E 030000 | Temporary Rhythm Group (Performance Mode) |
| 1E 110000 | Temporary Arpeggio (Patch Mode) |
| $\begin{array}{lllll}1 \mathrm{E} & 12 & 00 & 00 \\ 1 \mathrm{E} & 13 & 00 & 00\end{array}$ | Temporary Chord (Patch Mode) Temporary Rhythm Group (Patch Mode) |
| 1F 000000 | Temporary Patch/Rhythm (Patch Mode Part 1) |
| 1F 200000 | Temporary Patch/Rhythm (Patch Mode Part 2) |
| 20000000 | User Performance (01) |
| 20010000 | User Performance (02) |
| 20 3F 0000 | User Performance (64) |
| 30000000 | User Patch (001) |
| 30010000 | User Patch (002) |
| 317 F 0000 | User Patch (256) |
| $\begin{array}{llll} 40 & 00 & 00 & 00 \\ 40 & 10 & 00 & 00 \end{array}$ | User Rhythm Set (001) User Rhythm Set (002) |
|  |  |
| 43700000 | User Rhythm Set (032) |
| $\begin{array}{lllll}50 & 00 & 00 & 00 \\ 50 & 00 & 02 & 00\end{array}$ | User Chord (001) User Chord (002) |
| 50000200 | User Chord (002) |
| 50007 E 00 | User Chord (064) |
| 51000000 | User Arpeggio (001) |
| 51010000 | User Arpeggio (002) |
| 517 F 0000 | User Arpeggio (128) |
| 58000000 | User Rhythm Group (001) |
| 58000100 | User Rhythm Group (002) |
| 58001 F 00 | User Rhythm Group (032) |
| 59000000 | User Rhythm Pattern (001) |
| 59010000 | User Rhythm Pattern (002) |
| 5A 7F 0000 | User Rhythm Pattern (256) |

* System

| Offset Address | Description |
| :---: | :---: |
| $\begin{array}{lll} 00 & 00 & 00 \\ 00 & 40 & 00 \end{array}$ | System Common System Controller |

* Temporary Patch/Rhythm



## * Performance



## * Patch


| 002600 | Patch Tone (Tone 4)

## * Rhythm

| Offset Address | Description |
| :---: | :---: |
| 000000 | Rhythm Common |
| 000200 | Rhythm Common MFX |
| $\begin{array}{llll}00 & 04 & 00 \\ 00 & 06 & 00\end{array}$ | Rhythm Common Chorus Rhythm Common Reverb |
| 001000 | Rhythm Tone (Key \# 21) |
| 001200 | Rhythm Tone (Key \# 22) |
| 013 E 00 | Rhythm Tone (Key \# 108) |

## * Arpeggio (Rhythm Pattern)

| Offset Address | Description |
| :---: | :---: |
| $\begin{array}{llll}00 & 00 & 00 \\ 00 & 10 & 00 \\ 00 & 11 & 00\end{array}$ | Arpeggio Common <br> Arpeggio Pattern (Note 1) <br> Arpeggio Pattern (Note 2) |
| $001 \mathrm{~F} \dot{0}$ | Arpeggio Pattern (Note 16) |
| * Chord |  |
| Offset Address | Description |
| 000000 | Chord Pattern |

* Rhythm Group

| Offset Address | Description |
| :---: | :---: |
| 000000 |  |

## * Setup




## *System Common



## * System Controller



MIDI Implementation


* Performance Common

| Offset Address | Description |  |  |
| :---: | :---: | :---: | :---: |
| 0000 | 0 aaa aaaa | Performance Name 1 | $(32-127)$ |
| 0001 | 0 aaa aaaa | Performance Name 2 | (32-127) |
| 0002 | 0aaa aaaa | Performance Name 3 | 32-127 ${ }^{[32-127)}$ |
|  | 0 aaa aaaa | Performance Name 4 | 32-127 [ASCII] |
|  |  |  | 32-127 [ASCII] |
| 0004 | 0 aaa aaaa | Performance Name | (32-127) |
| 0005 | 0aaa aaaa | Performance Name | 32-127 ${ }^{\text {[ASCII] }}$ ( ${ }^{\text {a }}$ - 127$)$ |
| 0006 | 0 aaa aaaa | Performance Name 7 | 32-127 [ASCII] ${ }^{\text {(32-127) }}$ |
|  |  |  | 32-127 [ASCII] |
| 0007 | 0aaa aaaa | Performance Name 8 | (32-127) |
| 0008 | 0aaa aaaa | Performance Name 9 | 32-127 [ASCII] ${ }_{\text {(32-127) }}$ |
|  | aaa | Performance Name | 32-127 [ASCII] |
| 0009 | 0aaa aaaa | Performance Name 10 | (32-127) |
| 00 OA | Oaaa aaaa | Performance Name 11 | 32-127 ${ }^{[32-127)}$ |
|  |  |  | 32-127 [ASCII] |
| 00 OB | 0aaa aaaa | Performance Name 12 | $32-127_{[\text {ASCII }]}^{(32-127)}$ |
| 00 OC | 00 aa aaaa | Solo Part Select | (0-16) |
|  |  |  | OFF, 1-16 |
| 00 OD | 000a aaaa | MFX1 Control Channel | (0-16) |
| 00 OE | 0000 000a | (reserve) <*> | 1-16, OFF |
| 000 F | 0000 000a | (reserve) <*> |  |
| 0010 | 0 aaa aaaa | Voice Reserve 1 | (0-64) |
| 0011 | 0aaa aaaa | Voice Reserve 2 | $0-63$, <br> $(0)$ <br> FULL |
|  |  |  | $0-63$, FULL |
| 0012 | 0 aaa aaaa | Voice Reserve 3 | - ${ }^{(0-64)}$ |
| 0013 | 0aaa aaaa | Voice Reserve 4 | 0-63, FULL |
|  |  |  | $0-63$, FULL |
| 0014 | 0 aaa aaaa | Voice Reserve 5 | (0-64) |
| 0015 | Oaaa aaaa | Voice Reserve 6 | 0-63, FULL |
|  |  |  | $0-63$, FULL |
| 0016 | 0aaa aaaa | Voice Reserve 7 | (0-64) |
| 0017 | 0aaa aaaa | Voice Reserve 8 | 0-63, 0 FULL |
|  |  | Voice Reserve 9 | $\begin{aligned} & 0-63, \text { FULL } \\ &(0-64)\end{aligned}$ |
| 0018 | Oaaa aaaa | Voice Reserve 9 | - (0-64) |



* Performance Common Chorus

| Offset Address | Description |  |  |
| :---: | :---: | :---: | :---: |
| 0000 <br> 0001 <br> 0002 | 0000 aaaa 0 aaa aaaa 0000 00aa | Chorus Type <br> Chorus Level <br> Chorus Output Assign <*> | $\left(\begin{array}{l} (0-3) \\ (0-127) \end{array}\right.$ |
| 0003 | 0000 00aa | Chorus Output Select | MAIN, REV, MAIN+REV |
| 0004 | 0000 aaaa 0000 bbbb 0000 cccc 0000 ddda | Chorus Parameter 1 | (12768-52768) |



* Performance Common Reverb


|  |  | 0000 cccc 0000 dddd | Reverb Parameter 6 | $(12768-52768)$ $-20000-+20000$ |
| :---: | :---: | :---: | :---: | :---: |
| \# | 001 B | $\begin{aligned} & 0000 \\ & \text { oadaa } \\ & 0000 \\ & \text { bbbb } \\ & \text { cos } \end{aligned}$ |  |  |
|  |  | 0000 dddd | Reverb Parameter 7 | $(12768-52768)$ $-20000-+20000$ |
| \# | 001 F | $\begin{aligned} & 0000 \text { aaaa } \\ & 0000 \mathrm{bbbb} \\ & 0000 \mathrm{cccc} \end{aligned}$ |  |  |
|  |  | 0000 ddda | Reverb Parameter 8 | $\begin{gathered} (12768-52768) \\ -20000-+20000 \end{gathered}$ |
| * | 0023 | 0000 aaaa 0000 bbbb |  |  |
|  |  | 0000 cccc |  |  |
|  |  | 0000 dadd | Reverb Parameter 9 | $\begin{array}{r} (12768-52768) \\ -20000-+20000 \end{array}$ |
| \# | 0027 | 0000 aaaa <br> 0000 bbb |  |  |
|  |  | 0000 cccc 0000 0.0 ddd | Reverb Parameter 10 | (12768-52768) |
| * | 002 B |  |  | $-20000-+20000$ |
|  |  | 0000 aaaa |  |  |
|  |  | 0000 cadd | Reverb Parameter 11 | $\begin{gathered} (12768-52768) \\ -2000- \end{gathered}$ |
| \# | 002 F | 0000 aaaa |  |  |
|  |  | 0000 ccec |  |  |
|  |  | 0000 ddda | Reverb Parameter 12 | $(12768-52768)$ $-20000-+20000$ |
| * | 0033 | 0000 aaaa |  |  |
|  |  | 0000 bbbb 0000 ccce |  |  |
|  |  | 0000 ddda | Reverb Parameter 13 | $\begin{array}{r} (12768-52768) \\ -20000-+20000 \end{array}$ |
| \# | 0037 | 0000 aaaa |  |  |
|  |  | 0000 cccc |  |  |
|  |  | 0000 ddda | Reverb Parameter 14 | $\begin{aligned} & (12768-52768) \\ & -20000-+20000 \end{aligned}$ |
| \# | 00 3B | 0000 000 000 abba |  |  |
|  |  | $\begin{aligned} & 0000 \mathrm{bbbb} \\ & 0000 \mathrm{cccc} \\ & 000 \end{aligned}$ |  |  |
|  |  |  | Reverb Parameter 15 | $(12768-52768)$ $-20000-+20000$ |
| \# | 003 F | $\begin{aligned} & 0000 \text { aaaa } \\ & 0000 \text { bbbb } \end{aligned}$ |  |  |
|  |  | 0000 cccc 0000 dddd | Reverb Parameter 16 | (12768-52768) |
|  | 0043 |  |  | $-20000-+20000$ |
| * |  | 0000 bbbb 0000 cccca |  |  |
|  |  | 0000 ddda | Reverb Parameter 17 | $(12768-52768)$ $-20000-+20000$ |
| * | 0047 | $\begin{aligned} & 0000 \text { aaaa } \\ & 0000 \\ & 000 \mathrm{bbbb} \end{aligned}$ |  |  |
|  |  | $\begin{aligned} & 0000 \text { cccc } \\ & \text { cocc } \\ & 0000 \\ & \text { dadd } \end{aligned}$ | Reverb Parameter 18 |  |
|  | 0048 |  |  | $-20000-+20000$ |
| \# | 0048 | $\begin{aligned} & 0000 \mathrm{bbbb} \\ & 0000 \text { cccc } \end{aligned}$ |  |  |
|  |  | 0000 ddda | Reverb Parameter 19 | $\begin{aligned} & (12768-52768) \\ & -20000-+20000 \end{aligned}$ |
| \# | 004 F | $\begin{aligned} & 0000 \text { aaaa } \\ & 0000 \text { bbbbb } \end{aligned}$ |  |  |
|  |  | O000 cacc | Reverb Parameter 20 | $(12768-52768)$ |
|  |  |  |  | -20000-+20000 |
|  | 0053 | Total Size |  |  |

* Performance MIDI

| Offset Address | Description |  |  |
| :---: | :---: | :---: | :---: |
| 0000 | 0000 000a | Receive Program Change | (0-1) |
| 0001 | 0000 000a | Receive Bank Select | OFF, ON $\left(00^{\prime}-1\right)$ |
|  | 0000 000a | Receive Bender | OFF, ON $(0,1)$ |
|  |  |  | OFF, ON |
| 0003 | 0000 000a | Receive Polyphonic Key Pressure | (0 - 1) |
| 0004 | 0000 000a | Receive Channel Pressure | OFF, ON $\left(00^{\prime}-1\right)$ |
| 0005 | 0000 000a | Receive Modulation | OFF, ON $(0,1)$ |
|  |  | Receive Modulation | (0)-1) |
| 0006 | 0000 000a | Receive Volume | (0. - 1) |
| 0007 | 0000 000a | Receive Pan | OFF, ON $(0,-1)$ |
|  | 0000 000a | Receive Expression | OFF, ON $\left(00^{\prime}-1\right)$ |
|  | 0000 000a | Receive Hold-1 | OFF, ON |
|  | 000 000a | Receive Hola | OFF, ON |
| 00 OA | 0000 000a | Phase Lock | (0-1) |
| 00 OB | 0000 0aaa | Velocity Curve Type | OFF, $(0 \times 4)$ |
|  |  |  | OFF, 1 - 4 |
| 000000 OC | Total Size |  |  |

* Performance Part

| Offset Address | Description |  |  |
| :---: | :---: | :---: | :---: |
| 0000 | 0000 aaaa | Receive Channel | (0-15) |
| 0001 | 0000 000a | Receive Switch | (0-1) |
| 0002 | 00000000 | (reserve) <*> | OFF, ON |
| 0003 | 00000000 | (reserve) <*> |  |
| 0004 | 0 aaa aaaa | Patch Bank Select MSB (CC\# 0) | (0-127) |
| 0005 | 0 aaa aaaa | Patch Bank Select LSB (CC\# 32) | (0-127) |
|  | 0aaa aaaa | Patch Program Number (PC) | (0-127) |
|  | 0aaa aaaa | Part Level (CC\# 7) | (0-127) |
| 0008 | 0 0aa aaaa | Part Pan (CC\# 10) | (0-127) |
| 0009 | 0aaa aaaa | Part Coarse Tune (RPN\# 2) | L64 - 63 R $(16-112)$ |
|  |  |  | $-48-+48$ |
| 00 OA | 0 aaa aaaa | Part Fine Tune (RPN\# 1) | (14-114) |
| 000 O | 0000 00aa | Part Mono/Poly (MONO ON/POLY ON | -50 (0-2) |
|  |  | Part Mono/roly (mono on/rour | Ly, Patch |



## * Performance Zone



## * Performance Controller

| Offset Address | Description |
| :---: | :---: |
| 0000 | erve) <-----> |




* Arpeggio Common



## * Arpeggio Pattern



## * Chord Pattern

| Offset Address | Description |  |  |
| :---: | :---: | :---: | :---: |
|  | 0000 000a | Chord Note1 | (0-1) |
| 0001 | 0000 000a | Chord Note2 | OFF, ON $\left(00^{\prime}-1\right)$ |
| 0002 | 0000 000a | Chord Note3 | OFF, ON |
|  |  |  | OFF, ON |



[^4]
0000 000a
$\cdots{ }^{\circ}$
Chord Note73
Chord Note74
Chord Note75
Chord Note76
Chord Note77
Chord Note78
Chord Note79
Chord Note80
Chord Note81
Chord Note82
Chord Note83
Chord Note84
Chord Note85
Chord Note86
Chord Note87
Chord Note88
Chord Note89
Chord Note90
Chord Note91
Chord Note92
Chord Note93

Chord Note99 Chord Note10
Chord Note10 Chord Note10 Chord Note103
Chord Note104 Chord Note105 Chord Note106
Chord Note107 Chord Note108 Chord Note109 Chord Note111 Chord Note112
Chord Note113 Chord Note114 Chord Note115
Chord Note116 Chord Note117 Chord Note118
Chord Note119 Chord Note120 Chord Note122 Chord Note123 Chord Note124
Chord Note125 Chord Note126 Chord Note127 Chord Note128

| 0100 | Oaaa aaaa |
| :---: | :---: |
| 0101 | Oaaa aaaa |
| 0102 | 0aaa aaaa |
| 0103 | 0aaa aaaa |
| 0104 | 0aaa aaaa |
| 0105 | 0aaa aaaa |
| 0106 | 0aaa aaaa |
| 0107 | 0aaa aaaa |
| 0108 | 0aaa aaaa |
| 0109 | 0aaa aaaa |
| 01 OA | 0aaa aaaa |
| 01 OB | 0aaa aaaa |
| 01 0C | 0aaa aaaa |


| Chord Pattern Name | 1 | $(32$ | - 127) |
| :---: | :---: | :---: | :---: |
| Chord Pattern Name | 2 | $(32$ | - 127) |
| Chord Pattern Name | 3 | $(32$ | - 127) |
| Chord Pattern Name | 4 | $(32$ | - 127) |
| Chord Pattern Name | 5 | $(32$ | - 127) |
| Chord Pattern Name | 6 | (32 | - 127) |
| Chord Pattern Name | 7 | $(32$ | - 127) |
| Chord Pattern Name | 8 | $(32$ | - 127) |
| Chord Pattern Name | 9 | $(32$ | - 127) |
| Chord Pattern Name | 10 | $(32$ | - 127) |
| Chord Pattern Name | 11 | (32) | - 127) |
| Chord Pattern Name | 12 | (32 | - 127) |
| Chord Pattern Name | 13 | (32) | - 127) |



* Rhythm Group




## * Patch Common

| Offset Address | Description |  |  |
| :---: | :---: | :---: | :---: |
|  | 0 aaa aaaa | Patch Name 1 | $(32-127)$ |
| 0001 | 0 aaa aaaa | Patch Name 2 | - (32-127) |
|  | 0aaa aaaa | Patch Name 3 | $\begin{array}{r} 32-127 \text { [ASCII] } \\ (32-127) \end{array}$ |
| 0003 | 0aaa aaaa | Patch Name 4 | 32-127 [ASCII] ${ }_{\text {a }}(32-127)$ |
|  |  | Sate | 32-127 [ASCII] |
| 0004 | 0aaa aaaa | Patch Name 5 | (32-127) |
| 0005 | 0aaa aaaa | Patch Name 6 | $\begin{aligned} 32-127 \\ (32-127) \end{aligned}$ |
|  | 0aa | ? | 32-127 [ASCII] |
| 0006 | 0aaa aaaa | Patch Name 7 | (32-127) |
| 0007 | 0aaa aaaa | Patch Name 8 | $32-127{ }^{[32-127)}$ |
|  |  |  | $32-127$ [ASCII] |
| 0008 | 0 aaa aaaa | Patch Name 9 | (32-127) |
| 0009 | 0aaa aaaa | Patch Name 10 | 32-12 (32-127) |
|  |  |  | 32-127 [ASCII] |
| 00 OA | 0aaa aaaa | Patch Name 11 | (32-127) |
| 00 OB | 0aaa aaaa | Patch Name 12 | $32-127{ }^{\text {[ASCII] }}$ - 127) |
|  |  |  | 32-127 [ASCII] |
| 00 OC | 0aaa aaaa | Patch Category | (0-127) |
| 00 OD | 0000 000a | (reserve) |  |
| $\begin{array}{ll}00 & 0 \mathrm{E} \\ 00 & 0 \mathrm{~F}\end{array}$ | 0 aaa aaaa | Patch Level | (0-127) |
|  | 0 aaa aaaa | Patch Pan | $(0-127)$ L64-63R |
| 0010 | 0000 000a | Patch Priority | (0-1) |
| 00 | 0aaa aaaa | Patch Coarse Tune | LAST, LOUDEST (16-112) |
| 0012 |  |  | -48-+48 |
|  | 0aaa aaaa | Patch Fine Tune | (14-114) |
| 0013 | 0000 0aaa | Octave Shift | (61-67) |
| 0014 | 0000 00aa |  | -3 ${ }^{-+3}$ $(0-3)$ |
|  | -000 00a | Stretch Tune Depth | -5 ( ${ }^{(0-3)}$ |
| $\begin{array}{lll}00 & 15 \\ 00 & 16\end{array}$ | 0 aaa aaaa | Analog Feel | (0-127) |
|  | 0000 000a | Mono/Poly | (0-1) |
| 0017 | 0000 000a | Legato Switch | MONO, ${ }_{(0-1)}$ |
| 0018 | 0000 000a | Legato Retrigger | OFF, ON $(0,-1)$ |
|  |  |  | (0)-1) |
| 0019 | 0000 000a | Portamento Switch | (0-1) |
| 00 1A | 0000 000a | Portamento Mode | OFF, ON $(0-1)$ |
|  |  |  | NORMAL, LEGATO |
| 00 1B | 0000 000a | Portamento Type | $(0-1)$ |
| 001 C | 0000 000a | Portamento Start | RATE, $(0-1)$ |
|  |  |  | PITCH, NOTE |
| $\begin{array}{ll} 00 & 1 \mathrm{D} \\ 00 & 1 \mathrm{E} \end{array}$ | Oaaa aaaa 0000 0 | Portamento Time | (0-127) |
|  | 0000 0000000 aaaa |  |  |
| 001 F | 0000 bbbb | (reserve) |  |
| 0021 | 0000 000a | (reserve) |  |
| 0022 | 0aaa aaaa | Cutoff Offset | (1-127) |
| 0023 | 0aaa aaaa | Resonance Offset | -63- +63 (1 - 127) |
| 0024 |  |  | -63-+63 |
|  | Oaaa aaaa | Attack Time Offset | (1-127) |
| 0025 | Oaaa aaaa | Release Time Offset | -6 - $(1)^{-127)}$ |
| 0026 |  |  | -63-+63 |
|  | 0aaa aaaa | Velocity Sens Offset | $(1-127)$ $-63-+63$ |
| 0027 | 0000 aaaa | Patch Output Assign | (0-13) |
| 0028 | 0000 000a | TMT Control Switch | (0-1) |
| 00000 22 A | 00aa aaaa | Pitch Bend Range Up | OFF, ON $(0-48)$ |
|  | 00aa aaaa | Pitch Bend Range Down | ( $0-48$ ) |
| $\begin{array}{ll}00 & 2 B \\ 00 & 2 C\end{array}$ | 0 aaa aaaa | Matrix Control 1 Source ${ }_{\text {OFF }}$, CC01 - CC31, CC33 - ${ }^{(0-109)}$ |  |
|  |  |  |  |
|  |  |  | TEMPO, LFO1, LFO2, |
|  | 00aa aaaa | Matrix Control 1 Desti | TVF-ENV, $\begin{aligned} & \text { TVA-ENV } \\ & (0-33)\end{aligned}$ |
| 002 C |  |  | UT, RES, LEV, PAN, |
|  |  |  | Ho, REv, PIT-LFO1, |
|  |  |  | VA-LFO2, PAN-LFO1, |
|  |  |  | 1-RATE, LFO2-RATE, |
|  |  |  | PIT-DCY, PIT-REL, |
|  |  |  | TVA-DCY, TVA-REL, |
|  |  | TMT, | MFX2, MFX3, MFX4 |
|  | Oaaa aaaa | Matrix Control 1 Sens | $\begin{array}{r} (1-127) \\ -63-+63 \end{array}$ |

MIDI Implementation



* Patch Common Chorus

|  |  |  | 0000 ddda | Reverb Parameter 3 | $\begin{array}{r} (12768-52768) \\ -20000-+20000 \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \# | 00 | 0 F | 0000 aaaa |  |  |
|  |  |  | 0000 bbbb 0000 cccc |  |  |
|  |  |  | 0000 ddda | Reverb Parameter 4 | $\begin{array}{r} (12768-52768) \\ -20000-+20000 \end{array}$ |
| \# | 00 | 13 | 0000 aaaa |  |  |
|  |  |  | 0000 bbbb |  |  |
|  |  |  | 0000 cccc |  |  |
|  |  |  | 0000 ddda | Reverb Parameter 5 | $\begin{aligned} & (12768-52768) \\ & -20000-+20000 \end{aligned}$ |
| \# | 00 | 17 | 0000 aaaa |  |  |
|  |  |  | 0000 bbbb |  |  |
|  |  |  | 0000 cccc | Reverb Parameter 6 |  |
|  |  |  |  | Reverb Parameter | $-20000-+20000$ |
| \# | 00 | 1B | 0000 aaaa |  |  |
|  |  |  | 0000 bbbb |  |  |
|  |  |  | 0000 cccc |  |  |
|  |  |  |  | Reverb Parameter 7 | $\begin{aligned} & (12768-52768) \\ & -20000-+20000 \end{aligned}$ |
| \# | 00 | 1 F | 0000 aaaa |  |  |
|  |  |  | 0000 bbbb |  |  |
|  |  |  | 0000 dddd | Reverb Parameter 8 | (12768-52768) |
|  |  |  |  |  | $-20000-+20000$ |
| \# | 00 | 23 | 0000 aaaa |  |  |
|  |  |  | 0000 bbbb |  |  |
|  |  |  | 0000 cccc | Reverb Parameter 9 | (12768-52768) |
|  |  |  |  |  | $-20000-+20000$ |
| \# | 00 | 27 | 0000 aaaa |  |  |
|  |  |  | 0000 bbbb |  |  |
|  |  |  | 0000 cccc 0000 dddd | Reverb Parameter 10 | (12768-52768) |
|  |  |  |  |  | -20000-+20000 |
| \# | 00 | 2B | 0000 aaaa |  |  |
|  |  |  | 0000 bbbb 0000 |  |  |
|  |  |  | 0000 dddd | Reverb Parameter 11 | (12768-52768) |
|  |  |  |  |  | $-20000-+20000$ |
| \# | 00 | 2 F | 0000 aaaa 0000 bbbb |  |  |
|  |  |  | 0000 ccec |  |  |
|  |  |  | 0000 dddd | Reverb Parameter 12 | (12768-52768) |
|  |  |  |  |  | $-20000-+20000$ |
| \# | 00 | 33 | 0000 aaaa |  |  |
|  |  |  | 0000 cccc |  |  |
|  |  |  | 0000 ddda | Reverb Parameter 13 | (12768-52768) |
|  |  |  |  |  | $-20000-+20000$ |
| \# | 00 | 37 | $\begin{aligned} & 0000 \text { aaaa } \\ & 0000 \text { bbbbb } \end{aligned}$ |  |  |
|  |  |  | 0000 cccc |  |  |
|  |  |  | 0000 dddd | Reverb Parameter 14 | $(12768-52768)$ $-20000-+20000$ |
| \# | 00 | 3B | 0000 aaaa |  |  |
|  |  |  | 0000 bbbb |  |  |
|  |  |  | 0000 cccc 0000 dddd | Reverb Parameter 15 | (12768-52768) |
|  |  |  |  |  | $-20000-+20000$ |
| \# | 00 | 3 F |  |  |  |
|  |  |  | 0000 bbbb 0000 |  |  |
|  |  |  | 0000 dddd | Reverb Parameter 16 | (12768-52768) |
|  |  |  |  |  | $-20000-+20000$ |
| \# | -0 | 43 | 0000 bbbb |  |  |
|  |  |  | 0000 cccc |  |  |
|  |  |  | 0000 dddd | Reverb Parameter 17 | $\begin{aligned} (12768-52768) \\ -20000-+20000 \end{aligned}$ |
| \# | 00 | 47 | 0000 aaaa |  |  |
|  |  |  | 0000 bbbb 0000 |  |  |
|  |  |  | 0000 ddda | Reverb Parameter 18 | (12768-52768) |
|  |  |  |  |  | $-20000-+20000$ |
| \# | 00 | 4B | 0000 aaaa |  |  |
|  |  |  | 0000 cccc |  |  |
|  |  |  | 0000 ddda | Reverb Parameter 19 | $(12768-52768)$ |
| \# | 00 | 4 F | 0000 aaaa |  |  |
|  |  |  | 0000 0000 cbbb |  |  |
|  |  |  | 0000 dddd | Reverb Parameter 20 | (12768-52768) |
|  |  |  |  |  | $-20000-+20000$ |
|  | 00 | 53 | Total Size |  |  |

* Patch TMT (Tone Mix Table)

| Offset Address | Description |  |  |
| :---: | :---: | :---: | :---: |
| $\begin{array}{ll}00 & 00 \\ 00 & 01 \\ 00 & 02 \\ 00 & 03\end{array}$ | 0000 aaaa <br> 0000 00aa <br> 0000 aaaa <br> 0000 00aa | Structure Type $1 \& 2$ <br> Booster $1 \& 2$ <br> Structure Type $3 \& 4$ <br> Booster $3 \& 4$ | $\begin{array}{r} (0-9) \\ 1-10 \\ (0-3) \\ +12,+18[\mathrm{~dB}] \\ (0-9) \\ 1-10 \\ (0-3) \\ +12,+18[\mathrm{~dB}] \end{array}$ |
| 0004 | 0000 00aa | TMT Velocity Control of | $\text { ANDOM, } \begin{aligned} & 0-3) \\ & \text { CYCLE } \end{aligned}$ |
| 0005 | 0000 000a | TMT1 Tone Switch | $(0-1)$ |
| 0006 | 0 aaa aaaa | TMT1 Keyboard Range Lower | (0-127) |
| 0007 | 0aaa aaaa | TMT1 Keyboard Range Upper | $\begin{gathered} (0-127) \\ \text { LOWER }-\mathrm{G9}) \end{gathered}$ |
| 0008 | 0aaa aaaa | TMT1 Keyboard Fade Width Lower | (0-127) |
| 0009 | 0aaa aaaa | TMT1 Keyboard Fade Width Upper | (0-127) |
|  | 0aaa aaaa | TMT1 Velocity Range Lower |  |
| 00 OB | 0aaa aaaa | TMT1 Velocity Range Upper | (1-127) |
| 000 C | 0aaa aaaa | TMT1 Velocity Fade Width Lower | (0-127) |
| 00 OD | 0aaa aaaa | TMT1 Velocity Fade Width Upper | (0-127) |
| 000 E | 0000 000a | TMT2 Tone Switch | (0-1) |
| 00 0F | 0aaa aaaa | TMT2 Keyboard Range Lower | OFF, ${ }^{\text {ON }}$ $(0-127)$ |
| 0010 | 0aaa aaaa | тмT2 Keyboard Range Upper | $\begin{array}{cc} \mathrm{C}-1-\mathrm{UPPER} \\ (0-127) \end{array}$ |
|  |  |  | WER - G9 |
| 0011 | 0 aaa aaaa | TMT2 Keyboard Fade Width Lower | (0-127) |
| $\begin{array}{ll} 00 & 12 \\ 00 & 13 \end{array}$ | 0aaa aaaa 0aaa aaaa | TMT2 Keyboard Fade Width Upper TMT2 Velocity Range Lower | $(0-127)$ $(1-127)$ |
|  |  |  | 1 - UPPER |
| 0014 | Oaaa aaaa | TMT2 Velocity Range Upper | $\begin{array}{r} (1-127) \\ \text { LOWER }-127) \end{array}$ |
|  | 0aaa aaaa | тMT2 Velocity Fade Width Lower | (0-127) |
| 0016 | Oaaa aaaa | TMT2 Velocity Fade Width Upper | (0-127) |



## * Patch Tone





|  |  | $\begin{aligned} & 0000 \mathrm{cccc} \\ & 0000 \text { dddd } \end{aligned}$ | MFX Parameter 29 | $\begin{array}{r} (12768-52768) \\ -20000-+20000 \end{array}$ |
| :---: | :---: | :---: | :---: | :---: |
| \# | 0105 | 0000 aaaa |  |  |
|  |  | 0000 cccc |  |  |
|  |  | 0000 dddd | MFX Parameter 30 | $\begin{gathered} (12768-52768) \\ -20000-+20000 \end{gathered}$ |
| \# | 0109 | 0000 aaaa |  |  |
|  |  | 0000 0000 0.0 cccc |  |  |
|  |  | 0000 dddd | MFX Parameter 31 | $\begin{array}{r} (12768-52768) \\ -20000-+20000 \end{array}$ |
| \# | 01 OD | 0000 aaaa |  |  |
|  |  | 0000 0000 0.0 ccec |  |  |
|  |  | 0000 dddd | MFX Parameter 32 | (12768-52768) |
|  |  |  | Mr Parameter 32 | $-20000-+20000$ |
|  | 0111 | Total Size |  |  |

* Rhythm Common Chorus

* Rhythm Common Reverb



## * Rhythm Tone

| Offset Address | Description |  |  |
| :---: | :---: | :---: | :---: |
| 0000 | 0aaa aaaa | Tone Name 1 | $(32-127)$ |
| 0001 | 0aaa aaaa | Tone Name 2 | $\begin{array}{r} 32-127(32-127) \\ (32-127) \end{array}$ |
| 0002 | 0aaa aaaa | Tone Name 3 | 32-127 ${ }_{\text {[ASCII] }}(32-127)$ |
| 003 | Oaaa a aaa | Tone Name 4 | 32-127 [ASCII] |
|  | 0 aaa aaaa | Tone Name 4 |  |
| 0004 | 0 aaa aaaa | Tone Name 5 | - (32-127) |
| 0005 | 0aaa aaaa | Tone Name 6 | 32-127 (32-127) |
|  | Oaaa aaaa | Tone Name 6 | 32-127 [ASCII] |
| 0006 | 0 aaa aaaa | Tone Name 7 | (32-127) |
| 0007 | 0aaa aaaa | Tone Name 8 | 32-127 ${ }^{\text {[ASCII] }}$ - 127$)$ |
|  |  | Tone Name 9 | 32-127 [ASCII] |
|  | 0aaa aaaa | Tone Name 9 | (32-127) |




## 4. Supplementary Material

## Decimal and Hexadecimal Table

( An " H " is appended to the end of numbers in hexadecimal notation.)
In MIDI documentation, data values and addresses/sizes of Exclusive messages, etc. are expressed as hexadecimal values for each 7 bits.
The following table shows how these correspond to decimal numbers.

| D | H | D | H | D | H | D | H |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 00н | 32 | 20 H | 64 | 40 H | 96 | 60H |
| 1 | 01H | 33 | 21H | 65 | 41H | 97 | 61H |
| 2 | 02H | 34 | 22H | 66 | 42H | 98 | 62 H |
| 3 | 03H | 35 | 23H | 67 | 43H | 99 | 63H |
| 4 | 04H | 36 | 24 H | 68 | 44 H | 100 | 64H |
| 5 | 05H | 37 | 25H | 69 | 45H | 101 | 65 H |
| 6 | 06H | 38 | 26H | 70 | 46H | 102 | 66H |
| 7 | 07H | 39 | 27H | 71 | 47\% | 103 | 67H |
| 8 | 08H | 40 | 28H | 72 | 48H | 104 | 68H |
| 9 | 09H | 41 | 29H | 73 | 49H | 105 | 69H |
| 10 | OAH | 42 | 2 AH | 74 | 4 AH | 106 | ${ }^{64 \mathrm{AH}}$ |
| 11 | OBH | 43 | 2BH | 75 | 4 BH | 107 | ${ }_{6}^{6 \mathrm{BH}}$ |
| 12 | OCH | 44 | 2 CH | 76 | 4 CH | 108 | 6 CH |
| 13 | ODH | 45 | 2DH | 77 | 4DH | 109 | 6DH |
| 14 | ОЕн | 46 | 2EH | 78 | 4EH | 110 | 6EH |
| 15 | OFH | 47 | 2FH | 79 | 4 FH | 111 | 6 FH |
| 16 | 10H | 48 | 30 H | 80 | 50 H | 112 | 70 H |
| 17 | 11H | 49 | 31H | 81 | 51H | 113 | 71H |
| 18 | 12H | 50 | 32H | 82 | 52H | 114 | 72 H |
| 19 | 13H | 51 | 33H | 83 | 53H | 115 | 73 H |
| 20 | 14 H | 52 | 34 H | 84 | 54 H | 116 | 74 H |
| 21 | 15H | 53 | 35H | 85 | 55H | 117 | 75H |
| 22 | 16H | 54 | 364 | 86 | 56H | 118 | 76 H |
| 23 | 17H | 55 | 37H | 87 | 57H | 119 | 77H |
| 24 | 18H | 56 | 38 H | 88 | 58 H | 120 | 78 H |
| 25 | 19H | 57 | 39 H | 89 | 59 H | 121 | 79 H |
| 26 | 1AH | 58 | 3AH | 90 | 5AH | 122 | 7AH |
| 27 | 1 BH | 59 | 3BH | 91 | 5 SBH | 123 | 7 BH |
| 28 29 | 1-10 | 60 61 | 3-3CH | ${ }_{93}^{92}$ | 5CH | 124 125 | 7CH 7 DH |
| 30 | 1EH | 62 | 3EH | 94 | 5EH | 126 | 7EH |
| 31 | 1FH | 63 | 3FH | 95 | 5FH | 127 | 7FH |

D: decimal
H: hexadecimal

* Decimal values such as MIDI channel, bank select, and program change are listed as one greater than the values given in the above table.
* A 7-bit byte can express data in the range of 128 steps. For data where greater precision is required, we must use two or more bytes. For example, two hexadecimal numbers aa bbH expressing two 7 -bit bytes would indicate a value of aa $\times 128+\mathrm{bb}$.
In the case of values which have $\mathrm{a}+/-\operatorname{sign}, 00 \mathrm{H}=-64,40 \mathrm{H}=+/-0$, and $7 \mathrm{FH}=+63$, so that the decimal expression would be 64 less than the value given in the above chart. In the case of two types, $0000 \mathrm{H}=-8192,4000 \mathrm{H}=+/-0$, and 7F 7FH $=+8191$. For example, if aa bbH were expressed as decimal, this would be aa $\mathrm{bbH}-4000 \mathrm{H}=\mathrm{aa} \times 128+\mathrm{bb}-64 \mathrm{x}$ 128.

Data marked "Use nibbled data" is expressed in hexadecimal in 4-bit units. A value expressed as a 2-byte nibble 0 a 0 bH has the value of a $\times 16+\mathrm{b}$.

## <Example1> What is the decimal expression of 5AH?

From the preceding table, $5 \mathrm{AH}=90$
<Example2> What is the decimal expression of the value 1234 H given as hexadecimal for each 7 bits?
From the preceding table, since $12 \mathrm{H}=18$ and $34 \mathrm{H}=52$
$18 \times 128+52=2356$
<Example3> What is the decimal expression of the nibbled value 0A 03 09 0D?
From the preceding table, since $0 \mathrm{AH}=10,03 \mathrm{H}=3,09 \mathrm{H}=9,0 \mathrm{DH}=13$
$((10 \times 16+3) \times 16+9) \times 16+13=41885$

## <Example4> What is the nibbled expression of the decimal value 1258 ?



Since from the preceding table, $0=00 \mathrm{H}, 4=04 \mathrm{H}, 14=0 \mathrm{EH}, 10=0 \mathrm{AH}$, the result is: 00040 E 0 AH .

## ■Examples of Actual MIDI Messages

## <Example1> 92 3E 5F

9 n is the Note-on status, and n is the MIDI channel number. Since $2 \mathrm{H}=2,3 \mathrm{EH}=62$, and $5 \mathrm{FH}=95$, this is a Note-on message with MIDI CH $=3$, note number 62 (note name is D4), and velocity 95 .

## <Example2> CE 49

CnH is the Program Change status, and n is the MIDI channel number. Since $\mathrm{EH}=14$ and $49 \mathrm{H}=73$, this is a Program Change message with MIDI CH $=15$, program number 74 .

## <Example3> EA 0028

EnH is the Pitch Bend Change status, and $n$ is the MIDI channel number. The 2 nd byte $(00 \mathrm{H}$ $=0)$ is the LSB and the 3rd byte $(28 \mathrm{H}=40)$ is the MSB, but Pitch Bend Value is a signed number in which $4000 \mathrm{H}(=64 \times 12+80=8192)$ is 0 , so this Pitch Bend Value is
$2800 \mathrm{H}-4000 \mathrm{H}=40 \times 12+80-(64 \times 12+80)=5120-8192=-3072$
If the Pitch Bend Sensitivity is set to 2 semitones, $-8192(0000 \mathrm{H})$ will cause the pitch to change -200 cents, so in this case $-200 \times(-3072) \div(-8192)=-75$ cents of Pitch Bend is being applied to MIDI channel 11 .

## <Example4> B3 6400650006 0C 260064 7F 65 7F

BnH is the Control Change status, and n is the MIDI channel number. For Control Changes, the 2nd byte is the control number, and the 3rd byte is the value. In a case in which two or more messages consecutive messages have the same status, MIDI has a provision called "running status" which allows the status byte of the second and following messages to be omitted. Thus, the above messages have the following meaning.

| B3 | 6400 | MIDI ch.4, lower byte of RPN parameter number: | 00 H |
| :--- | :--- | :--- | :--- |
| (B3) | 6500 | (MIDI ch.4) upper byte of RPN parameter number: | 00 H |
| (B3) | 060 C | (MIDI ch.4) upper byte of parameter value: | 0 CH |
| (B3) | 2600 | (MIDI ch.4) lower byte of parameter value: | 00 H |
| (B3) | 647 F | (MIDI ch.4) lower byte of RPN parameter number: | 7 FH |
| (B3) | 657 F | (MIDI ch.4) upper byte of RPN parameter number: | 7 FH |

In other words, the above messages specify a value of 0 C 00 H for RPN parameter number 0000 H on MIDI channel 4, and then set the RPN parameter number to 7F 7FH.

RPN parameter number 0000 H is Pitch Bend Sensitivity, and the MSB of the value indicates semitone units, so a value of $0 \mathrm{CH}=12$ sets the maximum pitch bend range to $+/-12$ semitones (1 octave). (On GS sound generators the LSB of Pitch Bend Sensitivity is ignored, but the LSB should be transmitted anyway (with a value of 0 ) so that operation will be correct on any device.)

Once the parameter number has been specified for RPN or NRPN, all Data Entry messages transmitted on that same channel will be valid, so after the desired value has been transmitted, it is a good idea to set the parameter number to 7F 7FH to prevent accidents. This is the reason for the (B3) 647 F (B3) 657 F at the end.

It is not desirable for performance data (such as Standard MIDI File data) to contain many events with running status as given in <Example $4>$. This is because if playback is halted during the song and then rewound or fast-forwarded, the sequencer may not be able to transmit the correct status, and the sound generator will then misinterpret the data. Take care to give each event its own status.

It is also necessary that the RPN or NRPN parameter number setting and the value setting be done in the proper order. On some sequencers, events occurring in the same (or consecutive) clock may be transmitted in an order different than the order in which they were received. For this reason it is a good idea to slightly skew the time of each event (about 1 tick for $\mathrm{TPQN}=96$, and about 5 ticks for $\mathrm{TPQN}=480$ ).

* TPQN: Ticks Per Quarter Note


## MIDI Implementation

## ■Example of an Exclusive Message and Calculating a Checksum

Roland Exclusive messages (RQ1, DT1) are transmitted with a checksum at the end (before F7) to make sure that the message was correctly received. The value of the checksum is determined by the address and data (or size) of the transmitted Exclusive message.

## -How to calculate the checksum

(hexadecimal numbers are indicated by " H ")
The checksum is a value derived by adding the address, size, and checksum itself and inverting the lower 7 bits.
Here's an example of how the checksum is calculated. We will assume that in the Exclusive message we are transmitting, the address is aabbccddH and the data or size is eeffH.
$a a+b b+c c+d d+e e+f f=$ sum
sum $\div 128=$ quotient.. remainder
128 - remainder $=$ checksum
<Example> Setting CHORUS TYPE of PERFORMANCE COMMON to DELAY (DT1)
According to the Parameter Address Map (p. 226), the start address of Temporary Performance is 10000000 H , the offset address of CHORUS at PERFORMANCE COMMON is 0400 H , and the address of CHORUS TYPE is 0000 H . Therefore the address of CHORUS TYPE of PERFORMANCE COMMON is;


DELAY has the value of 02 H .
So the system exclusive message should be sent is;

| F0 | 41 | 10 | 000025 | 12 | 10000400 | 02 | ?? | F7 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (1) | (2) | (3) | (4) | (5) | address | data | checksum | (6) |

Then calculate the checksum.
$10 \mathrm{H}+00 \mathrm{H}+04 \mathrm{H}+00 \mathrm{H}+02 \mathrm{H}=16+0+4+0+2=22$ (sum)
22 (sum) $\div 128=0$ (quotient) ... 22 (remainder)
checksum $=128-22($ remainder $)=106=6 \mathrm{AH}$
This means that F0 4110000025121000040002 6A F7 is the message should be sent.

## IThe Scale Tune Feature (address: 40 1x 40)

The scale tune feature allows you to finely adjust the individual pitch of the notes from C through B. Though the settings are made while working with one octave, the fine adjustments will affect all octaves. By making the appropriate Scale Tune settings, you can obtain a complete variety of tuning methods other than equal temperament. As examples, three possible types of scale setting are explained below.

* The scale tune value received by the part 1 is used in Patch mode and Piano mode.


## OEqual Temperament

This method of tuning divides the octave into 12 equal parts. It is currently the most widely used form of tuning, especially in occidental music. On the JUNO-STAGE, the default settings for the Scale Tune feature produce equal temperament.

## OJust Temperament (Tonic of C)

The principal triads resound much more beautifully than with equal temperament, but this benefit can only be obtained in one key. If transposed, the chords tend to become ambiguous. The example given involves settings for a key in which C is the keynote.

## OArabian Scale

By altering the setting for Scale Tune, you can obtain a variety of other tunings suited for ethnic music. For example, the settings introduced below will set the unit to use the Arabian Scale.

## Example Settings

Note name Equal Temperament Just Temperament (Key-tone C) Arabian Scale

| C | 0 | 0 | -6 |
| :---: | :---: | :---: | :---: |
| C\# | 0 | -8 | +45 |
| D | 0 | +4 | -2 |
| Eb | 0 | +16 | -12 |
| E | 0 | -14 | -51 |
| F | 0 | -2 | -8 |
| F\# | 0 | -10 | +43 |
| G | 0 | +2 | -4 |
| G\# | 0 | +14 | +47 |
| A | 0 | -16 | 0 |
| Bb | 0 | +14 | -10 |
| B | 0 | -12 | -49 |

The values in the table are given in cents. Convert these values to hexadecimal, and transmit them as Exclusive data.
For example, to set the tune (C-B) of the Part 1 Arabian Scale, send the following data:

F0 41104212401140 3A 6D 3E 34 0D 38 6B 3C 6F 4036 0F 76 F7

## ■ASCII Code Table

Patch Name and Performance Name, etc., of MIDI data are described the ASCII code in the table below.

| D | H | Char | D | H | Char | D | H | Char |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 32 | 20 H | SP | 64 | 40 H | @ | 96 | 60H |  |
| 33 | 21H | ! | 65 | 41H | A | 97 | 61H | a |
| 34 | 22 H | " | 66 | 42H | B | 98 | 62H | b |
| 35 | 23H | \# | 67 | 43H | C | 99 | 63H | c |
| 36 | 24 H | \$ | 68 | 44H | D | 100 | 64H | d |
| 37 | 25 H | \% | 69 | 45H | E | 101 | 65H | e |
| 38 | 26H | \& | 70 | 46H | F | 102 | 66H | f |
| 39 | 27H |  | 71 | 47H | G | 103 | 67H | g |
| 40 | 28H | ( | 72 | 48H | H | 104 | 68H | h |
| 41 | 29H | ) | 73 | 49H | I | 105 | 69H | i |
| 42 | 2AH | * | 74 | 4AH | J | 106 | 6 AH | j |
| 43 | 2BH | + | 75 | 4BH | K | 107 | 6 BH | k |
| 44 | 2 CH | , | 76 | 4 CH | L | 108 | 6 CH |  |
| 45 | 2DH | - | 77 | 4DH | M | 109 | 6DH | m |
| 46 | 2EH |  | 78 | 4EH | N | 110 | 6EH | n |
| 47 | 2 FH | / | 79 | 4 FH | 0 | 111 | 6 FH | - |
| 48 | 30 H | 0 | 80 | 50 H | P | 112 | 70 H | p |
| 49 | 31H | 1 | 81 | 51H | Q | 113 | 71H | q |
| 50 | 32 H | 2 | 82 | 52 H | R | 114 | 72H | $r$ |
| 51 | 33H | 3 | 83 | 53H | S | 115 | 73H | s |
| 52 | 34 H | 4 | 84 | 54H | T | 116 | 74H | t |
| 53 | 35H | 5 | 85 | 55H | U | 117 | 75H | u |
| 54 | 36 H | 6 | 86 | 56H | V | 118 | 76H | v |
| 55 | 37H | 7 | 87 | 57H | W | 119 | 77\% | w |
| 56 | 38 H | 8 | 88 | 58 H | X | 120 | 78 H | x |
| 57 | 39 H | 9 | 89 | 59 H | Y | 121 | 79 H | y |
| 58 | 3 AH | : | 90 | 5 AH | z | 122 | 7 AH |  |
| 59 | 3 BH | ; | 91 | 5BH | , | 123 | 7BH | \{ |
| 60 | 3 CH | < | 92 | 5 CH | 1 | 124 | 7 CH | \| |
| 61 | 3DH | = | 93 | 5DH | ] | 125 | 7DH | \} |
| 62 | 3 EH | $>$ | 94 | 5 EH | $\wedge$ |  |  |  |
| 63 | 3 FH | ? | 95 | 5FH | - |  |  |  |

D: decimal
H: hexadecimal

* " $\mathrm{SP}^{\prime}$ " is space.


## Bank Select and Program Change Correspondence Chart

## Patch

| Group | Number | Bank Select |  | Program <br> Number |
| :--- | :---: | :---: | :---: | :---: |
|  |  | MSB | LSB |  |
| USER | $001-128$ | 87 | 0 | $1-128$ |
|  | $129-256$ | 87 | 1 | $1-128$ |
| PR-A | $001-128$ | 87 | 64 | $1-128$ |
| PR-B | $001-128$ | 87 | 65 | $1-128$ |
| PR-C | $001-128$ | 87 | 66 | $1-128$ |
| PR-D | $001-128$ | 87 | 67 | $1-128$ |
| PR-E | $001-128$ | 87 | 68 | $1-128$ |
| PR-F | $001-128$ | 87 | 69 | $1-128$ |
| PR-G | $001-128$ | 87 | 70 | $1-128$ |
| PR-H | $001-128$ | 87 | 71 | $1-128$ |
| PR-I | $001-003$ | 87 | 72 | $1-3$ |
| GM(2) | $001-256$ | 121 | $0-$ | $1-128$ |
| EXP (SRX-01) | $001-$ | 93 | 0 | $1-$ |
|  | $001-$ | 93 | 1 | $1-$ |
|  | (SRX-02) | $:$ | $:$ | $:$ |

* The EXP group vary depending on the Wave Expansion Board you've installed. For information about an SRX series board, refer to the Owner's Manual that came with it.


## Rhythm Set

| Group | Number | Bank Select |  | Program Number |
| :---: | :---: | :---: | :---: | :---: |
|  |  | MSB | LSB |  |
| USER | 001-032 | 86 | 0 | 1-32 |
| PRST | 001-032 | 86 | 64 | 1-36 |
| GM(2) | 001-009 | 120 | --- | 1-57 |
| EXP $($ SRX-01) <br>  $(S R X-02)$ | $\begin{aligned} & \text { 001- } \\ & 001- \end{aligned}$ | $\begin{aligned} & 92 \\ & 92 \end{aligned}$ | $\begin{aligned} & 0 \\ & 1 \end{aligned}$ | $\begin{aligned} & 1- \\ & 1- \end{aligned}$ |

* The EXP group vary depending on the Wave Expansion Board you've installed. For information about an SRX series board, refer to the Owner's Manual that came with it.


## Performance

| Group | Number | Bank Select |  | Program <br> Number |
| :--- | :---: | :---: | :---: | :---: |
|  |  | MSB | LSB |  |
| USER | $01-64$ | 85 | 0 | $1-64$ |
| PRST | $01-64$ | 85 | 64 | $1-64$ |

* To switch multitimbres, the external MIDI device's transmit channel needs to be matched up with the Performance Control Channel (SYSTEM/MIDI/GENERAL) of the JUNO-STAGE.

Model JUNO-STAGE MIDI Implementation Chart
Version : 1.00

|  | Function... | Transmitted | Recognized | Remarks |
| :---: | :---: | :---: | :---: | :---: |
| Basic Channel | Default Changed | $\begin{aligned} & 1-16 \\ & 1-16 \end{aligned}$ | $\begin{aligned} & 1-16 \\ & 1-16 \end{aligned}$ | Memorized |
| Mode | Default Messages Altered | Mode 3 <br> Mono, Poly $\qquad$ | Mode 3 <br> Mode 3, 4 ( $\mathrm{M}=1$ ) | * 2 |
| Note <br> Number: | True Voice | $\underset{* * * * * * * * * * * * * ~}{0-127}$ | $\begin{aligned} & 0-127 \\ & 0-127 \end{aligned}$ |  |
| Velocity | Note On <br> Note Off | $\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \end{aligned}$ | $\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \end{aligned}$ |  |
| After Touch | Key's Channel's | $\begin{aligned} & x \\ & 0 \end{aligned}$ | $\begin{array}{ll} 0 & * 1 \\ 0 & * 1 \end{array}$ |  |
| Pitch Bend |  | 0 | O *1 |  |
| Control Change | 0,32 1 2 4 4 6,38 7 8 10 11 11 16 18 19 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 80 81 82 83 84 91 |  |  | Bank select <br> Breath type <br> Foot type <br> Portamento time <br> Volume <br> Balance <br> Panpot Expressio <br> General purpose controller 1 <br> General purpose controller 2 General purpose controller 3 General purpose controller 4 Hold <br> Sostenuto <br> Soft <br> Legato foot switch Hold 2 Hold 2 <br> Reson variation <br> Release time <br> Attack time <br> Cutof <br> Vecay time <br> Vibrato depth <br> Vibrato delay <br> General purpose controller 5 General purpose controller 6 General purpose controller 7 General purpose controller 8 Portamento control <br> General purpose effects 1 Tremolo General <br> General purpose effects 3 Celeste <br> Pedal, Knob, D Beam <br> RPN LSB, MSB |
| Program Change | : True Number | $\mathrm{O}_{* * * * * * * * * * * * * *}^{* 1}$ | $\begin{array}{ll} \text { O } & * 1 \\ 0-127 \end{array}$ | Program No. 1-128 |
| System Exc | clusive | 0 | O *1 |  |
| System Common | Song Position <br> Song Select <br> Tune Request | $\begin{aligned} & X \\ & X \\ & X \end{aligned}$ | $\begin{aligned} & X \\ & X \\ & X \end{aligned}$ |  |
| System Real Time | : Clock <br> : Commands | $\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \end{aligned}$ | $\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \end{aligned}$ |  |
| Aux <br> Messages | : All Sound Off <br> Reset All Controllers <br> Local On/Off <br> All Notes Off <br> : Active Sensing <br> : System Reset |   <br> $O$ $* 4$ <br> 0 $* 4$ <br> $X$ ${ }^{4}$ <br> 0  | $\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \\ & \mathrm{X} \\ & \mathrm{O} \\ & \mathrm{O} \\ & \mathrm{X} \end{aligned}$ |  |
| Notes |  | * 1 OX is selectable. <br> * 2 Recognized as $\mathrm{M}=1$ | * 3 Received <br> n if $M \neq 1$. * 4 Transmitte | ACTIVE EXPRESSION. only when V-LINK is ON. |

## Specifications

## JUNO-STAGE: Synthesizer Keyboard (Conforms to General MIDI 2 System)

## - Keyboard

76 keys (with velocity)

## Sound Generator Section

- Maximum Polyphony

128 voices

- Parts

16 parts

- Wave Memory

128 M bytes (16-bit linear equivalent)

- Preset Memory

Patches: $1027+256$ (GM2)
Rhythm Sets: 32 + 9 (GM2)
Performances: 64

- User Memory

Patches: 256
Rhythm Sets: 32
Performances: 64

- Effects

Multi-Effects: 3 systems, 79 types
Chorus: 3 types
Reverb: 5 types
Mic Input Reverb: 8 types

## - Song Player

File Format
Standard MIDI File: format-0/1
Audio File: WAV, AIFF, MP3

## Others

- Arpeggiator

Preset: 128
User: 128

- Rhythm Pattern

Preset: 256 (26 groups)
User: 256 (32 groups)

- Chord Memory

Preset: 64
User: 64

- Controllers

D Beam Controller
Pitch Bend/Modulation Lever
S1/S2 Switch
Sound Modify Knob x 7

## - Display

$240 \times 64$ dots graphic LCD (with backlit)

## - Expansion Slots

SRX expansion board: 2 slot

## - External Storage Device

USB MEMORY (supports USB 2.0 Hi-Speed Flash Memory)

## - Connectors

Headphones Jack
Song/Click Out Jack
Output Jacks (L (MONO), R): 1/4 inch phone type
Mic Input Jack: $1 / 4$ inch phone type or XLR type (phantom power)
MIDI Connectors (IN, OUT)
Hold Pedal Jack
Control Pedal Jack
Patch Select Jack
USB Connector (MIDI)

- Power Supply

DC 9 V (AC Adaptor)

- Current draw

2000 mA

- Dimensions
$1251(\mathrm{~W}) \times 344(\mathrm{D}) \times 112(\mathrm{H}) \mathrm{mm}$
49-1/4 (W) $\times 13-9 / 16(\mathrm{D}) \times 4-7 / 16(H)$ inches


## - Weight

$9.8 \mathrm{~kg} / 21 \mathrm{lbs} 10 \mathrm{oz}$ (excluding AC Adaptor)

- Accessories

Owner's Manual
CD-ROM $\times 2$ (Editor/Librarian/USB MIDI driver, SONAR LE)
Music Player Pad
Music Player Cable
USB Memory Protector
AC Adaptor

* In the interest of product improvement, the specifications and/or appearance of this unit are subject to change without prior notice.


## Index

Numerics
2 BAND CHORUS ..... 174
2 BAND FLANGER ..... 175
2 BAND STEP FLANGER ..... 175
2VOICE PITCH SHIFTER ..... 185
3D CHORUS ..... 173
3D DELAY ..... 182
3D FLANGER ..... 174
3D STEP FLANGER ..... 174
3TAP PAN DELAY ..... 180
4TAP PAN DELAY ..... 180
A
AC Adaptor ..... 19
Accent
Arpeggio ..... 61
Rhythm Pattern ..... 75
[ACTIVE EXPRESS] ..... 57
A-Env Level 1-3 ..... 109, 130
A-Env Tl V-Sens ..... 109, 130
A-Env T4 V-Sens 109, 130
A-Env Time 1-4 ..... 109, 130
A-Env Time KF ..... 109
Alter Pan Depth ..... 109
Alternate Pan Depth ..... 130
Analog Feel ..... 98
Arabian Scale ..... 53, 143
[ARPEGGIO] ..... 60
Arpeggio ..... 60
Hold ..... 60
Motif ..... 62
Tempo ..... 60
Arpeggio Style
Arpeggio ..... 62
Initializing ..... 62
Saving ..... 63
ARPEGGIO STYLE EDIT screen ..... 62
ARPEGGIO STYLE screen ..... 61
Arpeggio Styles ..... 61
Asgn ..... 141
Assign S1/S2 ..... 136, 149
Assign Type ..... 124
[ASSIGNABLE] ..... 57
ASSIGNABLE Switch ..... 148
Assigning a Name ..... 44
Attack ..... 142
Attack time ..... 58
Attack Time Offset ..... 100
Audio files ..... 69
Audio Level ..... 151
Auditioning a Patch [PREVIEW] ..... 47
Auditioning the Sounds ..... 30
AUTO PAN ..... 170
AUTO WAH ..... 167
B
Bank Sel (LSB) ..... 137
Bank Sel (MSB) ..... 137
Bend ..... 141
Bend Mode ..... 146
Bias ..... 108
Bias Direction ..... 108
Bias Level ..... 108
Bias Position ..... 108
Booster ..... 100
Booster 1\&2, 3\&4 ..... 100
BS ..... 138
Button ..... 89
C
[C. CANCEL/MINUS ONE] ..... 73
CA ..... 138
Category Group Buttons ..... 28
category lock ..... 45
Center cancel ..... 73
Ch ..... 142
Chain Play ..... 72
Chord Form
Creating ..... 65
Chord Forms ..... 64
Saving ..... 65
[CHORD MEMORY] ..... 64
CHORD MEMORY EDIT screen ..... 65
Chord Memory Function ..... 64
CHORUS ..... 86, 171
Chorus ..... 141
Chorus Level ..... 81, 83
Chorus Output Select ..... 81, 83
Chorus Parameters ..... 190
Chorus Send Level ..... 152
Chorus Source ..... 83
Chorus Type ..... 80, 83, 86
Click Level ..... 151
Click Sound ..... 151
Coarse ..... 141
Coarse Tune ..... 141
Compare function ..... 96, 122
COMPRESSOR ..... 177Computer9287
Connecting ..... 20
Mic ..... 87
Pedals ..... 21
Portable Audio Device ..... 21
Continuous Hold Pedal ..... 147
CONTROL
Patch ..... 101
Rhythm Set ..... 124
Control Change ..... 89
Control Pedal ..... 21, 59
Control Pedal Assign ..... 147
CONTROL PEDAL jack ..... 59
Control Pedal Polarity ..... 147
CONTROL SW (PERF) Screen ..... 137
Control Switch ..... 102
Controller ..... 38
Cord hook ..... 19
Ctrl ..... 137
CTRL 1-4 ..... 110-111
CTRL 1-4 Source ..... 110
CTRL SETTING (PERF) Screen ..... 135
Current part ..... 50
Cursor ..... 43
Cursor buttons ..... 43
Curve ..... 142
Cutoff ..... 142, 152
Cutoff Frequency ..... 106, 128
Cutoff Keyfollow ..... 106
[CUTOFF] knob ..... 36, 58
Cutoff Offset ..... 100
Cutoff V-Curve ..... 107, 128
Cutoff V-Sens ..... 107, 128
D
D BEAM ..... 137
V-LINK SETUP ..... 67
D Beam Controller ..... 56
D Beam Sens ..... 152
[DUAL] 32, 51FXM Depth103, 125
FXM Switch 103, 125 ..... 134
Key Range
G
Key Range Lower ..... 102
GATE ..... 177
GATED REVERB ..... 186
GENERAL ..... 98
Rhythm Set ..... 124
GM ..... 88
GM (GM2)
Patch ..... 45, 94
GM2 ..... 88
Grid
Arpeggio ..... 61
Rhythm Pattern ..... 75
Group ..... 140
GUITAR AMP SIMULATOR ..... 176
Effect Switch ..... 79
Effects ..... 79
On/Off ..... 79
Effects List ..... 163
End Step
Arpeggio Style ..... 62
Rhythm Pattern ..... 76
ENHANCER ..... 166
Envelope ..... 39
ENVELOPE [ATTACK] knob ..... 35, 58
ENVELOPE [RELEASE] knob ..... 35, 58
Equal Temperament ..... 53, 143
EQUALIZER ..... 59, 165
Error Messages ..... 162
Ex ..... 138
EXT INPUT jack ..... 73
F
Factory Reset ..... 155
Fade Mode ..... 114
Fade Time ..... 114
FAVORITE ..... 30, 47
[FAVORITE UP/ASSIGNABLE] ..... 48
F-Env Depth ..... 107, 129
F-Env Level 0-4 ..... 107, 129
F-Env Tl V-Sens ..... 107, 129
F-Env T4 V-Sens ..... 107, 129
F-Env Time 1-4 ..... 107, 129
F-Env Time KF ..... 107
F-Env V-Curve ..... 107, 129
F-Env V-Sens ..... 107, 129
Filter Type ..... 106, 128, 152
Fine ..... 141
FLANGER ..... 172
Function Buttons ..... 43
FXM ..... 103, 125
FXM Color 103, 125

103, 125

## H

Hd ..... 138
HEXA-CHORUS ..... 172
[HIGH] knob ..... 36
Hold ..... 137
Hold pedal ..... 21, 60
Hold Pedal Polarity ..... 147
HUMANIZER ..... 167
I
[INC] and [DEC] ..... 43
INFINITE PHASER ..... 169
Initializing
Arpeggio Style ..... 62
Patch ..... 96
Performance ..... 132
Rhythm Pattern ..... 76
Rhythm Set ..... 122
USB Memory ..... 155
Input Velocity
Arpeggio Style ..... 62
Rhythm Pattern ..... 76
ISOLATOR ..... 165
J
JUNO-STAGE Editor CD ..... 93
Just intonation ..... 53
Just Intonation (Tonic of C) ..... 143
K
K.L ..... 142
K.U ..... 142
Kbd ..... 140, 142
Kbd Patch Rx/Tx Channel ..... 90, 150
Key Fade Lower ..... 102
Key Fade Upper ..... 102
102
EY RANGE
Key Range Upper ..... 102
Key Touch Select ..... 117
Key Trigger ..... 114
Keyboard Switch ..... 134
Keyboard Touch ..... 54
Keyboard Velocity ..... 54, 147
Keyboard Velocity Curve ..... 54, 147
Keyboard Velocity Sens ..... 54, 147
Knob ..... 89
L
[LCD CONTRAST] Knob ..... 22
Legato ..... 143
Legato Retrigger ..... 101
Legato Switch ..... 101
Level ..... 137, 140, 152
LEVEL [fig.arrowdown.eps] [fig.arrowup.eps]69
Level Adjust ..... 71
Level V-Curve ..... 108, 130
Level V-Sens ..... 108, 130
LFO ..... 39
LFO 1-2 ..... 113
LFO Osc 1 Pitch Depth ..... 152
LFO Osc 1 Pulse Width Depth ..... 152
LFO Osc 2 Pitch Depth ..... 152
LFO Osc 2 Pulse Width Depth ..... 152
LFO Rate ..... 152
Librarian ..... 93
Lid State ..... 26, 117
LIMITER ..... 177
Local Sw ..... 89
Local Switch ..... 150
[LOCK] ..... 59
Lock function ..... 59
LOFI COMPRESS ..... 184
LOFI NOISE ..... 183
LOFI RADIO ..... 184
LONG DELAY ..... 178
LONG TIME CTRL DELAY ..... 182
Loop ..... 97, 123
LOW BOOST ..... 165
Low Frequency Oscillator ..... 39
Lower ..... 51
LSB ..... 89

## Index

M
MASTER EQ [HIGH] knob ..... 59
MASTER EQ [LOW] knob ..... 59
Master Key Shift ..... 146
Master Keyboard ..... 89
Master Level ..... 146
Master Tune ..... 146
Matrix Control ..... 110
MATRIX CTRLI-4 ..... 110
Md ..... 138
Memory ..... 41
MFX 1-3 ..... 84
MFX 1-3 CTRL ..... 84
MFX Chorus Send Level ..... 80, 82
MFX Control Channel ..... 85
MFX Output Level ..... 80, 82
MFX Reverb Send Level ..... 80, 82
MFX Source ..... 82
MFX STRUCTURE ..... 86
MFX Structure ..... 82, 86
MFX Type ..... 80, 82, 84
MFXI-3 ..... 86, 141
Mic
Connecting ..... 87
Reverb ..... 87
Volume ..... 87
MIC INPUT jack ..... 154
MIC Input Setting ..... 154
Mic Mode ..... 154
Mic-In Reverb Leve ..... 154
Mic-In Reverb Time ..... 154
Mic-In Reverb Type ..... 154
Microphone ..... 87
MIDI ..... 88
MIDI Ch ..... 89
MIDI Channels ..... 88
MIDI Connectors ..... 88
[MIDI CONTROLLER] ..... 89
MIDI Controller Mode ..... 89
MIDI CONTROLLER screen ..... 89
MIDI FILTER Screen ..... 138
Minus-One ..... 73, 154
Mod ..... 137
MODIFY ..... 100
Modulation ..... 33, 54
MODULATION DELAY ..... 179
Mono/Poly ..... 101, 143
Motif ..... 61
MSB ..... 89
MULTI STAGE PHASER ..... 168
MULTI TAP DELAY ..... 180
Multi-Effect ..... 84
Multi-Effect Control ..... 84
Multi-Effects Parameters ..... 163
Multitimbral Sound Generators ..... 88
Music Player Pad ..... 21
Mute ..... 139-140
Mute Group ..... 124
Muted ..... 154
N
Names ..... 44
Note Tx Channel A ..... 67
Note Tx Channel B ..... 67
Note Tx Channel C ..... 67
Number ..... 140
[NUMERIC] ..... 44, 46
0
Oct Range ..... 61
Octave ..... 141
OCTAVE [DOWN] [UP] ..... 33, 52
Octave Shift 33, 52, 98, 141
Offset ..... 113
One Shot Mode ..... 124
One-shot ..... 97, 123
Osc 1 Coarse Tune ..... 152
Osc 1 Fine Tune ..... 152
Osc 1 Pulse Width ..... 152
Osc 1 Waveform ..... 152
Osc 2 Coarse Tune ..... 152
Osc 2 Fine Tune ..... 152
Osc 2 Level ..... 152
Osc 2 Pulse Width ..... 152
Osc 2 Waveform ..... 152
Osc Sync Switch ..... 152
OUTPUT
Patch ..... 115
Rhythm Set ..... 131
Output ..... 141
Output Gain ..... 146
OVERDRIVE ..... 176
P
P.B ..... 137
PA ..... 138
Pan ..... 137, 140
Pan Depth ..... 114
Pan Keyfollow ..... 108
Part ..... 38, 50, 61
Part 1-16 Level ..... 71
Part Chorus Send Level ..... 82
PART MIXER Screen ..... 139
Part Mute window ..... 139
Part Output Assign ..... 82
Part Output Level ..... 82
Part Output MFX Select ..... 82
Part Reverb Send Level ..... 82
Part Scale Tune for C-B ..... 143
Part Select ..... 82
PART SELECT Screen ..... 42
PART VIEW Screen ..... 140
[PATCH] ..... 45
Patch ..... 39
Copying ..... 96
Editing ..... 94
Initializing ..... 96
Saving ..... 97
Patch Category ..... 98
Patch Coarse Tune ..... 98
Patch Fine Tune ..... 98
Patch Level ..... 98
PATCH LIST screen ..... 29, 46
Patch Mode ..... 38, 45
Patch number ..... 46
Patch Out Assign ..... 115
Patch Output Assign ..... 80
Patch Pan ..... 98
Patch Parameters ..... 98
PATCH PLAY Screen ..... 42
PATCH PLAY screen ..... 45
Patch Priority ..... 98
Patch Remain ..... 146
Patch Scale Tune for C-B ..... 53, 146
Patch Select ..... 147

Performance Control Channel .............. 150
PERFORMANCE LIST screen ..... 49
Performance Mode ..... 38, 49
Performance number ..... 50
Phantom Power ..... 154
Phase ..... 142
PHASER ..... 168
PHONOGRAPH ..... 184
Phrase Loop ..... 103, 125
[PIANO MODE] ..... 25, 116
Piano Mode ..... 116, 119
Saving ..... 119
Piano mode ..... 25
PIANO PATCH LIST Screen ..... 117
Pitch bend ..... 33, 54
Pitch Bend Range Down ..... 101
Pitch Bend Range Up ..... 101
Pitch Bend/Modulation Lever ..... 33, 54
Pitch Depth ..... 114
Pitch Keyfollow ..... 104
PITCH SHIFTER ..... 185
Playback Mode ..... 72
Playing Monophonically ..... 55
Playlist ..... 68
Changing the Song Order ..... 72
Deleting a Song From ..... 72
Playing ..... 71
Playlist Editor ..... 68, 93
PLAYLIST INFORMATION Screen ..... 72
PLAYLIST SELECT Screen ..... 71
Pn ..... 138
Portable Audio Device ..... 73
Portament ..... 143
PORTAMENTO ..... 101
Portamento ..... 55
Portamento Mode ..... 101
Portamento Start ..... 101
Portamento Switch ..... 101
Portamento Time ..... 101
Portamento Type ..... 101
Power On/Off ..... 22
[POWER] switch ..... 22
Power Up Mode ..... 146
Preset Memory ..... 42
[PREVIEW] ..... 30
Preview 1-4 Note Number ..... 146
Preview 1-4 Velocity ..... 146
Preview Mode ..... 146
PRO EDIT ..... 95
Rhythm Set ..... 121
PRO EDIT screen ..... 95
Prog ..... 137
PRST (Preset) Patch ..... 45, 94
Performance ..... 49, 132
R
Rand Pitch Depth ..... 104
Random Pan Depth ..... 109, 130
Range ..... 152
Range Max ..... 136, 153
Range Min ..... 136, 153
Rate ..... 113
Rate Detune ..... 113
RECEIVE ..... 124
Receive Bank Select ..... 90, 151
Receive Channel ..... 90
Receive Exclusive ..... 151
Receive GM System On ..... 151
Receive GM2 System On ..... 151
Receive GS Reset ..... 151
Receive Program Change ..... 90, 151
Receive Switch ..... 90
Recommended Tempo ..... 136
Redamper Sw ..... 112
Relative Level ..... 124
Releas ..... 142
Release time ..... 58
Release Time Offset ..... 100
Remote Keyboard Switch ..... 150
Repeat All ..... 72
Reso ..... 142
Resonance .......... 26, 106, 118, 128, 152
[RESONANCE] knob ..... 36, 58
Resonance Offset ..... 100
Resonance V-Sens ..... 107, 128
Returning to the Factory Settings ..... 155
REVERB ..... 86, 186
Reverb ..... 36, 59, 141
Mic ..... 87
[REVERB] knob ..... 36, 59
Reverb Level ..... 81, 83
Reverb Parameters ..... 191
Reverb Send Level ..... 152
Reverb Source ..... 83
Reverb Type .. ..... 81, 83, 86
REVERSE DELAY ..... 181
Rhythm Group ..... 74
Creating ..... 77
Saving ..... 78
RHYTHM GROUP EDIT screen ..... 77
RHYTHM GROUP screen ..... 74
Rhythm Key Select ..... 80
Rhythm Leve ..... 124
Rhythm Out Assign ..... 131
Rhythm Output Assign ..... 80
[RHYTHM PATTERN] ..... 74
Rhythm Pattern ..... 74
Creating ..... 76
Initializing ..... 76
Saving ..... 77
Tempo ..... 74
Volume ..... 74
RHYTHM PATTERN EDIT screen ..... 76
RHYTHM PATTERN Screen ..... 75
Rhythm Set ..... 39, 123
Copying ..... 122
Editing ..... 120
Initializing ..... 122
Rhythm Patern ..... 74
Saving ..... 123
Rhythm Tone ..... 39
Copying ..... 122
Rhythm Tone Name ..... 124
RING MODULATOR ..... 169
Ring Modulator ..... 100
Rolled Chord ..... 64
Rolled Chord Type ..... 64
ROTARY ..... 171
Rotary Effect ..... 55
Rx ..... 138
Rx Bender ..... 112
Rx Expression

## Index

Screen saver ..... 146
Screen Saver Time ..... 146
SELECT [1]-[4] ..... 95
Sens ..... 85
Sens 1-4 ..... 111
SERIAL DELAY ..... 179
Set Parameters ..... 124
[SHIFT] ..... 43
SHUFFLE DELAY ..... 181
SLICER ..... 170
SMF ..... 69
SMF Level ..... 151
Soft Through ..... 150
Solo ..... 140
[SOLO SYNTH] ..... 57
Song ..... 69
Tempo ..... 70
SONG INFORMATION Screen ..... 70
sONG LEVEL EDIT Screen ..... 71
[SONG LIST] ..... 69
Song list ..... 68
SONG PLAYER ..... 68
Song Player ..... 38
Volume ..... 69
SONG SELECT Screen ..... 69-70
sONG/CLICK OUT jack ..... 78
Song/Click Output Level ..... 151
Song/Click Output Mode ..... 151
Sound Generator ..... 38
SOUND MODIFY ..... 35, 58
Source ..... 85
SPACE-D ..... 173
SPEAKER SIMULATOR ..... 167
SPECTRUM ..... 165
[SPLIT] ..... 31, 51
Split ..... 31, 51
Split Point ..... 32, 51
Step 1-16 ..... 115
STEP FILTER ..... 166
STEP FLANGER ..... 172
STEP LFO ..... 115
STEP PAN ..... 170
STEP PHASER ..... 168
STEP PITCH SHIFTER ..... 185
STEP RING MODULATOR ..... 169
Step Type ..... 115
Step-recording
Arpeggio ..... 62
Rhythm Pattern ..... 76
Stretch Tune Depth ..... 98
Stretched tuning ..... 98
Struct 1 \& 2, 3 \& 4 ..... 99
Structure ..... 99
SUPER FILTER ..... 166
Sustain level ..... 58
Switch 1-4 ..... 111
SYMPATHETIC RESONANCE ..... 189
Sync Mode ..... 91, 151
Sync Output ..... 91, 151
Synchronizing ..... 91
Sys Ctrl 1-4 Source ..... 148
System Control ..... 148
System Memory ..... 42
System Parameters ..... 146
System Settings ..... 145
Saving ..... 145
T
[TAP TEMPO] ..... 60, 74
TAPE ECHO ..... 183
TELEPHONE ..... 184
Tempo
Arpeggio ..... 60
Rhythm Pattern ..... 74
Song ..... 70
Tempo Override ..... 91, 151
Temporary Area ..... 42
The PIANO MODE Screen ..... 116
Time ..... 143
TIME CTRL DELAY ..... 182
Time Variant Amplifier ..... 39
Time Variant Filter ..... 39
Tone ..... 95
Copying ..... 96
Tone Chorus Send ..... 115, 131
Tone Chorus Send Level ..... 80
Tone Coarse Tune ..... 104, 126
Tone Delay Mode ..... 111
Tone Delay Time ..... 111
Tone Env Mode ..... 112, 124
Tone Fine Tune ..... 104, 126
Tone Level ..... 108, 130
Tone Mix Velo Control ..... 102
Tone Out Assign ..... 115, 131
Tone Out Leve ..... 115, 131
Tone OUTPUT Assign ..... 80
Tone Output Level ..... 80
Tone Pan ..... 108, 130
Tone Pitch Bend Range ..... 124
Tone Random Pitch Depth ..... 126
Tone Receive Expression ..... 124
Tone Receive Hold-1 ..... 124
Tone Receive Pan Mode ..... 124
Tone Reverb Send ..... 115,131
Tone Reverb Send Level ..... 80
Tone Select ..... 80
TONE SELECT [1]-[4] ..... 120-121
TONE SWITCH [1]-[4] ..... 95, 120-121
[TONE SWITCH/SELECT] ..... 95, 120-121
Tones ..... 39
Transmit Active Sensing ..... 150
Transmit Bank Select ..... 150
Transmit Channel ..... 89
Transmit Edit Data ..... 150
Transmit Program Change ..... 150
[TRANSPOSE] ..... 34, 52
Transpose ..... 34, 52
TREMOLO ..... 169
TREMOLO CHORUS ..... 173
TVA ..... 39
TVA Depth ..... 114
TVA ENVELOPE
Patch ..... 109
Rhythm Set ..... 130
TVA PARAMETER
Patch ..... 108
Rhythm Set ..... 130
TVA/TVA Envelope
Patch ..... 108
Rhythm Set ..... 130
TVF ..... 39
TVF Depth ..... 114
TVF ENVELOPE
Patch ..... 107
User Backup ..... 144
User Data Saving to USB Memory ..... 144
User Memory ..... 42
User Restore ..... 144
Utility ..... 155
V
VALUE Dial ..... 43
Velo ..... 142
Velo Fade Lower ..... 102, 127
Velo Fade Upper ..... 102, 127
Velo Range Lower ..... 102, 127
Velo Range Upper ..... 102, 127
Velocity ..... 54
Arpeggio ..... 61
Rhythm Pattern ..... 75
Velocity Control ..... 127
VELOCITY RANGE ..... 102, 127
Velocity Sens Offset ..... 100
Vib Rate ..... 142
VK ROTARY ..... 171
[V-LINK] ..... 66
V-LINK SETUP ..... 67
Vo ..... 138
VOCODER ..... 189
Vocoder ..... 87
Voice ..... 142-143
Volume ..... 22
Mic ..... 87
Rhythm Pattern ..... 74
Song Player ..... 69
The entire JUNO-STAGE ..... 146
[VOLUME] knob ..... 22
VS DISTORTION ..... 176
VS OVERDRIVE ..... 176
W
Wave Alter Pan Sw ..... 127
Wave Bank ..... 103, 125
Wave Coarse Tune ..... 127
Wave Expansion Board ..... 18, 29
Wave Fine Tune ..... 127
Wave Gain ..... 103, 125
Wave Generator ..... 39
Wave Group ..... 103, 125
Wave Level ..... 127
WAVE MIX LV/PN ..... 127
WAVE MIX TUNE ..... 127
Wave No. L (Mono) ..... 125
Wave No. L (Mono) Wave No. R ..... 103
Wave No. R ..... 125
Wave Pan ..... 127
WAVE PARAMETER
Patch ..... 103
Rhythm Set ..... 125
WAVE PITCH
Patch ..... 104
Rhythm Set ..... 126
WAVE PITCH ENV
Patch ..... 105
Rhythm Set ..... 126
Wave Rnd Pan Sw ..... 127
Wave Tempo Sync ..... 103, 125
Waveform ..... 97, 113, 123
WG ..... 39
Window ..... 43
[WRITE] ..... 119, 123, 133
WRITE
Arpeggio Style ..... 63
Chord Form ..... 65
Patch ..... 97
Piano Mode ..... 119
Playlist ..... 73
Rhythm Group ..... 78
Rhythm Pattern ..... 77
System Settings ..... 145
XXP-A, B
Patch ..... 45, 94
Z
ZOOM EDIT
Patch ..... 94
Rhythm Set ..... 120
ZOOM EDIT screen ..... 95

IMPORTANT: THE WIRES IN THIS MAINS LEAD ARE COLOURED IN ACCORDANCE WITH THE FOLLOWING CODE.

| BLUE: | NEUTRAL |
| :--- | :--- |
| BROWN: LIVE |  |

As the colours of the wires in the mains lead of this apparatus may not correspond with the coloured markings identifying the terminals in your plug, proceed as follows:
The wire which is coloured BLUE must be connected to the terminal which is marked with the letter N or coloured BLACK. The wire which is coloured BROWN must be connected to the terminal which is marked with the letter L or coloured RED. Under no circumstances must either of the above wires be connected to the earth terminal of a three pin plug.


For the USA

## FEDERAL COMMUNICATIONS COMMISSION RADIO FREQUENCY INTERFERENCE STATEMENT

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:
(1) this device may not cause harmful interference, and
(2) this device must accept any interference received, including interference that may cause undesired operation.

Unauthorized changes or modification to this system can void the users authority to operate this equipment.
This equipment requires shielded interface cables in order to meet FCC class B Limit.

NOTICE
This Class B digital apparatus meets all requirements of the Canadian Interference-Causing Equipment Regulations.

## AVIS

Cet appareil numérique de la classe $B$ respecte toutes les exigences du Règlement sur le matériel brouilleur du Canada.

## DECLARATION OF CONFORMITY Compliance Information Statement

Model Name: JUNO-STAGE<br>Type of Equipment: Synthesizer<br>Responsible Party: Roland Corporation U.S.<br>Address : 5100 S.Eastern Avenue, Los Angeles, CA 90040-2938<br>Telephone : (323) 890-3700

## For EU Countries



This symbol indicates that in EU countries，this product must be collected separately from household waste，as defined in each region．Products bearing this symbol must not be discarded together with household waste．
Dieses Symbol bedeutet，dass dieses Produkt in EU－Ländern getrennt vom Hausmüll gesammelt werden muss gemäß den regionalen Bestimmungen．Mit diesem Symbol gekennzeichnete Produkte dürfen nicht zusammen mit den Hausmüll entsorgt werden．
FR Ce symbole indique que dans les pays de l＇Union européenne，ce produit doit être collecté séparément des ordures ménagères selon les directives en vigueur dans chacun de ces pays．Les produits portant ce symbole ne doivent pas être mis au rebut avec les ordures ménagères．
IT Questo simbolo indica che nei paesi della Comunità europea questo prodotto deve essere smaltito separatamente dai normali rifiuti domestici， secondo la legislazione in vigore in ciascun paese．I prodotti che riportano questo simbolo non devono essere smaltiti insieme ai rifiuti domestici． Ai sensi dell＇art． 13 del D．Lgs． 25 luglio 2005 n． 151.
Este símbolo indica que en los países de la Unión Europea este producto debe recogerse aparte de los residuos domésticos，tal como esté regulado en cada zona．Los productos con este símbolo no se deben depositar con los residuos domésticos． Este símbolo indica que nos países da UE，a recolha deste produto deverá ser feita separadamente do lixo doméstico，de acordo com os regulamentos de cada região．Os produtos que apresentem este símbolo não deverão ser eliminados juntamente com o lixo doméstico．
Dit symbool geeft aan dat in landen van de EU dit product gescheiden van huishoudelijk afval moet worden aangeboden，zoals bepaald per gemeente of regio．Producten die van dit symbool zijn voorzien， mogen niet samen met huishoudelijk afval worden verwijderd．
DK Dette symbol angiver，at i EU－lande skal dette produkt opsamles adskilt fra husholdningsaffald，som defineret i hver enkelt region．Produkter med dette symbol må ikke smides ud sammen med husholdningsaffald．
Dette symbolet indikerer at produktet må behandles som spesialavfall i EU－land，iht．til retningslinjer for den enkelte regionen，og ikke kastes sammen med vanlig husholdningsavfall．Produkter som er merket med dette symbolet，må ikke kastes sammen med vanlig husholdningsavfall．

Symbolen anger att i EU－länder måste den här produkten kasseras separat från hushållsavfall，i enlighet med varje regions bestämmelser． Produkter med den här symbolen făr inte kasseras tillsammans med hushållsavfall．
Tämä merkintä ilmaisee，että tuote on EU－maissa kerättävä erillään kotitalousjätteistä kunkin alueen voimassa olevien määräysten mukaisesti．Tällä merkinnällä varustettuja tuotteita ei saa hävittää kotitalousjätteiden mukana．
HU Ez a szimbólum azt jelenti，hogy az Európai Unióban ezt a terméket a háztartási hulladéktól elkülönítve，az adott régióban érvényes szabályozás szerint kell gyûjteni．Az ezzel a szimbólummal ellátott termékeket nem szabad a háztartási hulladék közé dobni．
PL Symbol oznacza，że zgodnie z regulacjami w odpowiednim regionie，w krajach UE produktu nie należy wyrzucać z odpadami domowymi． Produktów opatrzonych tym symbolem nie można utylizować razem z
odpadami domowymi odpadami domowymi．
CZ Tento symbol udává，že v zemích EU musí být tento výrobek sbírán odděleně od domácího odpadu，jak je určeno pro každý region．Výrobky nesoucí tento symbol se nesmí vyhazovat spolu s domácím odpadem．
SK Tento symbol vyjadruje，že v krajinách EÚ sa musí zber tohto produktu vykonávat＇oddelene od domového odpadu，podła nariadení platných v konkrétnej krajine．Produkty s týmto symbolom sa nesmú vyhadzovat ${ }^{\dagger}$ spolu s domovým odpadom．
EE See sümbol näitab，et EL－i maades tuleb see toode olemprügist eraldi koguda，nii nagu on igas piirkonnas määratletud．Selle sümboliga märgitud tooteid ei tohi ära visata koos olmeprügiga．
LT Šis simbolis rodo，kad ES šalyse šis produktas turi būti surenkamas atskirai nuo buitiniụ atlieku，kaip nustatyta kiekviename regione．Šiuo simboliu paženklinti produktai neturi būti išmetami kartu su buitinėmis atliekomis．
IV Šis simbols norāda，ka ES valstīs šo produktu jāievāc atseviški no mājsaimniecības atkritumiem，kā noteikts katrā reǧionā．Produktus ar šo mimbolu nedrīkst izmest kopā ar mājsaimniecības atkritumiem．
SI Ta simbol označuje，da je treba proizvod v državah EU zbirati ločeno od gospodinjskih odpadkov，tako kot je določeno v vsaki regiji．Proizvoda s tem znakom ni dovoljeno odlagati skupaj z gospodinjskimi odpadki．





## 有关产品中所令有害物质的说明

本资料就本公司产品中所含的特定有害物质及其安全性予以说明。
本资料适用于 2007 年 3 月 1 日以后本公司所制造的产品。
环保使用期限


此标志适用于在中国国内销售的电子信息产品，表示环保使用期限的年数。所谓环保使用期限是指在自制造日起的规定期限内，产品中所含的有害物质不致引起环境污染，不会对人身，财产造成严重的不良影响。
环保使用期限仅在遵照产品使用说明书，正确使用产品的条件下才有效。
不当的使用，将会导致有害物质泄漏的危险。

产品中有毒有害物质或元素的名称及含量

| 部件名称 | 有毒有害物质或元素 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 铅（ Pb ） | 汞（ Hg ） | 镉（Cd） | 六价铬（Cr（VI）） | 多溴联苯（PBB） | 多溴二苯醚（PBDE） |
| 外壳（壳体） | $\times$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| 电子部件（印刷电路板等） | $\times$ | $\bigcirc$ | $\times$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| 附件（电源线，交流适配器等） | $\times$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |

○：表示该有毒有害物质在该部件所有均质材料中的含量均在 SJ／T11363－2006 标准规定的限量要求以下。
$\times$ ：表示该有毒有害物质至少在该部件的某一均质材料中的含量超出 SJ／T11363－2006 标准规定的限量要求。
因根据现有的技术水平，还没有什么物质能够代替它。

When you need repair service, call your nearest Roland Service Center or authorized Roland distributor in your country as shown below.

AFRICA
EGYPT
Al Fanny Trading Office 9, EBN Hagar Al Askalany Street,
ARD E1 Golf, Heliopolis,
Cairo 11341, EGYPT
TEL: (022)-418-5531

## REUNION

Maison FO - YAM Marcel 25 Rue Jules Hermann, Chaudron - BP79 97491 Ste Clotilde Cedex, REUNION ISLAND TEL: (0262) 218-429

## SOUTH AFRICA

T.O.M.S. Sound \& Music (Pty)Ltd.
2 ASTRON ROAD DENVER JOHANNESBURG ZA 2195, SOUTH AFRICA TEL: (011)417 3400

Paul Bothner(PTY)Ltd. Royal Cape Park, Unit 24 Londonderry Road, Ottery 7800 Cape Town, SOUTH AFRICA TEL: (021) 7994900

## ASIA

CHINA
Roland Shanghai Electronics
Co.,Ltd.
5F. No. 1500 Pingliang Road
Shanghai 200090, CHINA
TEL: (021) 5580-0800
Roland Shanghai Electronics Co.,Ltd.
(BEIJING OFFICE)
10F. No. 183 Section Anhuaxili Chaoyang District Beijing 100011 CHINA
TEL: (010) 6426-5050

## HONG KONG

Tom Lee Music Co., Ltd.
Service Division
22-32 Pun Shan Street, Tsuen Wan, New Territories, HONG KONG TEL: 24150911

Parsons Music Ltd. 8th Floor, Railway Plaza, 39 Chatham Road South, T.S.T, Kowloon, HONG KONG
TEL: 23331863

## INDIA

Rivera Digitec (India) Pvt. Ltd.
411, Nirman Kendra Mahalaxmi Flats Compound Off. Dr. Edwin Moses Road, Mumbai-400011, INDIA TEL: (022) 24939051

## INDONESIA

PT Citra IntiRama
Jl. Cideng Timur No. 15J-15O Jakarta Pusat
INDONESIA
TEL: (021) 6324170

## KOREA

Cosmos Corporation
1461-9, Seocho-Dong Seocho Ku , Seoul, KOREA TEL: (02) 3486-8855

## MALAYSIA

Roland Asia Pacific Sdn. Bhd. 45-1, Block C2, Jalan PJU 1/39, Dataran Prima, 47301 Petaling Jaya, Selangor, MALAYSIA TEL: (03) 7805-3263

## VIET NAM

Suoi Nhac Company, Ltd 370 Cach Mang Thang Tam St. Dist.3, Ho Chi Minh City, VIET NAM TEL: 9316540

## PHILIPPINES

G.A. Yupangco \& Co. Inc 339 Gil J. Puyat Avenue Makati, Metro Manila 1200, PHILIPPINES TEL: (02) 8999801

## SINGAPORE

SWEE LEE MUSIC
COMPANY PTE. LTD.
150 Sims Drive,
SINGAPORE 387381
TEL: 6846-3676

## TAIWAN

ROLAND TAIWAN ENTERPRISE CO., LTD Room 5, 9fl. No. 112 Chung Shan N.Road Sec.2, Taipei, TAIWAN, R.O.C TEL: (02) 25613339

## THAILAND

Theera Music Co. , Ltd. 100-108 Soi Verng Nakornkasem, New Road,Sumpantawongse, Bangkok 10100 THAILAND TEL: (02) 224-8821

## AUSTRALIA/ NEW ZEALAND

AUSTRALIA/
NEW ZEALAND
Roland Corporation Australia Pty.,Ltd. 38 Campbell Avenue Dee Why West. NSW 2099 AUSTRALIA

For Australia
Tel: (02) 99828266
For New Zealand Tel: (09) 3098715

## CENTRAL/LATIN AMERICA

## ARGENTINA

Instrumentos Musicales S.A. Av.Santa Fe 2055 (1123) Buenos Aires ARGENTINA TEL: (011) 4508-2700

## BARBADOS

A\&B Music Supplies LTD 12 Webster Industrial Park Wildey, St.Michael, Barbados TEL: (246)430-1100

## BRAZIL

Roland Brasil Ltda. Rua San Jose, 780 Sala B Parque Industrial San Jose Parque Industrial San Jose
Cotia - Sao Paulo - SP, BRAZIL Cotia - Sao Paulo - SP,
TEL: (011) 46155666

## CHILE

Comercial Fancy II S.A.
Rut.: 96.919.420-1
Nataniel Cox \#739, 4th Floor Santiago - Centro, CHILE TEL: (02) 688-9540

## COLOMBIA

Centro Musical Ltda
Cra 43 B No 25 A 41 Bododega 9 Medellin, Colombia TEL: (574)3812529

## COSTA RICA

JUAN Bansbach Instrumentos Musicales
Ave.1. Calle 11, Apartado 10237,
San Jose, COSTA RICA
TEL: 258-0211

CURACAO
Zeelandia Music Center Inc.
Orionweg 30
Curacao, Netherland Antilles TEL:(305)5926866

## DOMINICAN REPUBLIC

Instrumentos Fernando Giraldez
Calle Proyecto Central No. 3
Ens.La Esperilla
Santo Domingo,
Dominican Republic
TEL:(809) 6830305

## ECUADOR

Mas Musika
Rumichaca 822 y Zaruma
Guayaquil - Ecuador
TEL:(593-4)2302364

## EL SALVADOR

OMNI MUSIC
75 Avenida Norte y Fina Alameda Juan Pablo II, Edificio No. 4010 San Salvador, EL SALVADOR TEL: 262-0788

## GUATEMALA

Casa Instrumental
Calzada Roosevelt 34-01,zona 11 Ciudad de Guatemala
Guatemala
TEL:(502) 599-2888

## HONDURAS

Almacen Pajaro Azul S.A. de C.V. BO.Paz Barahona
3 Ave. 11 Calle S.O San Pedro Sula, Honduras TEL: (504) 553-2029

## MARTINIQUE

Musique \& Son
Z.I.Les Mangle

7232 Le Lamantin
Martinique F.W.I.
TEL: 596596426860
Gigamusic SARL
10 Rte De La Folie
97200 Fort De France
Martinique F.W.I
TEL: 596596715222

## MEXICO

Casa Veerkamp, s.a. de c.v Av. Toluca No. 323, Col. Olivar de los Padres 01780 Mexico D.F. MEXICO TEL: (55) 5668-6699

## NICARAGUA

Bansbach Instrumentos
Musicales Nicaragua
Altamira D'Este Calle Principal de la Farmacia 5ta.Avenida
1 Cuadra al Lago.\#503 Managua, Nicaragua TEL: (505)277-2557

## PANAMA

SUPRO MUNDIAL, S.A. Boulevard Andrews, Albrook Panama City, REP. DE PANAMA

## TEL: 315-0101

PARAGUAY
Distribuidora De Instrumentos Musicales J.E. Olear y ESQ. Manduvira Asuncion PARAGUAY TEL: (595) 21492147

## PERU

Audionet
Distribuciones Musicales SAC
Juan Fanning 530
Miraflores
Lima - Peru
TEL: (511) 4461388

## TRINIDAD

AMR Ltd
Ground Floor
Maritime Plaza
Barataria Trinidad W.I.
TEL: (868) 6386385

## URUGUAY

Todo Musica S.A.
Francisco Acuna de Figueroa 1771
C.P.: 11.800

Montevideo, URUGUAY TEL: (02) 924-2335

## VENEZUELA

Instrumentos Musicales
Allegro,C.A.
Av.las industrias edf.Guitar import
77 zona Industrial de Turumo
Caracas, Venezuela
TEL: (212) 244-1122

## EUROPE

## AUSTRIA

Roland Elektronische Musikinstrumente HmbH . Austrian Office
Eduard-Bodem-Gasse 8, A-6020 Innsbruck, AUSTRIA
TEL: (0512) 2644260
BELGIUM/FRANCE/

## HOLLAND/

LUXEMBOURG
Roland Central Europe N.V.
Houtstraat 3, B-2260, Oevel
(Westerlo) BELGIUM
TEL: (014) 575811

## CROATIA

ART-CENTAR
Degenova 3.
HR - 10000 Zagreb
TEL: (1) 4668493

## CZECH REP.

CZECH REPUBLIC
DISTRIBUTOR s.r.o
Voctárova 247/16
CZ - 18000 PRAHA 8
CZECH REP.
TEL: (2) 83020270

## DENMARK

Roland Scandinavia A/S
Nordhavnsvej 7, Postbox 880
DK-2100 Copenhagen
DENMARK
TEL: 39166200

## FINLAND

Roland Scandinavia As, Filial Finland
Elannontie 5
FIN-01510 Vantaa, FINLAND TEL: (0)9 6824020

## GERMANY

Roland Elektronische
Musikinstrumente HmbH .
Oststrasse 96, 22844
Norderstedt, GERMANY
TEL: (040) 5260090
GREECE/CYPRUS
STOLLAS S.A.
Music Sound Light
155, New National Road Patras 26442, GREECE
TEL: 2610435400

## HUNGARY

Roland East Europe Ltd.
Warehouse Area 'DEPO' Pf. 83
H-2046 Torokbalint,
HUNGARY
TEL: (23) 511011

## IRELAND

Roland Ireland
G2 Calmount Park, Calmount
Avenue, Dublin 12
Republic of IRELAND
TEL: (01) 4294444

## ITALY

Roland Italy S. p. A.
Viale delle Industrie 8
20020 Arese, Milano, ITALY
TEL: (02) 937-78300

## NORWAY

Roland Scandinavia Avd.
Kontor Norge
Lilleakerveien 2 Postboks 95
Lilleaker N-0216 Oslo
NORWAY
TEL: 22730074

## POLAND

ROLAND POLSKA SP. Z O.O
UL. Gibraltarska 4.
PL-03 664 Warszawa

## Roland

5100000040
1RCC


[^0]:    A: Attack time: Time from when you press the key until the sound reaches its maximum level
    D: Decay time: Time over which the level decays from the maximum to the sustain level.
    S: Sustain level: Volume at which the sound will be sustained while you hold down the key
    R: Release time: Time over which the sound decays after you release the key

[^1]:    * When TYPE 02-10 is selected and one tone of a pair is turned off, the other tone will be sounded as TYPE 01 regardless of the displayed setting.
    * If you limit the keyboard area in which a tone will sound (KEY RANGE, p. 102) or limit the range of velocities for which it will sound (VELOCITY RANGE, p. 102), the result in areas or ranges where the tone does not sound is just as if the tone had been turned off. This means that if TYPE $02-10$ is selected and you create a keyboard area or velocity range in which one tone of a pair does not sound, notes played in that area or range will be sounded by the other tone as TYPE 01 regardless of the displayed setting.

[^2]:    PC: Program Change Number

[^3]:    * The Tone Level parameter (PATCH/TVA PARAMETER) of Tone 1 will change

[^4]:    

