

Operation Manual © 2001 E-MU / ENSONIQ All Rights Reserved

FI12053 Rev. C

E-MU World Headquarters

E-MU / ENSONIQ 1600 Green Hills Road Scotts Valley, CA USA 95067-0015 Telephone: 831-438-1921 Fax: 831-438-8612 Internet: www.emu.com Europe, Africa, Middle East E-MU / ENSONIQ Suite 6, Adam Ferguson House Eskmills Industrial Park Musselburgh, East Lothian Scotland, EH21 7PQ Tel: +44 (0) 131-653-6556 Fax: +44 (0) 131-665-0473

Important Notice:

In order to obtain warranty service on your unit, the serial number sticker must be intact and you must have a sales receipt or other proof of purchase. If there is no serial number sticker on the, please contact E-MU Systems at once.

This product is covered under one or more of the following U.S. patents: 4,404,529; 4,506,579; 4,699,038; 4,987,600; 5,013,105; 5,072,645; 5,111,727; 5,144,676; 5,170,367; 5,248,845; 5,303,309; 5,317,104; 5,342,990; 5,430,244 and foreign patents and/or pending patents. All other trademarks belong to their respective companies. Specifications and features are subject to change without notice.

Table of Contents

Introduction Product Description	1
Important Safety Instructions	4
Foreign Language Warnings - German	7
Foreign Language Warnings - French	10
Setup	15
Unpacking	15
Connection Instructions	16
Basic Setup	16
Studio Setup	17
Performance Setup	18
Power Down Sequence	19
Rack Mounting Proteus 2500	19
Instant Gratification	21
Playing Patterns & Songs	21
Playing Songs	23
Playing Demo Sequences	24
Auditioning Presets	
Selecting and Quick Editing Presets	23
Multi-Channel Arneggiator	/ ۲۷ 28
Time to Save?	

Basic Operations	31
Power Switch	31
Volume Control	31
Mode/View Buttons	
Track/Channel +/- Buttons	
Data Entry Control	
Left/Right Cursor Buttons	
LED View Select Section	
Sequencer Controls	
Stop Button	
Play Button	34
Record Button	34
Song Record modes	34
Pattern Record modes	34
Тар Тетро	34
Edit Section	35
Song Edit Button	35
Pattern Edit Button	35
Preset Edit Button	35
Global Button	35
Controllers Button	35
Arpeggiator Button	
Real-time Controller Knobs	
Knob Functions	
Quick Edit mode	
Programmable Knobs mode	
Multichannel Volume Knobs	
Multichannel Pan Knobs	
Trigger Buttons	
Trigger Mode	
Preset Menu Jump Keys	41
Knob Bypass, Glide, Erase & Repeat	
Knob Bypass	
Glide Button	
Erase Button	
Repeat Button	
Preset Screen	
MIDI Channel Selection	
Preset Selection	43
Channel Volume	44
Channel Pan	45
Channel Arpeggiator	45
Sound Navigator	
Preset Category	
Instrument Category	

Sequencer	47
Overview	48
Definitions	48
Events	48
Tracks	48
Patterns	48
Pattern Recording & Editing	49
The Asterisk	49
Standard MIDI Files	49
Songs	50
Song Record Modes	50
Event Timing	51
Track Priority	
Pattern Mode	52
Pattern Play	52
Dealtime Decording	52
Dreparing to Decord a Dattern	
Input Quantize	
Count In	
Dattarn Length	
Matronome	
Decording a Dattern	
Automatic Channel Assignment	
Crid Decording	.00
What is Grid Decording?	.01
Step Time Decording	.01
Note Value/Number of Ticks	.00
Dettern Edit Money	.00
Pattern Ealt Menu	68
Norse a Dattorra	68
Name Pattern	68
Pattern Length	68
Setting Meter (Time Signature)	69
Metronome	70
Quantize	/1
Quantize Parameters	/1
More about Swing	/2
Scale/Sillit Duration	/3
Inin Events	/4
Erase Events	
Scale/Shift Velocity	70
Scale/Sillit velocity	//
Externo Sequence Data 10	/0
Cut Track to Cliphoard	/9
Convertige to Clipboard	00
Deste Cliphoard to Treak	10
Channel Assign	02 01
Multichannel Track Decording	04
Munchannel Track Recording	03
Aux Channel Assign	86

Note List Editor	. 87
Event List Editor	. 88
Continuous Controller Edit	. 88
Continuous Controller Screen	. 88
Pitch Strip Edit	. 88
Pitch Strip Screen	. 88
Poly Pressure Edit	. 89
Poly Pressure Screen	. 89
Program Change Edit	. 89
Program Change Screen	. 89
The Conductor Track (track 0)	. 90
Conductor Track Screens	. 90
Revert to Saved Pattern	.91
Song Mode	.92
Song Play	.92
Song Step Recording	.92
Realtime Song Recording	.94
Song Edit Menu	.97
Song Name	.97
Event Source	.97
Setting Meter (Time Signature)	.98
Metronome	.99
Ouantize	.99
Scale/Shift Duration	100
Thin Events	101
Erase Events	102
Transpose	103
Scale/Shift Velocity	104
Cut Track to Clipboard	105
Copy Track to Clipboard	106
Paste Clipboard to Track	107
Song Channel Assign	108
Note List Editor	109
Event List Editor	110
Continuous Controller Edit	110
Continuous Controller Screen	110
Pitch Strip Edit	110
Pitch Strip Screen	110
Poly Pressure Edit	111
Poly Pressure Screen	111
Program Change Edit	111
Program Change Screen	111
Revert to Saved Song	112
Connection Example	113
Using the Internal Sequencer with an External MIDI Keyboard	113

Controllers Menu	115
Realtime Control Functions	116
Keyboard Transpose	116
Keyboard Channel	116
Local Control On/Off	116
Footswitch Jack Function	117
Trigger Buttons Function	
Trigger Buttons	
Trigger Button Select	119
Laten on/oii	119
MIDI Key	119 110
MIDI Challiter	119 110
Key Velocity	119
Programmable Knobs	120
Knob Preset Quick-Edit	120
Real-time Controller Assignment	
MIDI Footswitch Assign	
Tempo Controller	122
I	
Global Menu	123
Multisetups	
Restoring Multisetups	
Multisetup Name	
Saving Multisetups	125
Defining Global Parameters	126
Transpose/Tune	126
Bend Range	126
Velocity Curve	127
Mix Output	128
Master Effects	130
Effects Mode	130
Effects Multi Mode Control	130
Master FXA Algorithm	131
A Effect Types	
FXA Parameters: Decay/HF Damping FxB -> FxA	
FXA Send Amounts	
Master FXB Algorithm	132
B Effect Types	133
FAB Parameters: Feedback/LFO Rate Delay Time	133 122
FAB Seria Announts	133
Fdit All Lavers Enable	134 124
Luit All Layers Ellable User Key Tuning	134 124
Output Format	134 124
Screen Viewing Angle	134 135
ociccii vieviiig migie	133

MIDI Menu	137
Base Tempo	138
Rechannelize Input	138
Knobs Output MIDI	140
Transmit MIDI Clock	140
External Song Start/Stop	140
Merge MIDI In to MIDI Out	141
MIDI In Channels	141
MIDI Enable	141
Receive Program Change	142
MIDI Program Change -> Preset	142
MIDI SysEX ID	143
Sand MIDI System Exclusive Data	144 111
MIDI Mode	146
WIDT WOLC	1 10
Programming Basics	147
	1 40
Modulation	148
Modulation Sources	149
Random Sources	150
Modulation PatchCords	150
Envelope Generators	151
Tempo-based Envelopes	152
Envelope Repeat	152
Low Frequency Oscillators (LFOs)	153
Clock Modulation	154
Modulation Destinations	156
Modulation Processors	157
Preset Modulation Processors	159
Using the Modulation Processors	161
More Examples	163
Dynamic Filters	165
What is a Filter?	166
Parametric Filters	169
The Z-Plane Filter	170
Signal Flow	171
MIDI Channels & Real-time Controls	172
Bank Select Commands	174
Stereo Mix Outputs	174
*	

Preset Edit Menu	177
Preset Name	.178
Four Layer Architecture	.178
Selecting Layers	.179
Defining Laver Parameters	.180
Selecting an Instrument	.180
Sound Navigator	.180
Defining Key Range	.181
Defining the Velocity Crossfade Range	.183
Defining the Real-time Crossfade Range	.185
Transposing the Instrument	.188
Tuning	.189
Background: Transpose vs. Coarse Tuning	.189
Amplifier	.189
Volume Envelope	.190
Selecting the Mode	.190
Defining the Volume Envelope	.191
Chorusing the Layer	.192
Sound Start Offset and Delay	.192
Non-Transpose Mode	.193
Solo Mode	.193
Assign Group	.194
Glide	. 195
Z-Plane Filters	.196
Proteus 2500 Filter Types	.196
Filter Types	.196
Filter Parameters	.198
Filter Envelope	. 199
Defining the Filter Envelope	.200
Auxiliary Envelope	.200
Low Frequency Oscillators (LFOS)	.201
Snape	.201
Data	202
Nale	204
Delay Variation	204
PatchCords	204
Modulator Polarity	205
Pitch Bend Range	208
Mix Output	208
Common Drosot Daramotors	200
Droset Effects	209
FXA Algorithm	209
A Effect Types	211
FXA Parameters	212
FXA Send Amounts	212
FXB Algorithm	.212
B Effect Types	.212
FXB Parameters	.213

FXB Send Amounts	. 213
Preset Patchcords	. 213
Initial Controller Amount	. 215
Keyboard Tuning	. 216
Preset Links	. 218
Preset Tempo Offset	. 219
Audition Riff Selection	. 219
Play Solo Layers	. 219
Arpeggiator/Beats Menu	221
Arpeggiators	. 222
Arp Controllers	. 223
Arpeggiator Resolution	. 223
Arpeggiator Extension	. 223
Arpeggiator Velocity	. 223
Arpeggiator Gate	. 223
Arpeggiator Interval	. 223
Master Arpeggiator Parameters	. 223
Status	. 224
Mode	. 224
Note Value	. 225
Arpeggiator Pattern Speed	. 225
Pattern	. 225
Velocity	. 226
Gate Time	. 226
Extension Count	. 227
Extension Interval	. 227
Sync	. 228
Pre-Delay	. 228
Duration	. 229
Post-Delay	. 229
Recvcle	. 230
Kevboard Thru	.230
Latch	.230
Sand MIDI System Exclusive Data	221
Fditing a User Arneggiator Pattern	231
Pattern Sten Number	232
Kov	232
Kcy Offcat	232
Tio	233
Doct	. 200 222
Rest	.∠ວວ າວວ
ыр End	,∠ວວ ງວວ
Enu Volocity	.∠ວວ ງว≀
Velocity	.∠34 224
Dulauoli	. 234
Kepeat	. 234
User rattern Name	. 233
Multichannel Arpeggiating	. 233

Beats	236
Beats Mode	238
Status	238
Beats Channel	238
Trigger Channel	238
Beats Controllers	241
Beat Velocity Group 1-4	241
Beat Xpose Group 1-4	241
Beat Busy	241
Beat Variation	
Beats Keys/Trigger Layout	243
1-Bar Trigger Option	243
Beats Keys Offset	
Beats Part Velocity	
Beats Part Transpose	
Beats Part Group	
Master Riff	
Riff Tempo	
Riff Controllers	
Effects	2/0
Effects Overview	
The Effects Sends	
Effect Types	251
Effect Parameters	251
Decay	252
High Frequency Damping	252
Feedback	252
LFO Rate	252
Delay	252
Effects Programmed in the Preset	253
Master Effects	
Effects Mode	
Flexible Effects Control	
Using the Effects Channel Settings in Multi Mode	
Effect B Into Effect A	
General Effect Descriptions	260
Reverb	
Chorus	
Doubling	
Slaphack	201 261
Stereo Flanger	201 261
Delay	201 ראר
Stereo Delav	202 つんつ
Panning Delay	202 うらう
Dual Tan	202 つよつ
Vibrato	202 つくつ
Distortion	202 つくつ

Save/Copy Menu	
Save Pattern	
Saving a Preset	
Copying Information	
Copy Preset	
Copy Layer	
Copy PatchCords	
Copy Preset PatchCords	
Copy Arpeggiator Settings	
Copy Arpeggiator Pattern	
Copy Preset Bank	
Copy Sequencer Pattern	
Save Song	
Copy Song	
Sound Authoring	
Rename Flash SIMM	
Duplicate Flash	
Create Random Preset	
Preset Programming	275
Editing Presets	275
Changing the Instrument	275
Changing the Tuning of an Instrument	
Chorus	
Volume Envelope	
Working with Filters	
Adding the Filter Envelope	
Changing Filter Types	
Envelope Repeat	
Practice Modulating	
Troubleshooting	
Linking Presets	
Appendix	
Front Panel Knoh Functions	287
Knoh Controller Descriptions	
Presete	
Presets	۲۵۵ کی
Proteus 2500 Preset Categories	
Preset Listing	
Proteus 2500 Pattern Layout	
Pattern Track List	
Pattern Listing	
Song Listing	
Riff Listing	
Instrument Listing	
Velocity Curves	

PatchCord Amount Chart	310
Rhythmic Notation	
Time Signatures	
Block Diagrams	
Volume & Pan	
MIDI In	313
Block Diagrams	314
Triggers & Programmable Knobs	314
Quick Edit	315
E-MU Expansion Sound Sets	316
Installing Sound SIMMs	318
MIDI	
Received Channel Commands	327
Technical Specifications	328
Warranty	329
Index	331

Introduction

Product Description

Upgradable Sounds

Proteus 2500 contains a new collection of presets designed for music composition in a wide variety of styles. Proteus 2500 contains three additional, user-upgradable sound SIMM sockets, allowing you to mix and match sound sets according to your needs. New sounds can be added as easily as plugging in a new 16MB or 32MB SIMM module. Each E-MU sound set has been meticulously crafted to be the finest of its kind. Samples are matched across the keyboard, perfectly looped, and rich in harmonic texture.

1024 Presets & more

Proteus 2500 contains 512 user presets and 512 factory ROM presets, but it can be expanded with literally thousands of ROM presets. (*ROM presets are automatically added when sound SIMMs are installed. As an example, a 32 MB SIMM may contain up to 1024 ROM presets.*) Proteus 2500's Sound Navigator makes it easy to find the exact sound you want. It's powerful, yet simple to use.

Multi-Function Controllers

Multi-function buttons allow you to trigger sequences, arpeggiators and loops internally or on any of your other MIDI devices. They can act as Note Inputs for Grid or Step recording, Track Select, Mute or MIDI Trigger buttons (latched or unlatched).

Sixteen real-time controller knobs are also multi-function controls. These knobs make it a snap to edit and modify internal preset parameters. Another useful mode allows the knobs to control volume and pan for all sixteen MIDI channels. These controllers are fully programmable and can control internal preset or other MIDI equipment on multiple MIDI channels. They can be programmed to adjust multiple internal parameters at once, allowing complex levels of control. For example, a single knob can simultaneously turn up filter cutoff, while detuning one sample, and adjusting the release time of the volume envelope. Virtually every synth parameter in the Proteus 2500 is controllable using the real-time knobs or by any internal or external control source.

Super Sequencer

Proteus 2500 contains a powerful, yet simple to use 16-track interactive sequencer. You can record in real-time, step and grid modes and can switch modes without ever stopping your creative flow. Sixteen dedicated Mute/ Select buttons allow you to add, monitor and modify parts on the fly with cumbersome menu scrolling. It's never been this easy to lay down your ideas. The Proteus 2500Command Station can store over 300,000 notes and you can import and export MIDI files to and from your Mac or PC using E-MU's E-Loader program.

Multi-Channel Arpeggiators

Proteus 2500's Rhythmic Pattern Generator/Arpeggiator can play up to 32 synchronized arpeggiator patterns at once using a different sound for each! Patterns can be edited using pattern flow commands such as: delay for 2 bars, play for 4 bars, hold for 2 beats and repeat. You can program or download 100 user patterns in addition to the 200 factory patterns.

Ultra Powerful Synthesizer

The extremely flexible yet easy to use 4-layer synthesizer voices make it easy to build sounds of any kind. Layers can be switched or crossfaded using key position, velocity, real-time controllers or any modulation source. 128 voice polyphony ensures that you can play and sequence the most complex material. Proteus 2500 also contains 50 different 2nd to 12th order resonant & modeling filters which are used to shape and modify over 1200 waveforms contained in 32 megabytes (MB) of ROM.

Sixty four modulation sources include three multistage envelopes and two LFOs per layer, as well as full MIDI control over virtually every parameter. The digital patch bay, with 24 cords per layer, (and 12 more cords per preset) lets you connect modulation sources to 64 destinations in any imaginable way. The patch bay also contains a set of arithmetic modifiers, allowing you to create complex synthesis models. Synth parameters as well as arpeggiator and BEAT tempos can be controlled from Proteus 2500 internal clock (or an external MIDI clock). Up to 8 LFOs and 12 envelopes can be perfectly synchronized at different rates.

24-bit Effects

Once you have created your preset, you can add richness to your sound using Proteus 2500's 24-bit stereo effects. You can choose a different effects setup for each preset from over 60 algorithms. Proteus 2500's effects section is actually two separate effects processors with control over each wet/dry mix level on four effects sends. Effects Processor "A" contains primarily ambiance algorithms like reverb and delays, while effects processor "B" contains primarily spectral algorithms such as chorus, flange, phase, distortion, and delay. Effects can be linked to each preset or used globally to further enhance your sound. Other features include multiple solo, voice assignment and performance modes for expressive control, 12 user-definable alternate tunings, and, of course, an extensive MIDI implementation.

	Important Safety Instructions
	Use in countries other than the U.S.A. may require the use of a different line cord or attachment plug, or both. Refer all servicing to qualified service personnel. There are no user serviceable parts or adjustments inside the unit. There are no user serviceable parts inside the power supply enclosure.
	WARNING: To reduce the risk of fire or electric shock, do not expose this product to rain or moisture.
Grounding Instructions	This product must be grounded. If it should malfunction or break down, grounding provides a path of least resistance for electric current, reducing the risk of electric shock. This product is equipped with a cord having an equipment-grounding conductor and a grounding plug. The plug must be plugged into an appropriate outlet properly installed and grounded in accordance with all local codes and ordinances.
Danger!	Improper connection of the equipment's grounding conductor can result in the risk of electric shock. Check with a qualified electrician or service personnel if you are in doubt as to whether the product is properly grounded. Do not modify the plug provided with this product. If it will not fit the outlet, have a proper outlet installed by a qualified technician.
User Maintenance Instructions	 The Proteus 2500 should be kept clean and dust free. Periodically wipe the unit with a clean, dry, lint free cloth. Do not use solvents or cleaners. There are no user lubrication or adjustment requirements.
	the risk of electric shock, do not perform any servicing other than that contained in these operating instructions unless you are qualified to do so. Refer all servicing to qualified service personnel.

This symbol is intended to alert you to the presence of important operating and maintenance (servicing) instructions in the literature accompanying the unit.

This symbol is intended to alert you to the presence of uninsulated dangerous voltage within the product's enclosure that may be of sufficient magnitude to constitute a risk of electric shock to persons.

INSTRUCTIONS PERTAINING TO A RISK OF FIRE, ELECTRIC SHOCK, OR INJURY TO PERSONS

READ THESE INSTRUCTIONS: When using electric products, basic precautions should always be adhered to, including the following:

- 1. Read all instructions before using Proteus 2500.
- **2.** To reduce the risk of injury, close supervision is necessary when using Proteus 2500 near children.
- **3.** Do not use Proteus 2500 near water for example near a bathtub, washbowl, kitchen sink, in a wet basement, on a wet bar, or near or in a swimming pool.
- **4.** Do not expose the unit to drips or splashes. No liquid-filled objects, such as vases, shall be placed on the Proteus 2500.
- **5.** The Proteus 2500 should be situated so that its location or position does not interfere with its proper ventilation.
- **6.** The Proteus 2500 should be located away from heat sources such as radiators, heat registers, fireplaces, stoves, or ovens.
- **7.** No open flame sources, such as lit candles, should be placed on the Proteus 2500.
- 8. The Proteus 2500 is designed for use in moderate climates.
- **9.** The Proteus 2500 should be connected only to a power supply of the type described in the operating instructions and marked on the product.
- **10.** Care should be taken so that objects do not fall and liquids are not spilled into the enclosure of Proteus 2500 through openings.
- 11. This Proteus 2500 may be equipped with a polarized line plug *(one blade wider than the other)* or a grounding-type plug *(a grounding plug has two blades and a third grounding prong)*. This is a safety feature. If you are unable to insert this plug into the outlet, do not defeat the safety purpose of the plug. Contact an electrician to replace your obsolete outlet.
- **12.** Protect the power cord from being walked on or pinched, particularly at plugs, convenience receptacles, and the point where they exit from the unit.
- **13.** Unplug the Proteus 2500 from the power outlet during lightning storms or when left unused for a long period of time.
- 14. This product, in combination with an amplifier and headphones and speakers, may be capable of producing sound levels that could cause permanent hearing loss. Do not operate for a long period of time at a high volume level or at a level that is uncomfortable. If you experience any hearing loss or ringing in the ears, consult an audiologist.
- 15. Only use attachments and accessories specified by E-MU Systems.
- **16.** Refer all servicing to qualified service personnel. The Proteus 2500 should be serviced by qualified service personnel when:

- A. The power supply cord or plug has been damaged; or
- B. Objects have fallen, or liquid has been spilled into the unit; or
- C. The unit has been exposed to rain or moisture; or
- D. The unit has been dropped or damaged in any way; or
- E. The Proteus 2500 does not operate normally or exhibits a marked change in performance.

Save These Instructions

Heed All Warnings

Follow All Instructions

Radio and Television Interference

The equipment described in this manual generates and uses radiofrequency energy. If it is not installed and used properly —that is, in strict accordance with our instructions— it may cause interference with radio and television reception.

This equipment has been tested and complies with the limits for a Class B computing device in accordance with the specifications in Subpart J of Part 15 of the FCC rules. These rules are designed to provide reasonable protection against such interference in a residential installation. However, there is no guarantee that the interference will not occur in a particular installation, especially if a "rabbit ear" TV antenna is used.

If Proteus 2500 does cause interference to radio or television reception, you can try to correct the interference by using one or more of the following measures:

- Turn the television or radio antenna until the interference stops.
- Move Proteus 2500 to one side or the other of the television or radio.
- Move Proteus 2500 farther away from the television or radio.
- Plug Proteus 2500 into an outlet on a different circuit than the television or radio.
- Consider installing a rooftop antenna with a coaxial lead-in between the antenna and television set.

	Foreign Language Warnings - German
Wichtige Sicherheits- vorschriften	In Ländern ausserhalb den U.S.A. können andere Kabel oder Stecker notwendig werden. Zur Verminderung des Risikos von Feuer oder eines elektrischen Schlages übergebe man den Service an qualifizierte Fachleute. Das Gerät niemals Regen oder Nässe aussetzen.
Erdungsin- struktionen	Das Gerät muss geerdet sein. Bei einem Defekt oder Ausfall bietet Erdung dem elektrischen Strom den Weg des geringsten Widerstandes und reduziert das Risiko eines Schlages. Dieses Gerät ist mit einem geerdeten Kabel und Stecker ausgerüstet. Der Stecker muss in eine passende, einwandfrei montierte und geerdete Steckdose in Übereinstimmung mit den örtlichen Vorschriften eingeführt werden.
Gefahr	Unvorschriftsgemässer Anschluss des Gerätes kann zum Risiko eines elektrischen Schlages führen. Im Zweifelsfalle über die ordnungsgemässe Erdung soll ein qualifizierter Elektriker oder eine Serviecestelle beigezogen werden. Ändern Sie den mitgelieferten Stecker nicht. Sollte er nicht in die Steckdose passen, soll die einwandfreie Installation durch einen qualifi- zierten Techniker erfolgen.
Vorsicht	Wird der Proteus 2500 in einem Rackgestell montiert, muss ein offener 19- Zollrahmen verwendet werden.

Unterhaltsinstruktionen für anwender

Vorsicht

1. Proteus 2500 soll sauber und staubfrei gehalten werden. Das Gerät mit einem sauberen und säurefreien Tuch periodisch abreiben. Keine Lösungs- oder Reinigungsmittel anwenden.

- 2. Schmieren und Justieren sind nicht notwendig.
- **3.** Bei weiteren Servicefragen wende man sich an eine qualifizierte Servicestelle.

Diese Gebrauchsanweisungen sind nur für qualifizierte Techniker beabsichtigt. Um die Gefahr eines elektrischen Schlages zu vermeiden, sollen Sie keine Arbeit unternehmen, die nicht in diesen Instruktionen vorgeschrieben ist. Wenden Sie Sich bei weiteren Servicefragen an eine qualifizierte Servicestelle.

Dieses Symbol weist den Anwender auf wichtige Gebrauchs- und Service-Vorschriften in den beiliegenden Drucksachen.

Dieses Symbol verweist auf nicht-isolierte Stromspannungen im Geräte-Innern, welche zu einem elektrischen Schlag führen könnten.

INSTRUKTIONEN BETR. FEUERRISIKO, ELEKTROSCHOCK ODER VERLETZUNG VON PERSONEN

WARNUNG; Beim Einsatz elektrischer Geräte sollten folgende Vorsichtsmassregeln stets beachtet werden:

- 1. Lesen Sie vor dem Einschalten des Proteus 2500 alle Instruktionen.
- 2. Zur Vermeidung von Verletzungsrisiken müssen Kinder bei eingeschaltetem Proteus 2500 sorgfältig überwacht werden.
- **3.** Proteus 2500 nicht in der Nähe von Wasser in Betrieb nehmen -- z.B. in der Nähe von Badewannen, Waschschüsseln, auf nassen Gestellen oder am Swimmingpool.
- **4.** Proteus 2500 stets so aufstellen, dass seine Belüftung nicht beeinträchtigt wird.
- **5.** Proteus 2500 nicht in der Nähe von Hitze aufstellen, wie Heizkörper, offenem Feuer, Öfen oder von Backöfen.
- **6.** Proteus 2500 ausschliesslich mit einem Netzgerät gemäss Bedienungsanleitung und Gerätemarkierung verwenden.
- 7. Dieses Gerät kann bei Verwendung von Kopfhörern und Verstärkern hohe Lautpegel erzeugen, welche zu bleibenden Gehörschäden führen. Arbeiten Sie nicht während längerer Zeit mit voller Lautstärke oder hohem Lautpegel. Stellen Sie Gehörverlust oder Ohrenläuten fest, wenden Sie sich an einen Ohrenartz.
- Proteus 2500 kann mit einem polarisierten Kabelstecker (mit ungleichen Stiften) ausgerüstet sein. Das geschieht für Ihre Sicherheit. Können Sie den Stecker nicht in die Steckdose einführen, ändern Sie nicht den Stecker ab, sondern wenden Sie sich an einen Elektriker.

- **9.** Das Netzkabel des Proteus 2500 bei längerem Nichtgebrauch aus der Steckdose ziehen.
- **10.** Vermeiden Sie sorgfältig das Eindringen von Gegenständen oder Flüssigkeiten durch die Gehäuseöffnungen.
- **11.** Das Gerät soll durch qualifizierte Serviceleute gewartet werden, falls:
 - A. das Netzkabel beschädigt wurde, oder
 - B. Gegenstände oder Flüssigkeit in das Gerät gelangten,
 - C. das Gerät Regen ausgesetzt war, oder
 - D. das Gerät nicht normal oder einwandfrei arbeitet, oder
 - E. das Gerät stürzte oder sein Gehäuse beschädigt wurde.
- **12.** Servicearbeiten sollten nur qualifizierten Fachleuten anvertraut werden.

DIESE INSTRUKTIONEN AUFBEWAHREN

	Foreign Language Warnings - French
Instructions de Sécurité Importantes	Une utilisation dans des pays autres que les U.S.A. peut nécessiter l'usage d'un cordon d'alimentation différent. Afin de réduire les risques d'incendie ou d'électrocution, référez-vous à un personnel de service qualifié, et n'exposez pas cet appareil à la pluie ou à l'humidité.
Instructions de Mise à la Terre	Cet appareil doit être relié à la terre. Dans le cas d'une malfonction éventuelle, la terre fournit un passage de moindre résistance pour le courant électrique, réduisant ainsi les risques d'électrocution. Le Proteus 2500 est équipé d'un cordon muni d'un conducteur et d'une fiche devant être branchée dans une prise appropriée et reliée à la terre en conformité avec les normes locales.
Danger	Une connexion incorrecte peut résulter en des risques d'électrocution. Vérifiez avec un technicien qualifié si vous avez des doutes quant à la connexion. Ne modifiez pas vous-même le cordon d'alimentation livré avec cet appareil; s'il ne rentre pas dans la prise, faites-en installer un autre par un technicien qualifié.
Attention	Si le Proteus 2500 est installé dans un rack, utilisez un rack standard ouvert de 48.25cm.
Instructions de Maintenance	 Le Proteus 2500 doit être maintenu propre et sans poussière. Nettoyez- le périodiquement à l'aide d'un chiffon propre et non-pelucheux. N'utilisez pas de solvants, ou d'autres produits de nettoyage. Aucune lubrification et aucun réglage ne sont nécessaires de votre part. Pour tout autre service, référez-vous à un personnel qualifié.

Ce symbole vous alerte de la présence d'instructions importantes d'opération et de maintenance dans la notice accompagnant l'appareil.

Ce symbole vous alerte de la présence d'un voltage non-isolé dangereux à l'intérieur de l'appareil, pouvant être d'une magnitude suffisante pour constituer un risque d'électrocution.

Instructions Concernant les Risques d'Incendie, d'Electrocution, ou de Blessures Corporelles.

ATTENTION: Lorsque vous utilisez des appareils électriques, certaines précautions élémentaires doivent toujours être prises, incluant les suivantes:

Ces instructions de dépanage sont destinées uniquement aux personnes qualifiées. Afin d'éviter les risques d'électrocution, n'effectuez que les opérations décrites dans ce manuel, à moins que vous ne soyez qualifiê pour cela. Faites effectuer toute r'eparation par une personne qualifié.

- 1. Lisez bien toutes les instructions avant d'utiliser le Proteus 2500.
- **2.** Afin de réduire les risques de blessures, une attention particulière est nécessaire en la présence d'enfants en bas âge.
- **3.** N'utilisez pas le Proteus 2500 dans ou près d'endroits humides par exemple près d'une baignoire, d'un lavabo, dans les toilettes, dans une cave humide, sur un bar fréquenté, en présence d'un bull-dog en rut, ou dans une piscine pleine. Protégez cet appareil de tout liquide, éclaboussure ou fuite.
- **4.** Le Proteus 2500 doit être placé de façon à ce que sa position n'interfére pas avec sa propre ventilation.
- **5.** Le Proteus 2500 doit être placé loin de sources de chaleur telles que des radiateurs, cheminées, fours, ou groupies en chaleur.
- **6.** Le Proteus 2500 doit uniquement être connecté à une alimentation du type décrit dans les instructions d'opération et tel qu'indiqué sur l'appareil.
- **7.** Une attention particulière doit être observée quant aux objets pouvant tomber et aux liquides pouvant être versés sur et à l'intérieur de le Proteus 2500.
- 8. Le Proteus 2500 peut être équipé d'une fiche secteur polarisée (avec une broche plus large que l'autre). C'est une mesure de sécurité. Si vous ne pouvez pas brancher cette fiche dans une prise, ne neutralisez pas cette sécurité. Contactez plutôt un électricien pour remplacer la prise obsolète.
- **9.** Evitez de marcher sur le cordon d'alimentation ou de le coincer, particuliêrement prês des prises de courant, des boitiers 'electriques dt du point de sortie de l'appareil.
- **10.** Le cordon d'alimentation de le Proteus 2500 doit être débranché lorsque ce dernier n'est pas utilisé pendant une longue période.
- 11. Cet appareil, combiné avec un amplificateur, des haut-parleurs, et/ou un casque, est capable de générer des niveaux sonores pouvant occasionner une perte de l'ouïe permanente. Ne travaillez pas trop longtemps à un volume trop élevé ou même inconfortable. Si vous observez une perte de l'audition ou un bourdonnement dans les oreilles, consultez un O.R.L.
- 12. N'utilisez que les accessoires sp'ecifi'es par E-MU Systems.

- **13.** Cet appareil doit être examiné par un personnel qualifié lorsque:
 - A. Le cordon d'alimentation a été endommagé, ou
 - B. Des objets sont tombés, ou du liquide a été versé sur/à l'intérieur de l'appareil, ou
 - C. Le Proteus 2500 a été exposé à la pluie, ou
 - D. Le Proteus 2500 est tombé, ou

E. Le Proteus 2500 ne fonctionne pas normalement, ou affiche un changement radical de performance.

14. Tout service doit être effectué par un personnel qualifié.

SAUVEGARDEZ CES INSTRUCTIONS

Interférences Radio et Télévision

L'appareil décrit dans cette notice génére et utilise une énergie de fréquence-radio. S'il n'est pas installé et utilisé correctement - c'est à dire en suivant strictement nos instructions - il peut occasionner des interférences avec la réception d'une radio ou d'une télévision.

Cet appareil a été testé et est conforme aux normes de Classe A en accord avec les spécifications du paragraphe J de la section 15 des lois FCC. Ces lois sont désignées pour fournir une protection raisonnable contre de telles interférences dans une installation résidentielle. Toutefois, il n'est pas garanti qu'aucune interférence n'apparaisse dans des installations particulières, et plus spécialement lorsqu'une antenne de télévision en «oreilles de lapin» est utilisée.

Si le Proteus 2500 occasionne des interférences , vous pouvez essayer de les corriger en utilisant une ou plusieurs des mesures suivantes:

- Tournez l'antenne de la télé ou de la radio jusqu'à ce que les interférences disparaissent.
- Déplacez le Proteus 2500 d'un côté ou de l'autre de la télé ou de la radio.
- Eloignez le Proteus 2500 de la télé ou de la radio.
- Branchez le Proteus 2500 sur une prise différente que la télé ou la radio.
- Installez une antenne sur le toit munie d'une connexion coaxiale entre elle et le poste de télévision.

Declaration of Conformity

CE

Manufacturer:

E-MU / Ensoniq 1600 Green Hills Road Scotts Valley, CA 95067-0015 USA

We hereby declare that the equipment listed herin conforms to the harmonized standards of the following European Commission Directives: 89/336/EEC and 72/23/EEC.

Trade Name: Proteus 2500

Model Number: 9150

Under 89/336/EEC as amended by 92/31/EEC, and 93/68/EEC

In accordance with EN 55103-1:1996, Emission Environments E4

In accordance with EN 55103-2:1996, Immunity Environments E4

Test information is contained in a report by Atlas Compliance and Engineering, Inc.

Dated July 5, 2001

Report No.: 0126EMUx17_103

Under 73/23/EEC as amended by 93/68/EEC

In accordance with EN 60950 with amendments A1, A2, A3, A4, A11

This Declaration is made July 5, 2001

Foreign Language Warnings - French

Setup

This section thoroughly describes how to set up your new Proteus 2500 for use. Setup includes unpacking instructions, how to hook up the unit to your sound system and, most importantly, how to turn the thing on and off.

Unpacking

Carefully remove Proteus 2500 from the packaging material. Take care to save the packing materials in case you need to transport the unit. Check to make sure all components are included and in good condition. If there are missing or damaged components, contact E-MU Systems immediately for replacement or repair.

The Proteus 2500 box should include the following components:

- Proteus 2500 unit
- Power cable
- This operation manual
- Command Station CD-ROM

Connection Instructions

Basic Setup

Power Switch & AC Receptacle

The AC power switch located on the rear panel is a "hard" power switch. The front panel On/Off switch is a "soft" power switch that can be used to turn power on and off when the Proteus 2500 is rack mounted. There is no 110/220 Volt power selector switch since Proteus 2500 utilizes an auto-switching power supply which accepts from 100V-250V, 50-60Hz.

The Right Main output jack carries a mono mix of the left and right channels when the Left Main plug is not plugged in.

The Left Main output jack is a stereo jack carrying both channels when the right output jack is empty.

Outputs

In order to reproduce Proteus 2500's wide dynamic range and frequency response, use a high quality amplification and speaker system and a stereo setup is highly desirable The headphone output is the same as the Main output signal. The headphone jack is located on the left side of the front panel.

Footswitches 1 & 2

Connect one or more momentary footswitches for additional control. Proteus 2500 auto-senses either normally-open or normally-closed switches when they are plugged in. Their functions are programmable in the Controllers, Footswitch menu and the Preset Edit, PatchCord menu.

Studio Setup

MIDI In

In this setup, Proteus 2500 is controlled by MIDI messages received at the MIDI input, which are routed by a computer MIDI interface. Any MIDI controller, such as a MIDI keyboard or a computer, can control the module.

MIDI Out

Proteus 2500 contains two MIDI output ports (A & B) so that it can transmit on 32 MIDI channels instead of the usual 16.

Audio Outputs

Three sets of programmable stereo outputs (Main, Sub 1, and Sub 2) are provided. The internal effects are available only on the Main outputs. Specific presets (or MIDI channels) can be routed to one of these stereo pairs in order to be processed further or mixed separately. The S/PDIF output duplicates the function of the main outputs.

Footswitches 1 & 2

The two footswitch inputs accept either normally-open or normally-closed momentary footswitches and are programmable in the Controllers, Footswitch menu and the Preset Edit, PatchCord menu.

Channels 01A-16A normally go to MIDI Out port A and channels 01B-16B normally go to MIDI Out port B.

Performance Setup

MIDI In

In this setup, Proteus 2500 is controlled by a MIDI keyboard.

Audio Outputs

The Sub 1 and Sub 2 output jacks are stereo jacks. The tip of each jack (accessed when a standard phone plug is inserted) connects to the left or right output of that group. The S/PDIF output is a digital copy of the stereo signal on the main outputs.

If you insert a stereo plug into one of the Sub Outputs, the ring of the plug serves as a signal Return which sums into the Main outputs.

Therefore, the Sub 1 and Sub 2 jacks can serve as effect sends and returns in order to further process selected instruments and then return them to the main mix.

You can use the Sub 1 and Sub 2 jacks as send/returns in order to further process selected Proteus 2500 presets without using the effects bus on the mixing board. In a pinch, the effect returns can be used to sum additional instruments into the main outputs. It's like having an extra line mixer when you need more inputs!

To avoid accidentally turning off the power while playing Proteus 2500, the front panel power switch incorporates a five second "fail-safe" feature when powering down. Once the power down sequence has begun, you have five seconds to press the power switch again and stop Proteus 2500 from turning off.

Proteus 2500 can be rack mounted if you so desire. You'll need (4) rack spaces to fit Proteus 2500 into your rack.

Power Down Sequence

Rack Mounting Proteus 2500

Instant Gratification

4. Press the **Home/Enter** button to select the new pattern. The lower line of the display now shows the numbers of the Current and Next patterns. The new pattern will begin playing when the current pattern has finished.

5. Select a new pattern, press **Stop**, then press **Play** to change patterns without waiting for the current pattern to end.

Track Muting

6. Press the **Track Enable/Mute** buttons to bring tracks in and out. Every factory pattern has from eight to sixteen tracks. The LED in each button illuminates when a track is enabled (unmuted). The diagram below shows the default factory track assignments.

Track Mixing

7. Press the **Mix** button (located beneath the LCD) while a pattern is playing. The Channel Volume display screen appears, showing the volumes of all 32 channels.

8. Now press the **Controller Function Select** button (located above the controller knobs) twice so that Volume is selected.

Proteus 2500's buttons have been designed so that you can slide your fingers across them to quickly mute and unmute tracks.

- **9.** The sixteen controller knobs now function as volume controls for MIDI channels 01A-16A.
- While we're on the subject of Tracks and Channels, it might be a good time to mention that in all the factory patterns, a given track will control the MIDI channel of the same number. That means Track 1 will play the preset on channel 01A, track 2 will play channel 02A and so on up to 16. Feel free to turn the knobs and remix the pattern. The LEDs next to the knobs flash to indicate activity on that channel/track.

Change the Sound

- **10.** Adjust your remix so that track 8 (the bass) is the most prominent instrument in the mix.
- **11.** Press the **Preset View** button and select Track 8 using the Track/ Channel buttons to the left of the LCD.
- **12.** Now repeatedly press the **Controller Function Select** button until "Quick Edit" is selected.
- 13. Now the knobs control the bass sound. You know what to do.
- 14. Turn the **data entry control** to completely change the preset.
- **15.** Use the **Track/Channel** select buttons to change any of the presets. In Proteus 2500's default mode, the keyboard is active on whichever preset is showing in the preset view screen. They can be set to always play a specific channel in the Controllers menu (page 116).
- Nothing is made permanent until you save the pattern or preset, so play around as much as you like.

Jump Back

16. You can jump between Volume mode, Quick Edit mode or Pattern mode at any time without missing a beat. Select a new pattern, tweak parameters, change the mix, enable or mute tracks.

Now that you've explored Pattern mode a little, check out Song mode. In its most basic form, a song is just a sequence of patterns chained together one after another.

To Play a Song

- 1. Select Song mode by pressing the **Song** button located underneath the LCD. (Stop the sequencer first.)
- 2. Select one of the factory programmed songs using the **data entry control**.
- 3. Press Play. The song begins playing.

If you move the cursor underneath the **Preset Name** before changing the preset, another bass preset will be selected.

Playing Songs

Press the Pattern Mode button while a Song is playing to loop on the current pattern. Pressing Song Mode continues playing the song.

Playing Demo Sequences

Proteus 2500 has several factory demonstration sequences that let you hear what this incredible machine can do. The actual number of demo sequences depends on which ROM sounds sets are installed. You can play these demo sequences by accessing the Demo Sequence page.

► To Play a Demo Sequence

- 1. Press and hold the **Song** and **Pattern** buttons at the same time to enter the Demo Sequence page. The screen shown above appears.
- **2.** Select a sequence using the **data entry control**. The Enter LED will be flashing.
- **3.** Press the **Enter** button to begin playing the selected sequence. The following screen appears.

PLAYING: The Sky Club Press ENTER to stop

- 4. Press the Enter button again to stop playing the sequence.
- **5.** When a demo sequence plays to the end, the next demo will automatically begin playing. The screen will display the new demo name.
- 6. With the sequence stopped, **press any other button** to Exit demo sequence mode.

Auditioning Presets

To audition presets with their programmed effects, switch to Omni or Poly mode (located in the MIDI menu). Remember to switch back to Multi mode before playing sequences again. The front panel audition button allows you to hear any preset in Proteus 2500 without even playing a note! When the Audition button is pressed, the button's LED will illuminate and a short "Riff" (programmed as part of the preset) will play. The Riff is latched on and plays continuously until the button is pressed again. Presets can be changed while Audition is latched.

The top line of the Preset View display changes to show the MIDI Bank Select controller values needed to select the preset being auditioned. This is an extremely handy feature when sequencing.

> Bank MSB:017 LSB:2 2500 <u>1</u>25² gtr: Jazzy Comp
| | To Audition a Preset | | |
|--|--|--|--|
| | Select Preset View mode by pressing the preset button in the Mode/
View section immediately below the LCD. | | |
| | 2. Select a preset by turning the data entry control while the cursor is anywhere on the lower line. The preset number field (shown above) is the normal position of the cursor and pressing the Enter button will return the cursor to this position. | | |
| | 3. Press the Audition button on the front panel. The Audition LED will illuminate and a short riff will play the selected preset. | | |
| | 4. Continue to select and audition presets. | | |
| | 5. Press the Audition button again to turn Audition mode off. The LED will extinguish. | | |
| | 6. Play the keyboard. | | |
| | 7. Be sure to check out the controller knobs and mod wheel. | | |
| Selecting and Quick
Editing Presets | The first thing you'll do with the Proteus 2500 is select and play the factory provided presets. Proteus 2500 comes standard with 8 banks containing 128 presets each. See "Preset Screen" on page 43. | | |
| | Initial Initial
Channel Volume Pan Arpeggiator Preset
Number Setting Setting Location
I I I I I
 | | |
| | CO1A V127 PO1 _R A:off User
<u>1</u> 25 ² key: SynhissOrgan | | |
| | Blinking Preset Bank Preset Preset
Cursor Number Number Category Name | | |
| | The first four banks are USER locations that can be overwritten and used to store your own presets. The presets that come stored in the USER presets are duplicated in banks 0-3 of the "2500" ROM bank, so feel free to overwrite them with your own presets. You won't be losing anything. | | |

The *ROM Card* identifier is shown in the top right of the display. The preset is identified in the bottom line of the main screen (the screen that appears when you press the Mode/View Preset button).

Each bank of 128 presets is identified by a superscripted *Bank Number* to the right of the preset number. The bank numbers reset to 0 at the start of each ROM card you have installed. So with the 2500 ROM installed, the USER banks will go from 0-3, then start over from 0-3 for the 2500 ROM banks.

The four User Banks can hold 512 custom presets. Feel free to overwrite these since the factory user presets are duplicated in nonvolatile ROM.

To the right of the preset number and bank is the preset *Category* name followed by the *Preset Name*.

• To Change the Preset

- 1. Press the **Preset** button in the Mode/View box directly below the liquid crystal display. The main Preset selection screen appears.
- 2. The cursor will be located under the first character in the Preset Number field. This is the "Home" position which is selected instantly when you press the Home/Enter button. Pressing either of the two cursor buttons repeatedly also gets you there.
- **3.** Turn the **data entry control** knob on the front panel to select a new preset number. If you turn the knob slowly, the presets advance one number for each "click" of the knob. If you spin the knob quickly, the numbers advance much faster (more than one number per click).
- **4. Play the keyboard** (or press the Audition button) and listen to the sounds made by your Proteus 2500!
- **5. TRY OUT ANY OF THE 16 KNOBS** on the front panel *(in Quick Edit mode)* and note how they change the sound of each preset! Don't worry about ruining the sound, the values are automatically reset as soon as you select a new preset.

You can select presets from the Preset Number, Bank Number, Preset Category or Preset Name fields.

Notice that an asterisk appears in the display when you change the knobs. This indicates that you have edited the preset.

Exploring the Master Arpeggiator

Proteus 2500's multi-channel Pattern Generator/Arpeggiator is one of the greatest features ever put in a synth. Let's explore the Master Arpeggiator.

► To Arpeggiate a Single Preset:

- 1. Select a preset. Note that the factory presets all have prefixes which describe the type of sound. For this investigation it might be best to choose a preset with the prefix "arp," for arpeggiator. These presets are optimized for use with the arpeggiator.
- **2.** Set the Arp parameter in the main preset selection screen to "**M**" for Master Arpeggiator.

3. Press the **Arp** button in the Edit section of the front panel to access the master Arpeggiator menu, then use the **data entry control** to scroll to the screen shown below.

- **4.** Make sure the arpeggiator Status is "**on**." Play the keyboard to start arpeggiating.
- **5.** Press either **cursor key** repeatedly to move the cursor below the Status field.
- **6.** Turn the **data entry control** clockwise one click. The Mode screen appears.

- **7.** Use the **cursor keys** to move the cursor to the *Mode* field (up, down, up/ down, forw asgn, backw asgn, forw/backw, random, pattern). Try out the different modes as you play the keyboard.
- **8.** Move the cursor back to the lower left position and explore the other parameters. The *Note Value* parameter changes the rate of the arpeggios. By the way, note value is a divisor based on the Master Tempo. Try changing the tempo, but come right back.

Try using control knobs 15 & 16 to change the arpeggiator parameters.

- **9.** Let's check out the pattern generator. Go back to the **Mode** screen and set the mode to "Pattern".
- **10.** Now advance to the Pattern screen (shown below) and move the cursor to the **Pattern Number** field (the second field from the left).

MASTER ARPEGGIATOR Pattern <u>3</u>8⁰ Inversions

11. Try the various patterns. There are 200 permanent factory patterns and 100 user locations to store the patterns you create. Each pattern can have up to 32 notes.

Proteus 2500 is totally unique in its ability to run up to 32 arpeggiators at once! Even two or three patterns at once can create very complex sequences and dynamic landscapes of sound.

Here's one way to access this ultra-powerful feature. There is one arpeggiator for each MIDI channel. First you'll assign three of the Trigger Keys to MIDI channels 01A-03A. Next, you'll assign arpeggiator presets to these channels. Then you'll become addicted to this new way of making music.

Program the Trigger Keys

- **1.** Press the **Controllers** button, then turn the data entry control until the screen shown below appears.
- **2.** Move the **cursor** until it is underneath the **Latch** field and turn Latch mode On.
- **3.** Move the **cursor** until it is underneath the **Channel** field (Ch) and set the channel to 01A.
- **4.** Move the **cursor** until it is underneath the **Trigger** field (T1) and change the **Trigger to T2** (trigger button 2).
- 5. Turn Latch On for trigger button 2 and set the channel to 02A.
- 6. Change the **Trigger to T3** (trigger button 3).

7. Turn Latch On for trigger button 3 and set the channel to 03A.

Set up the Presets

8. Press the **Preset View** button (located beneath the LCD). The preset select screen appears.

See the Arpeggiator Chapter for detailed information on creating Patterns.

Multi-Channel Arpeggiator

- **9.** Move the cursor underneath the **Category** field (as shown above) and select the "**arp**" category.
- **10.** Move the **cursor** underneath the preset name and select any "arp" preset for channel **1A**.
- 11. Press the "+" Track/Channel select button (located to the left of the LCD), so that C02A is displayed.
- **12.** Select any other "arp" preset for channel **2**A.
- **13.** Select channel **03A** and choose another arp preset.

Select Trigger Mode

 Press the Selector Button in the upper left corner of the Command Functions section. Pressing this button will switch between Track Enable/Mute and Triggers mode. Select Triggers mode.

Play it!

- **15.** Now press **Trigger Buttons 1, 2 and 3**. You should be hearing three arpeggiators playing at once.
- **16.** Change the arp preset on the current MIDI channel. Since the cursor is located on the preset name, all your selections will be in the arp category.
- **17.** Press the **Track/Channel** button and change the arp presets for channels 1A, 2A & 3A. Since each factory preset has differently programmed arpeggiator settings, changing the preset not only changes the sound, but the arpeggiator as well.
- **18.** You can also **play the keypads**. You'll be playing the preset currently showing in the display.
- **19.** Press the **Control Select** button above the knobs so that "Quick Edit" is selected. Adjusting the front panel control knobs now modifies the preset showing on the LCD.
- **20.** Press the **Control Select** button above the knobs again so that "Volume" is selected. The first three knobs now control the volume of each arpeggiator preset.

There's lots more to the arpeggiators. To find out more, refer to the arpeggiator chapter beginning on page 221.

Time to Save?

If you want to SAVE everything exactly as it is, continue on.

- 1. Press the **Save/Copy** button.
- 2. Rotate the data entry control until you get to the menu shown below.
- **3**. Press the **right cursor** button to move to the lower line.
- 4. Name your Multisetup so you can find it later, then press Enter.
- **5.** Scroll to the next screen using the **data entry control**.
- 6. Move the cursor to the lower line, select a location and press Enter.

Sometimes a simple volume change will bring out hidden voices and patterns.

Multisetups save your entire Proteus 2500 setup. Find out more on page 124.

Basic Operations

The Proteus 2500 front panel contains an LCD screen, 49 buttons, and 16 real-time controller knobs. Functions are grouped logically and the controls are arranged for ease of use.
The front panel On/Off switch is a "Soft" power switch that can be used to turn power on and off when the Proteus 2500 is rack mounted. Use the AC power switch on the rear panel if you wish to completely disconnect Proteus 2500 from the AC mains.
The power switch incorporates a "fail-safe" feature when powering down. Once the power down sequence has begun, you have five seconds to press the power switch again and stop Proteus 2500 from turning off.
This control is the master volume control for all audio outputs. The Volume Control does not affect any editing or user interface operations. The front panel volume control is a digital attenuator. For maximum dynamic range, turn this knob all the way up and control the volume from your mixer or amplifier.

Mode/View Buttons

MODE/VIEW

► To View the Pan Settings for all 32 Channels

1. Press the **Home/Enter** key *(to move the cursor to "Home" position)* and turn the **data entry control** clockwise from the Mix screen.

32 E-MU Systems

Track/Channel +/- Buttons	These very handy buttons, located to the left of the LCD, serve as a shortcut to increment or decrement the Track (in Pattern mode), the MIDI Channel (in Preset mode), Layer (in Preset Edit mode) or Step Numbers (in Arpeg- giator Edit mode).	
Data Entry Control	The data entry control is a stepped, variable control switch used to change parameter values. The wheel increments or decrements the current value one unit with each click. This control incorporates acceleration, which advances the value faster if the data entry control is turned quickly.	
Left/Right Cursor Buttons	These buttons move the cursor to the next parameter on the display. (The cursor is a little flashing line underneath one of the parameters in the display.) Press either cursor button until the cursor is underneath the desired parameter. The cursor buttons have an auto-repeat feature which advances the cursor when the button is held continuously. The cursor can be moved bidirectionally using the data entry control while either cursor select button is held down (for example, press and hold the right cursor button and turn the data entry control).	
LED View Select Section	The numeric LED display in the center of the Proteus 2500 can display: Tempo, Pattern Number, the current Bar/Beat, or the MIDI Channel. Repeatedly pressing the Select button cycles through the four modes.	
Selecting patterns using this method allows you to see the current and next pattern numbers.	Pressing the Edit button lights its associated LED and allows you to edit the displayed value using the data entry control. Pressing Edit again deactivates this mode. To select a new pattern, you must exit Edit mode for the new pattern to be selected.	

numbers.

By pressing and holding the Edit button, and then turning the data entry control, the displayed parameter can be quickly edited without latching the Edit mode on.

Sequencer Controls

These buttons control the sequencer transport functions.

Stop Button	Pressing the Stop button immediately stops any currently playing Pattern Sequence or Song Sequence. The sequence remains at its current location.
	Press the Play button to resume from the current location.
	Press the Stop button when the sequence is stopped to return to the beginning of the sequence (RTZ). Pressing the Stop button a third time reloads the initial setup information for the Pattern or Song.
Play Button	The Play button engages the transport, regardless of sequencer mode (except in step edit). The LED in the button will be illuminated when the sequence is running.
	Pressing Play while in Record mode puts the sequencer into Pause mode. The sequencer stops and the Play LED flashes. Pressing Play again resumes Record mode.
Record Button	The Record button selects one of the three Pattern record modes or two Song record modes.
	Song Record modes (from Song mode)
	One press Realtime record mode
	Two presses Step record mode
	Pattern Record modes (from Pattern mode)
	One press Realtime record mode
	• Two presses Grid record mode
A	Three presses Step record mode
While a pattern is playing, press and hold the Play button and press Record to jump into Grid Edit mode.	The LEDs to the right of the button indicate the record mode. After selecting a record mode, the Play button LED will be flashing. Press Play to begin recording.
	You can press Record at any time during recording or playback to go in and out of Realtime Record mode (i.e. Punch In & Out)
Тар Тетро	The Tap Tempo button allows you to change the tempo at any time by tapping the button at the desired tempo. Three taps are initially required to change the tempo and then the tempo follows with each subsequent tap.

Edit Section	
	EDIT EDIT EDIT SONG PATTERN PRESET PRESET
	GLOBAL CONTROLLERS ARP MIDI
	AUDITION COMPARE SAVE/COPY HOME/ENTER
Song Edit Button	The Song Edit menu allows you to name and edit songs. An illuminated LED in the button indicates that you are in Song Edit mode. For more information about Songs and Song mode, see page 92. When pressed in combination with the Pattern Edit button, Song Edit puts the Proteus 2500 in Demo mode.
Pattern Edit Button	The Pattern Edit menu allows you to name and edit patterns. An illumi- nated LED in the button indicates that you are in Pattern Edit mode. For more information about Patterns and Pattern Editing, see page 52. When pressed in combination with the Song Edit button, this button puts Proteus 2500 in Demo mode.
Preset Edit Button	The Preset Edit menu allows you to create and edit presets. An illuminated LED in the button indicates that you are in Preset Edit mode. For more information about the Preset Edit menu, see page 177.
Global Button	The Global menu contains parameters that affect the entire machine. An illuminated LED in the button indicates that you are in the Global menu. For more information about the Global menu, see page 123
Controllers Button	The Controllers menu contains parameters that are related to the front panel controller knob and button triggers. An illuminated LED in the button indicates that you are in the Controllers menu. For more infor- mation about the Controllers menu, see page 115.

Arpeggiator Button	The Arpeggiator menu contains parameters that are related to the Master Arpeggiator such as creating and editing arpeggiator patterns. An illumi- nated LED in the button indicates that you are in the Arpeggiator menu. For more information about the Arpeggiator menu, see page 221
MIDI Button	The MIDI menu contains parameters that are MIDI related. An illuminated LED in the button indicates that you are in the MIDI menu. For more information about the MIDI menu, see page 137.
MIDI Panic Button	Pressing the MIDI and Home/Enter buttons simultaneously sends a MIDI "All Notes Off" and "All Sound Off" for all 32 MIDI channels.
Home/Enter Button	The Home/Enter button is dual purpose. In general, this button acts as the "Home" button. For example, when in an Edit menu, this button snaps the cursor to the page name field of the current screen. When viewing the Preset Select screen, this button snaps the cursor to the preset number field. The flashing green LED of the Home/Enter button indicates that pressing the button will initiate a particular operation.
Save/Copy Button	The Save/Copy button is used to save changes to a pattern, song, preset, copy data between presets, randomize presets and to move other types of data. Selected groups of parameters, such as PatchCord settings, can be copied between Presets and/or between Layers using this menu. The menu is context-sensitive and will start at the appropriate save screen. See Save/Copy on page 263 for more information.
	The LED in the button illuminates to indicate that you are in the Save/ Copy menu. The LED also illuminates when any preset parameter has been changed in the Edit menu (or if the front panel knobs have been moved with Quick-Edit mode enabled).
Compare Button	The Compare button allows you to toggle between an edited version of a preset and the original, unedited version. When a preset has been edited, an asterisk appears in the preset name field and the Save/Copy LED flashes. Press the Compare button, lighting it's LED, to hear the unedited preset. Press the Compare button again to hear the edited preset. If edits are made to the preset while listening to the compared original version, compare mode is aborted and the compare LED goes off.
Audition Button	When the Audition button is pressed, the LED next to the button will illuminate and a short "Riff" (programmed as part of the preset) will play. The Riff is latched on and plays continuously until the button is pressed again. Presets can be changed while Audition is latched on. <i>See "Bank Select Commands" on page 174 for more information on selecting banks via MIDI</i> .

The top line of the Preset display changes to show the MIDI Bank Select controller values needed to select the preset being auditioned. This handy feature lets you know the exact Bank and Preset number.

The Real-time Controller Knobs can serve several purposes. The first four functions are selected using the **Controller Function Select** button above the realtime control knobs. Preset Quick Edit can be enabled to use the knobs for editing in the Preset Edit menu.

- 1. **Quick Edit** Real-time control of internal synthesizer parameters and "Quick Editing" the initial settings of the real-time controllers
- 2. **Programmable Knobs** Real-time control of MIDI continuous controllers on external synthesizers
- **3**. **Volume** Setting the volume of 16 channels.
- **4**. **Pan** Setting the pan position of 16 channels.

Real-time Controller Knobs

Knob Functions

Quick Edit knob movements can be recorded into the sequencer using realtime song or pattern record modes.

Quick Edit mode

The Real-time controller knobs provide direct control of the Proteus 2500's synthesizer parameters when the Controller Function Select is set to Quick Edit.

There is an LED next to each of the control knobs which illuminates to indicate that the knob setting has been changed from the value programmed in the preset ("Knobs Preset Quick Edit" mode must be enabled in the Controllers menu). If the knob position is returned to the original setting, the LED is extinguished.

Initial controller values can be stored in every preset. When you move a knob with Quick-Edit enabled, the Initial Controller Value is updated with the knob's new value. The knob's LED lights indicating that the preset value has been changed. The MIDI A-P values are stored in the corresponding *Initial Controller Amount* parameter in the Preset Edit menu (see "Initial Controller Amount" on page 215). The Save/Copy button LED flashes to remind you that the preset has been edited. "Quick-Edits" made to a preset are lost if you select another preset before saving them.

The four rows of knobs always control the preset on the basic MIDI channel (the channel showing on the preset select screen), when the control switch is set to Quick Edit.

The labels (Filter Cutoff, Filter Q, Filter Attack, Filter Decay, etc.) printed on these rows show how the factory ROM presets are programmed to respond. *(The controls may not exactly conform to the front panel labels depending on the preset.)* You can change the way a preset responds to MIDI A-P messages from the Preset Edit menu (PatchCords). The knobs only generate a message when you move a knob to a new value. The current value jumps to the new value.

► To Quick-Edit a Preset

- 1. Select Quick Edit mode using the Controller Function Select button.
- **2.** Use the Control Knobs to change the sound of the current preset as desired. An asterisk (*) appears in the preset view display indicating that the preset has been modified.
- **3.** Press the **Save/Copy** button. You may have to turn the data entry control so that the display reads, "Save PRESET to."
- 4. Press the right cursor button to select the bottom row.
- **5. Optional:** Select a new preset location if you don't want to overwrite the current preset, or if the current preset is a ROM preset.
- 6. Press the Enter button to save the preset.

Programmable Knobs mode

If the "*Programmable Knobs*" parameter in the Controllers menu is set to "Ext," or "Both," the system sends MIDI controller messages when you turn the Controller knobs. Each knob can be programmed to send on any MIDI channel (01A-16B) and on any continuous controller number from 1-95. The knobs only generate a message when you move a knob to a new value. The Controller Knob LEDs always remain off in this mode.

To Program the Programmable Knobs

- 1. Press the Controllers button. Its LED will illuminate.
- 2. Turn the data entry control to select the **Programmable Knobs screen**.

- **3.** Use the left/right cursor controls to select the fields.
- 4. Select the MIDI Continuous Controller number, the MIDI channel, and Internal/External or Both for each of the 16 knobs.
- 5. Save the Multisetup if you want to save these settings. See page 125.

Multichannel Volume Knobs

In this mode, each of the 16 knobs will control MIDI Channel Volume for the like-numbered channel. This directly edits the value shown on the preset select screen and is equivalent to sending MIDI cc#7.

View Mode must be set to "MIX" in order to see the display shown above.

When "Knobs MIDI Out" in the MIDI menu is enabled, any knob change will send MIDI cc#7 to the MIDI out port as well as controlling the internal channel volume.

In this mode, the LEDs next to the sixteen knobs blink to indicate MIDI activity on the same numbered MIDI channel (from the sequencer or external MIDI sources).

Turning a knob while in this screen automatically selects that knob for programming!

Multichannel Pan Knobs

In this mode, each of the 16 knobs will control MIDI Channel Pan for the like-numbered channel. This directly edits the value shown on the preset select screen and is equivalent to sending MIDI cc#10.

View Mode must be set to "MIX" in order to see the display shown above.

When "Knobs MIDI Out" in the MIDI menu is enabled, any knob change will send MIDI cc#10 to the MIDI out port as well as controlling the internal channel volume.

In this mode, the LEDs next to the sixteen knobs blink to indicate MIDI activity on the same numbered MIDI channel (from the sequencer or external MIDI sources).

Trigger Buttons

The trigger button section serves multiple purposes which are listed below.

- Assignable & latchable note triggers. See page 119.
- Sequencer track select buttons See page 22 and page 52.
- Sequencer grid edit entry keys. See page 61.
- Preset Edit menu jump keys. See below.

Mode Switch

The mode switch is normally used to select between Triggers and Track Select/Mute. In Sequencer Grid Edit, the mode switch is used to select step resolution.

Select Triggers mode by pressing the mode select button so that the "Triggers" LED is illuminated. Now the 16 buttons work like keyboard notes. Each of the 16 buttons can be assigned to any MIDI note, on any MIDI Channel (01A-16B), with any velocity (0-127), and can be set to be latched or momentarily on. Latched note will hold until the button is pressed again. Latched notes will be indicated by the LEDs. Trigger keys are assigned from the Controllers menu. See page 119 for more information.

Whenever you are in the Preset Edit menu, the sixteen command buttons function as "jump" buttons to the various screens in the Preset Edit menu. The jump location is labelled directly below each button.

Pressing a jump button instantly takes you to the first screen in the selected category. Pressing the button again takes you to the second screen in the category and so on. Repeated pressing will rotate you back to the first screen in the category.

Trigger button presses can be recorded into patterns and songs.

Trigger Mode

Preset Menu Jump Keys

Knob Bypass, Glide, Erase & Repeat	
Knob Bypass	When this button is pressed and its LED illuminated, the front panel knobs are disabled. This unusual feature allows you to pre-set the knobs to a certain position in preparation for a performance effect such as a pitch or filter sweep. Without this feature, the knob might be in a inappropriate position and suddenly jump to the current value when the knob is touched, ruining your intended effect.
Glide Button	This button turns Glide (portamento) on or off for the current preset. The LED in the button illuminates when Glide is on. See Glide on page 195.
Erase Button	When this button is latched on (LED illuminated) while recording a pattern, any note played on the keyboard will remove that note from the pattern as long as the keyboard key is held down. This allows you to quickly removed any "flubbed" notes without having to enter Pattern Edit mode.In Grid record mode, pressing the Erase button while the cursor is on one of the grid locations, removes the note from that location.In Song step record mode, pressing the Erase button erases the currently selected step from the song.
Repeat Button	When this button is latched on (LED illuminated) while recording a pattern, played notes will repeat at the current pattern quantize setting (page 53). You can get some great effects with this feature by simulta- neously changing the volume or pitch as the sound repeats. In Song step edit mode, the Repeat button functions as a "Pattern Insert" button. See page 93 for more information.

Preset Screen	The Preset Select screen is accessed by pressing the Preset View button located directly under the LCD. From this screen you can examine or change the Preset, Volume, Pan Position and Preset Location for each of the 32 MIDI channels.
MIDI Channel Selection	 COIR V127 POIR A:off User 079³ kit: Hide & Seek To Change the MIDI Channel Press the Preset View button to display the Preset Select screen. Press the Track/Channel inc/dec buttons located to the left of the liquid crystal display to select channels 01A through 16B. The preset, volume and pan settings for each channel will be displayed as you scroll through the channels. The channel number shown in the main screen is the "basic MIDI channel" when in Omni or Poly modes.
BankContents0- 128 RAM Presets1- 128 RAM Presets2- 128 RAM Presets3- 128 RAM Presets3- 128 RAM Presets2- 128 ROM Presets3- 128 ROM Presets4- 128 ROM Presets5- 128 ROM Presets5- 128 ROM Presets6- 128 ROM Presets7- 128 ROM Presets	 To Change the Preset Press the Preset View button to display the Preset Select screen. Press either cursor key until the cursor is underneath the preset number. (The cursor is a little flashing line underneath one of the parameters in the display.) As you rotate the data entry control, the preset number and name changes. The displayed preset is assigned to the displayed MIDI channel. Presets are arranged into banks of 128, as shown in the diagram at left.
An asterisk * in the preset view screen indicates that the preset has been modified. (Change the preset without saving to remove the asterisk.)	 <i>Indicates that the preset was modified</i> Using the screen above as an example, the superscripted number 2 in the second line of the display identifies the current bank number. Select banks independently of the of the preset number by locating the cursor on the Bank field and turning the data entry control.

MIDI BANK SELECT			
	MSB cc00	LSB cc32	
USER	00	00	Bank 0
USER	00	01	Bank 1
USER	00	02	Bank 2
USER	00	03	Bank 3
P2500	17	00	Bank 0
P2500	17	01	Bank 1
P2500	17	02	Bank 2
P2500	17	03	Bank 3

This chart shows the MSB and LSB numbers needed to select preset banks over MIDI. Select a bank, then send the program change number. Without a bank select command, presets are selected from within the current bank.

Channel Volume

Channel Volume sets the volume of the selected MIDI channel in relation to the other channels. This is the same parameter as MIDI volume control #7, and changes made over MIDI are shown in the display.

► To Change the Channel Volume

- 1. Press the Preset View button to display the Preset Select screen.
- 2. Press either cursor key until the cursor is underneath the volume value.
- **3.** Rotate the **data entry control** to select a volume level. The Channel Volume range is 000-127.

Channel Pan

Channel Pan sets the stereo position of the selected MIDI channel. This control operates like the balance control on your home stereo system. Channel Pan is the same parameter as MIDI pan controller #10, and changes made over MIDI are shown in the display.

Note: Pan settings in the preset ADD algebraically with the Channel Pan setting. Therefore, if the pan setting in the preset were set to "63R," moving the Channel Pan setting full left would return the sound to the center position.

To Change the Channel Pan

- 1. Press the **Preset View** button to display the Preset Select screen.
- 2. Press either cursor key until the cursor is underneath the pan field.
- **3.** Rotate the data entry control to **select a pan value**. 64L indicates a hard left pan, 63R indicates a hard right pan. With a setting of "00," the sound is centered in the stereo field.

Channel Arpeggiator

This function controls the arpeggiator for each MIDI channel. When the channel arpeggiator mode is set to Off, then there is no arpeggiation on that channel, regardless of what is set up in the Master Arpeggiator or preset. If the channel arpeggiator is On, the preset's arpeggiator is used, regardless of whether or not it is turned on in the Preset Edit menu. This lets you turn on arpeggiation from the main screen.

If the mode is set to "P" (for preset), the preset's arpeggiator settings and on/off status is used. If the mode is set to "M" (for master), the master arpeggiator settings and on/off status (located in the Arp menu) are used. *See the "Arpeggiator/Beats Menu" on page 221 for more information.*

► To Play the Arpeggiator (Quick Start)

- **1.** From the **Preset View** screen, press either cursor key repeatedly until the cursor is underneath the **arpeggiator field** (A:).
- **2.** Rotate the data entry control to select "P" for preset.
- **3.** Press either cursor key repeatedly until the cursor is underneath the **Preset Category** field and select "**arp**:" using the data entry control.
- 4. Press the right cursor button to move it to the **Preset Name** field.
- **5. Play notes or chords** on the keyboard. Change presets as desired to audition the various patterns and presets.

Sound Navigator

Sound Navigator allows you to search through preset and instrument categories to find the type of sound you're looking for. Each preset and instrument has a name and a three letter preset category. You can create your own categories in order to group favorite presets. The preset category is assigned in the Preset Edit menu (Preset Name). Instrument categories are fixed.

Preset Category

When you want to find presets in a particular category, you simply change the category field in the Preset View screen, then move the cursor to the preset name field to scroll through all the presets in the selected category.

When the cursor is on the Preset Category field, turning the data entry control selects different preset categories. The Name Field will change to show the first preset in each category.

Sequencer

The Proteus 2500 Sequencer is an extremely powerful, yet easy to use MIDI recording device. Several different methods of creating and editing sequences are provided to suit your personal style of composition.

► To Enable the Sequencer

Proteus 2500 always powers up in pattern mode. Pattern mode can be selected from any other screen by pressing the Pattern mode button below the LCD.

A Pattern can be immediately started by pressing the Play button. Press the Song mode button to select Song mode.

► To Select a Song or Pattern

With the Proteus 2500 in Song mode and the cursor in the Home position, turn the data entry control to select a new song.

With the Proteus 2500 in Pattern mode and the cursor in the Home position, turn the data entry control to select a new pattern.

To Edit a Pattern

Select the pattern you wish to edit, then press the Pattern Edit button. Turn the data entry control to scroll through the Pattern Edit menu items. See page 68.

► To Edit a Song

Select the song you wish to edit, then press the Song Edit button. Turn the data entry control to scroll through the song edit menus. See page 97.

Warning: Sequencer Patterns and Songs are NOT saved until you save them in the Save/Copy menu.

An asterisk (*) appears in the Pattern or Song display to indicate that the item needs to be saved. The Save/Copy button LED will also be flashing to remind you.

Overview	Proteus 2500's sequencer is a Song/Pattern based recorder featuring high resolution recording at 384 ticks per beat. Multiple record modes - Song, Pattern, Grid, Step & Realtime Record allow you ultimate flexibility in the way you compose you music. You can add, monitor and modify parts on the fly or switch recording modes without stopping. The sequencer feature 16 tracks, each of which can record up to 16 channels. Automated mixing and synth control is a snap. Now discover just how easy recording can be.	
Definitions	The various components of Proteus 2500 sequences are described below, starting from the smallest units "events" and ending with the largest element, a "song". Songs can be up to 999 bars in length.	
Events	Events are the smallest bits of information that are recorded into a sequencer. Note-on, note-off, continuous controller messages, MIDI clocks, and program change commands are all events.	
Tracks	Tracks are groups of events that will be assigned to a specific MIDI channels for playback. A single track can be assigned to one or two MIDI channels (one normal, one aux). A track can play internally only, externally only, both internally and externally, or not assigned at all. See page 84.	
	Tracks may also contain information encoded on multiple MIDI channels. Proteus 2500 can assign these multichannel events to play on their assigned MIDI channels or it can force them all to a new assigned channel. See page 84.	
	Individual tracks can be muted on playback. The sequencer supports 16 tracks (T1 - T16).	
Patterns	Patterns are collections of tracks and are the basic unit of storage for sequences. You cannot save a track unless it is part of a pattern.	
	Patterns can be up to 32 bars in length. After playing to the end of its specified length, a pattern will loop back to the start. Looping repeats indefinitely as long as the sequencer is running.	
- 4	Patterns store the following information in non-volatile Flash memory which is recalled just before the pattern is played.	
Important: Pattern Setup information is saved as it was set at the moment you saved the pattern.	 Pattern Name & Number Track Events Initial Tempo & Meter Master FX setup Track to MIDI Channel mapping Track Mutes Bank/Program changes Volume & Pan settings Mix Output setup Arp Status (off, on, preset, master) 	

Executing an Edit function

length, name, chan. asssign, etc.

Use the "Revert to Saved Pattern" feature to remove the asterisk and discard your pattern edits. See page 91 for more information.

Pattern Recording & Editing

Patterns can be edited in three ways:

Realtime Record - Events are stored in the designated track as they are played on the keypad or from the MIDI input port. Events are overdubbed into the track as the track plays and loops. The original channel of each event is maintained when recorded.

Individual events can be erased by pressing the realtime erase button and re-playing the event during the time that the event occurs in the pattern.

Grid Editing - In this mode, the sixteen trigger buttons become a time grid. A note event is first selected and is then placed at any time location by pressing the appropriate grid button.

The grid resolution can be changed to allow a whole measure or a fraction of a measure to be displayed on the button grid.

Step Edit - In this mode, you can single-step through the time locations (bars, beats, & ticks) and place events anywhere you want.

The play button jumps from the current location to the next note value as determined by the resolution setting.

The Asterisk

When a pattern (or song) has been edited and needs to be saved an asterisk (*) appears in the display. The Save/Copy LED will also be flashing as a reminder to save your work. The asterisk and your edits remain in the single edit buffer even if you change patterns. Edits are only erased by saving the pattern, editing another pattern, invoking the "Revert To Saved" feature, or turning the unit off. Saving saves the current pattern and NOT the edit buffer.

Indicates that the Pattern needs to be saved.

Standard MIDI Files

Patterns can also be imported from a Standard MIDI File (SMF) dump. SMF type 0 files are imported with MIDI channels 1-16 going to the same numbered Proteus 2500 track. SMF type 1 files are imported with tracks 1-16 going to the same numbered Proteus 2500 track. Tracks 17 and above will not be imported into Proteus 2500.

Songs

Songs are recorded on a single track which allows you to record Pattern Play messages as well as real-time note and controller information. This lets you link previously recorded patterns together to form more intricate arrangements, then overdub controller information such as volume, pan or other controller information or additional note information. You can change pattern length and track mutes in song mode without affecting your stored patterns.

Song mode is also useful when you wish to record, playback or import a sequence longer than 32 bars. For example, you could import a long multichannel sequence created on another sequencer as an Proteus 2500song.

The Song Track contains Pattern Play events as well as real-time data (note-on/off, continuous controllers and other MIDI data).

Song Record Modes

- **Realtime Record** Events are stored as they are played on the keypad, controllers or from the MIDI input port as the single realtime track plays. The original channel of each event is maintained when recorded.
- **Step Edit** In this mode, you can single-step through the bar locations and place Pattern Inserts wherever you want.

Songs store the following information in non-volatile Flash memory:

- Song Name & Number
- Realtime note & controller information
- Track Mutes for each Pattern Play event (these can be different than the mutes stored in each Pattern.)

The following events are also saved as they were set **when the Song was saved.** The "Event Source" option in the Song Edit menu (page 97) determines whether song or pattern events will be used in the song.

- Initial Tempo
- Master FX setup
- Event Source
- Volume
- Pan.....
- These parameters are stored for each channel
 - used in the song.
- Mix Output setupArp channel status (off/on/preset/master)

The 16 tracks of a song can be assigned to either the A or B channels using the "Song Channel Assign" function on page 108.

Event Timing

The following information is intended for advanced users. If you are just getting started with Proteus 2500 you can skip this section for now.

Songs and patterns both contain *pre-sequence setup* information that is loaded just before a song or sequence plays. This pre-sequence information is not reloaded when a pattern loops. Reloading this setup information each time a pattern looped would cause data clogging and possible timing errors in the sequence.

- The first two ticks (0 & 1) are reserved for pre-sequence setup information. Tick 0 is reserved for the internal pre-sequence setup information. Tick 1 is used to place your own pre-sequence setup information so that it won't loop and cause timing errors.
- Events (controller data, program changes, sysex, etc.) are played before Notes, even if they are located on the same numbered Tick. This is done so that volume changes and other programming information will be in place when the notes turn on.

When a track is set to "ext" (external transmit only), you will be allowed to see the tick 0 spot for EVENTS. This allows you to remove any presequence setup data (which is stored at Tick 0) left over from when the track may have been internal or both.

This chart shows how notes and other MIDI events are recorded at the beginning of a pattern or song.

Notes are played after other MIDI events. Ticks 0 and 1 are reserved for *pre-sequence setup* information which does not loop. Beginning at tick 2 of the pattern or song, information is recorded normally (events first, then notes).

Track Priority

The Proteus 2500 sequencer handles lower numbered tracks first. Therefore, you should put your most timing-critical data on low numbered tracks. Normally this will not be important since the sequencer timing is so good, but if you create very dense sequences, this information might be useful.

Pattern Mode

Pattern mode is selected by pressing the **Pattern mode** button beneath the liquid crystal display. The screen shown below is displayed in Pattern mode when the sequencer is stopped.

¹01 STOP Ln: 08 Bar: 01 . 1 000⁰ Start of IT

Pattern Play

continuously play and loop. The display changes as shown.

Pressing Play in Pattern mode causes the selected pattern to

^T01 STOP Ln:08 Bar:01 .1 CurPat: 002⁰ NextPat: 002⁰

The **Track Mute** buttons can be used to select specific tracks for playback. The track mute settings are saved when the pattern is saved and restored when the pattern is run.

PLAY

Pressing the **Stop** button stops the pattern immediately. Pressing **Stop again** rewinds the pattern to the beginning (RTZ).

STOP Pressing the **Stop** button a third time reloads the initial setup information for the Pattern (or Song).

To select another pattern while one is already playing: Turn the data entry control in Pattern Mode/View. The lower line of the display changes to show the name and number of the pattern you have selected. The Home/Enter LED will be flashing.

> ⁷01 STOP Ln:08 Bar:01 .1 015⁰ Club Luv

• The Tap Tempo LED stays on slightly longer at each bar.

• The Tap Tempo LED flashes to mark each quarter note.

	Press Enter to jump to the new pattern when the current pattern ends. The lower line of the display now again shows the current and next pattern numbers.	
	^T 01 STOP Ln:08 Bar:01 .1	
	CurPat: 002 ⁰ NextPat: 022 ⁰	
	To start a new pattern immediately , press Stop , select the new pattern and press Play . <i>or</i> To select a pattern while playing, press Enter , press Stop , then Play .	
Realtime Recording	As described on page 49, there are three ways to record patterns. Realtime recording is the easiest way to begin recording. Notes and Controller events are recorded into a pattern. External MIDI data can also be recorded.	
Preparing to Record a Pattern	Before you record a pattern there are a few things you'll want to set up. Most of these steps apply to realtime or step recording.	
	• Erasing the pattern (if necessary).	
	 Program the Metronome (if necessary). Page 70. Define the pattern's Time Signature and Pattern Length Page 56. 	
	 Setting the Count-in length (if necessary). Page 55. 	
	• Setting Input Quantize (to correct timing errors in Realtime Recording, to set the step rate in Step Recording, or to set the repeat rate when using the front panel Repeat button). Page 53.	
	Select the desired Channel, Track and Preset for recording.	
Input Quantize	Input quantize corrects your timing and places notes exactly on the note value of your choice. You can choose any of the following note values: quarter notes, quarter note triplets, eighth notes, eighth note triplets, sixteenth notes, sixteenth note triplets, thirty second notes, or thirty second note triplets.	
	The illustration below shows one measure of $4/4$ music (there are four quarter notes, 8 eighth notes, and 16 sixteenth notes in a measure of $4/4$).	

Suppose you wanted to record a bass drum beat on every quarter note. The upper row of dots in the diagram below shows where you might have played the four drum beats. The lower row of dots shows what happens when Input Quantize is set to eighth note resolution. Each beat is now moved to the nearest eighth note.

In the next example we'll set Input Quantize to sixteenth note resolution. In this example the beats you played have been assigned to the nearest sixteenth note, which works on beats 3 & 4, but not on 1 & 2.

Sixteenth Note Input Quantize

This brings up an important point.

Use the Lowest Quantization value needed.

If you're recording a simple snare backbeat, there's no point in using higher quantization than eighth notes. To record something more complex, use a finer resolution such as sixteenth or thirty-second notes.

You can change the Input Quantize setting in Pattern mode whether the Proteus 2500 is running or stopped, recording or not. You can also use different resolutions on the same part. Use low resolution to record most of the part, then switch to a finer resolution to add complexity.

Recording triplets is easy since there are four triplet modes (1/4t, 1/8t, 1/16t and 1/32t). You can also switch between triplet and non-triplet modes to record complex polyrhythms.

When Input Quantize is turned Off, you are recording in Proteus 2500's high resolution mode in which beats can be placed on any one of 384 ticks per measure. High resolution recording is great if you're a good player and want your performance captured as accurately as possible.

► To Set Input Quantize:

Input Quantize only works in Pattern mode.

- 1. Choose Pattern mode and select a Pattern.
- **2.** Go into Record mode by pressing the **Record** button. The Pattern Record screen shown below appears.

- 3. Choose the desired Input Quantize value using the data entry control.
- 4. Press Play to begin recording.

Count In

The Count-in feature lets you hear the metronome for either one or two measures before recording begins. This helps you get the feel of the beat before you actually begin recording.

To set Count-in:

- 1. Choose Pattern mode and select a Pattern.
- **2.** Go into Record mode by pressing the **Record** button. The Pattern Record screen shown below appears.

- 3. Move the cursor underneath the Count-in (Cnt) field using cursor keys.
- 4. Select 0, 1, or 2 bars of count-in using the data entry control.
- 5. Press Play to begin recording.

Pattern Length	You can set the length of a pattern from 1 to 32 bars, either before, after or even during recording.
	 To Set the Pattern Length from the Main Pattern Screen: 1. Select the pattern in Pattern mode. 2. Move the cursor to the Length (Ln) field using the cursor keys.
	^T 01 STOP Ln: <u>0</u> 2 Bar: 01 . 1 000 ⁰ Start of IT
	3. Set the Length of the pattern using the data entry control.
Metronome	The metronome is a timing aid when recording or playing back patterns which produces an accented click on the first beat of each measure and a softer click on other beats. This setting is NOT saved with the pattern.
	► To Set the Metronome:.
	1. Go into Record mode by pressing the Record button.
	2. Scroll to the Metronome screen using the data entry control.
	3. Move the cursor underneath the Metronome field and set it to On , Off or Rec using the data entry control. Set to On , the metronome plays during recording and playback. Set to Rec , the metronome only plays while recording.
	4. The metronome value is set in the Pattern Edit menu. See page 70.
Recording a Pattern	 To Record a new Pattern: 1. Press the Pattern mode button. The screen shown below appears.
	^T 01 STOP Ln: 08 Bar: 01. 1 000 ⁰ Start of IT
For these instructions, make sure Keyboard/Knob Channel in the Controllers menu is set to "Basic Channel".	 Select a Blank pattern to begin recording using the data entry control. Press the Record button. The screen shown below appears. <i>Track Number</i> Pattern Length Current Position
	01 REC Ln: 08 Bar: 01. 1 Quan: 8 Met: on Cnt: 0

/

Auto-Correct

Metronome on/off

Count-in Bars

- 4. Set the **Pattern Length** and **Input Quantize** value. For more information on Input Quantize see page 53.
- 5. Set the number of count-in bars if you wish.
- 6. Select a **Track** number. The default value is Track one. This is fine for the first track.
- 7. Press the Preset View button. The preset screen shown below appears.

- 8. Select a Preset for your first track.
- **9.** Press the **Preset View** button again after you've selected a preset. The LED will go out and you'll be returned to the Pattern screen.

Get ready to record the first track!

- **10.** Press **Play** to begin recording. Recording will begin after the count-in period (if any). The pattern will loop when it reaches the end of its length.
- 11. Press Stop when you're finished recording.

Are you happy with your performance? If not, you can erase the track and try again.

To Erase the Track:

- **12.** Press the **Pattern Edit** button and turn the data entry control until you find the "Cut Track to Clipboard" screen.
- **13.** Move the cursor to the lower line of the display under Track $\underline{1}$.
- 14. Press the flashing Enter button to erase the track.
- **15.** Press the **Pattern Edit** button again to exit the menu, then go back to step 10 and re-record the track.

To Erase Specific Notes:

16. Press the Erase button in Realtime Record mode and hold down the keyboard note you wish to erase. The note will be erased when it comes around in the pattern.

To Record another Track:

- **17.** Press the **+Track** button located to the left of the LCD. The track number increments to Track 02.
- **18.** Press the **Preset View** button. Notice that the MIDI channel has also incremented to C02A. Select a preset.
- **19.** Press the **Preset View** button again after you've selected a preset. You'll be returned to the Pattern screen.

You can go in and out of Record mode at any time by pressing the **Record** button

To Erase an Entire Pattern: Copy an "Empty Sequence" over the pattern. (Save/Copy menu).

- **20**. Press the **Stop** button to return the beginning of the pattern.
- 21. Press Record, then Play to begin recording on track 2.
- **22.** After recording track 2, check out the **Track Enable** buttons to mute and un-mute the tracks.
- **23.** A pattern must be SAVED or it will be erased when you change the pattern. See "Save Pattern" on page 263.

You can continue to add up to 16 tracks. If you need more than this, keep in mind that you can add up to 16 channels of data to each track! Normally, it's simpler to use just one channel per track.

• To setup a track for multichannel playback see "Channel Assign" on page 84.

Saving Patterns

When you save a pattern (page 263), the following settings are also saved (as set at the moment you saved). These setting are restored just before pattern playback.

- Tempo & Meter
- Master FX setup (See page 130)
- Track to MIDI Channel mapping (See page 84)
- Track Mutes
- Bank/Program changes.....
- Initial Volume & Pan settings
- Mix Output setup (See page 128)
- Arp Status (off, on, preset, master).....

► To Record Realtime Controller Data

You can mix and embellish your patterns by recording continuous controllers along with note data.

1. Start by recording and saving a pattern.

Recording Quick Edits

The Quick Edit knobs are only active on the Basic Channel *(the channel currently displayed in the Preset View screen)*.

- **2**. Select **Quick Edit** mode by pressing the Controller Function Select button.
- 3. Select the channel with the preset you wish to Quick Edit.
- 4. Practice your knob movements before recording by **Playing the pattern** and twisting the knobs.
- **5.** When you're ready to record, press **Record** while the sequencer is playing (to punch-in), then perform the knob movements.

The Event Source parameter (page 97) controls how pattern settings are used in Song mode.

66

Too much controller information can clog the sequencer causing sluggish performance and sloppy timing. Use the "Thin Events" function (page 74) to reduce the amount of controller data in the pattern. These parameters are stored for each track used in the pattern.

Record Multitrack Volume and Pan Information

You can record Volume and Pan information for all 16 channels simultaneously by using Volume Knob mode. You'll be recording multichannel volume or pan data onto a track. The default channel assignment will rechannelize this data to a single channel. You must change this.

- 6. Select a track for the Realtime Controller data.
- **7.** Press the **Pattern Edit** button and scroll to the "**Channel Assign**" page.
- 8. Set the track to MultiA. Now the track will record multichannel data.
- **9**. Press the **Pattern Edit** button to exit the menu.

Automating the Volume of each Channel

- **10.** Select **Volume** knob mode by repeatedly pressing the Controller Function Select button (page 37).
- 11. Select Mix View mode if you wish to view the volume settings.
- **12.** Press the **Stop** button twice to make sure the pattern starts at the beginning.
- **13.** Press the **Record** button in Pattern mode to get ready to realtime record. The Play button LED will be flashing.
- 14. Press the **Play** button to begin recording. The controller knobs now adjust the volumes of all 16 channels.
- **15.** Press **Stop** when you're finished recording.

Real-time Panning

- **16.** Select **Pan Knob** mode by pressing the Controller Function Select button.
- **17.** Select **Mix View** mode by pressing the Mix button (if it's not already selected).
- 18. Turn the data entry control clockwise to select Ch Pan view.
- **19.** Press the **Stop** button twice to make sure the pattern starts at the beginning.
- **20.** Press the **Record** button in Pattern mode to get ready to record. The Play button LED will be flashing.
- **21.** Press the **Play** button to begin recording. The controller knobs now adjust the pan positions of all 16 tracks.
- 22. Press Stop when you're finished recording.

Use the "Erase cc# Events" function (page 75) to erase controller data from the pattern.

Erasing Controller Data

- **1.** The **Erase Events** function (page 75) can be used to erase controller data from a pattern.
- 2. Find the realtime controller number of the knob you wish to erase in the Controllers menu.
 (Volume is always cc#7, and Pan is always cc#10. The numbers of the 16 controller knobs can vary.)
- **3**. Press the **Pattern Edit** button.
- **4.** Scroll to **Erase Events** and move the cursor to the lower line of the display.
- **5.** Select the realtime controller number from step 2.
- 6. Press Enter to erase the controller data.

► Using Realtime Repeat

When this button is latched on (LED illuminated) while recording a pattern (or song), played notes will repeat at the current pattern quantize setting (page 53). You can get some great effects with this feature by simultaneously changing the volume or pitch as the sound repeats.

- 1. Press the **Record** button once to go into Realtime Record mode.
- 2. Set the Input Quantize resolution on the LCD to the desired rate.
- 3. Press the **Repeat** button illuminating the LED.
- 4. Press Play to begin recording.
- **5. Play the Keypads** (or keyboard). Notes now repeat according the Input Quantize setting.
- You can change the Input Quantize setting at any time while recording.

Automatic Channel Assignment

Whenever you change a channel, the sequencer looks for a track that is assigned to that channel. This feature automatically selects the proper track in most cases, freeing you from having to think about it.

For your information, the algorithm works as follows:

- 1. If the current track is already assigned to this channel, or if this track is a "multi" track containing this channel (i.e. MultiA if channel was set to 07A) it does not change the current track.
- **2.** If not, it starts at track 1 and looks for a track that is assigned to this exact channel, and sets it to the **first** track that is.
- **3.** If there wasn't one, again it starts at track 1 and looks for a "multi" track that contains this channel, and sets it to the first track that does.
- **4.** If none of the above succeed (meaning that this channel is not being played on any track), it does not change the current track.

Also, changing the track in the list editors or channel assignment screens sets the current track and vice versa.
Grid Recording

Grid recording allows you to lay out notes along a pre-defined grid. This is a very visual way to lay down a beat and it makes it easy to experiment, since you can change everything by just turning buttons on and off. Proteus 2500 brings a host of new features to the party.

What is Grid Recording?

Grid recording can be visualized as a series of notes placed along a line where each note can be turned On or Off with a button. In the example below, you'll hear sixteen notes to a measure in 4/4 time.

To program quarter notes, you would turn on one note out of every four as shown below.

Turning on every other button with the 16th note grid selected gives you Eighth notes.

The grid can be set up for 16th notes, 32nd notes, 8th note triplets or 16th note triplets.

When using 32nd notes or recording patterns longer than one bar, the grid displays as much of the pattern as it can then switches to the next section. When playing one bar of 32nd notes, for example, the sixteen grid buttons and LEDs show the first 16 notes, then switch to the second group of sixteen notes.

The liquid crystal display shows the status of the16 grid locations.

The time signature determines how the grid is laid out. The pattern below is in 3/4 time and so only12 locations are needed.

Grid mode can also be used in conjunction with either of the other record modes. You can go into grid record mode and edit a pattern you created in realtime record mode, or you could start with grid recording and record over it in either realtime or step mode.

To examine a pattern in grid mode, place the cursor under the **Key** field and turn the data entry control while the pattern is playing. When you find a recorded note, you'll see bars appear and the grid button LEDs will illuminate.

Press and hold **Play**, then press **Record** while a pattern is playing to jump right into Grid Record mode.

► To Record a Pattern using Grid Recording:

1. Press the Pattern mode button. The screen shown below appears.

⁷01 STOP Ln: 08 Bar: 01. 1 000⁰ Start of IT

- **2.** Select an empty sequence to begin recording using the data entry control.
- **3.** For now, set the pattern **Length** to **1 Bar**. This will make Grid mode easier to understand at first.
- **4.** Press the **Record** button. The Realtime LED illuminates and the screen shown below appears.

5. Press the **Record** button again. The Grid LED illuminates and the screen shown below appears.

- **6.** Press the **Preset View** button and select a preset to use for track one. A "prc" or "kit" preset might be a good choice. Press the **Preset View** button again after you've made your selection to return to the Grid recording screen.
- **7.** Select a note from the keyboard. Press the transposition buttons to find other sounds. Note that the **Current Key** field in the LCD changes as you play the keypad.
- 8. Now turn on a few of the grid buttons. It doesn't matter which for now.
- 9. Press Play. You'll be hearing some sort of rhythm.
- **10.** Go ahead and change the grid buttons. Play around until you get something you like.

The LCD will now probably look something like the next screen. The vertical bars correspond to the grid buttons you've selected.

Another Rhythm?

- **11.** Without even stopping, play another note. Keep hunting until you find one you like. The last played key will be the selected sound.
- **12.** With the new sound selected, turn on some grid buttons. (Note that they all went off when you changed sounds.)

Change of Velocity

- **13.** To pause the sequencer without exiting Grid mode, press the **Play** button. Press the **Play** button again to continue.
- 14. Press one of the Grid buttons. The flashing cursor is now positioned underneath that bar in the display.

- **15.** Now turn the data entry control. The height of the selected bar changes, as does the velocity readout. This is one way to change the velocities of grid notes. (*You can also simply play the velocity on the keypads.*)
- **16.** Turn some of the grid buttons on and off. Note that they now have the same velocity as the last note you modified. Since velocity is often coupled to volume in the preset, changing the velocities of note can have a dramatic effect on the sequence.
- Now press the Home/Enter button. The cursor is now underneath the Key field. pause the sequencer by pressing the Play button.
- 18. Re-key the note. If you didn't hit the right note the bars will disappear. When you find a recorded note the bars will reappear.
- **19.** Re-key the note playing hard and soft on the keypads. Note that when you select grid buttons, the last played velocity is used.

Double Time

- **20**. With the sequencer running, select one of the Grid positions by pressing its button.
- **21.** Press the **Repeat** button located below the controller knobs. A number now appears at the grid location which indicates the number of times that the grid resolution has been increased for that location. For example, if the number is 2, the note will play twice in that time slot.

You could also assign each new part to another Track ... or not. It's up to you.

If you accidentally press the Stop button by mistake, simply press the Record button twice to return to Grid mode.

You can also use the data entry control to select notes.

• Pressing the **Erase** button while the cursor is on one of the grid locations, removes the note from that location.

- **22.** Repeatedly pressing the repeat button increments the number. The display goes up to nine times, but it will go even faster if you keep pressing the repeat button. Special effects anyone?
- **23.** The **Erase** button, located right next to the Repeat button, turns off the grid locations (as does the grid button itself).

Step Time Recording

In this mode, you can insert events one at a time and place them exactly where you want. In Step mode, key events, knobs or external MIDI events are recorded into the current pattern step. The resolution of the step is selected and indicated in the "Res" field on the LCD. In Step Record mode, the Resolution (Res) setting determines the rhythmic value of each step. For example, with Resolution set to 1/8 notes, you will step through the pattern an eighth note at a time. Step recording records the actual "played" velocity of note-on events.

Another cool feature is that each quantized step is from the current time setting. This allows you to easily create complex offbeats using the quantize feature. The way it works is simple. If you offset the current time using the data entry control, the next step will be quantized *from that point*!

As an example, let's say you started at Bar:01.01.0000 with Resolution set to 8. The next step would be Bar:01.01.0192, the next at Bar:01.02.0000 and so on. If the initial time setting was instead, Bar:01.01.0050, the next step would be, Bar:01.01.0242 (192 + 50).

When Auto mode is enabled (Y), the step is automatically incremented when a note is entered. The step is not recorded and incremented until the last "key up" of a chord. This allows you to make changes to the step as long as one key is still held.

The Gate field allows you to set the note-on duration for note-on events. A setting of 50% with eighth note resolution would keep the note held for half that period (or a 16th note). Settings of greater than 100% hold the note over into the next note.

Note Value/Number of Ticks

Resolution	Ticks	Resolution	Ticks
Whole notes	1536	Eighth note triplets	128
Half notes	768	Sixteenth notes	96
Quarter notes	384	Sixteenth notes triplets	64
Quarter note triplets	256	32nd note	48
Eighth notes	192	32nd note triplets	32

► To Record a new Pattern in Step Time:

1. Press the Pattern mode button. The screen shown below appears.

2. Select an empty sequence to begin recording using the data entry control.

- 3. Set the Pattern Length. Choose a one or two bar length to start.
- **4.** Press the **Record** button three times to select Step Record mode. The screen shown below appears.

- 5. Select a Track number. The default value is Track one.
- **6.** Turn **Auto Increment** On. This feature automatically increments the step (by the selected step resolution) each time you press the Play button.
- 7. Press the **Preset View** button. The preset screen shown below appears.

CO1A V127 POO A:P User 050³ kit:80's Tones

- 8. Select a Preset for your first track.
- **9.** Press the **Preset View** button again after you've selected a preset. The LED will go out and you'll be returned to the Pattern screen.

Get ready to record!

- **10.** Set the **Step Resolution** to eighth notes for now (8).
- **11.** Play a note (or notes) on the keypad. The step records and increments when you release the keys. Note the setting of the bar.beat.tick display as the steps increment.
- **12.** Keep adding notes to steps. You can also record knob settings. Simply turn the knobs in any of the controller knob modes and these moves will be recorded.
- **13.** Press **Stop** when you've finished recording.
- 14. Press **Stop** again to rewind to the beginning of the pattern.
- 15. Change the **Resolution** and record another pass.

To Erase the Pattern:

- **16.** There are several ways to erase entire pattern. Probably he easiest way is to simply Save an empty sequence over the pattern you want to erase.
- You could also "Erase All Events" from the Pattern Edit menu.

Pattern Edit Menu

Track Enable/Mute Buttons The Pattern Edit menu contains housekeeping, pattern editing filters and other tools.

The Pattern Edit button is DISABLED unless you are in Pattern Mode!

IMPORTANT: In Pattern Edit mode, Track Enable/Mute buttons are used to select which tracks will be affected by the editing operation.

Any enabled tracks will be edited and any disabled tracks will be unaffected by the editing operation—Quantize, Thin Events, Erase Events, Velocity Scale/Shift, Extend or Transpose.

Patterns can be named with up to 16 characters. Position the cursor under

the character location and use the data entry control to change the

Name Pattern

PATTERN NAME

character.

Pattern Length

Patterns can be anywhere from one to thirty two measures in length. A pattern loops when it reaches the end whether in record or playback modes.

A pattern's length can also be changed at any time, before or after recording. If you increase the length of a pattern after recording, it will play silently for the extra time unless new data is recorded there. If you shorten a pattern's length after recording, it will play up to it's new length then loop. Changing the length of a pattern does not change any data until you save it. If you save a shortened pattern, the unplayed data will be erased.

► To Set the Pattern Length from the Pattern Edit menu:

- 1. Select **Pattern Edit** mode from Pattern mode.
- 2. Locate the Pattern Length screen using the data entry control.

PATTERN LENGTH

Length: 32 bars

3. Move the cursor to the lower line of the display using either cursor key, then set the **length** of the pattern using the data entry control.

► To Set the Pattern Length from the Main Pattern Screen:

- **1.** Select the pattern in Pattern mode.
- 2. Move the cursor to the Length (Ln) field using the cursor keys.

3. Set the Length of the pattern using the data entry control.

Proteus 2500 allows you to set almost any conceivable time signature. The numerator (indicating number of beats in a measure) can be set from 1 to 99. The denominator (indicating the rhythmic value of each beat) can be set to 1, 2, 4, 8, 16, 32, or 64. The time signature can be changed at any time before or after recording.

The meter setting affects the bar:beat display, the pattern length, metronome accent, and the grid recording display.

For background information about Time Signatures, see page 311.

► To Set the Time Signature:

- 1. Select the pattern in which you want to record.
- **2.** Press the **Pattern Edit** button. The Pattern Edit menu screen displays the menu page most recently selected since powering up Proteus 2500.
- **3.** Scroll to the **Meter** screen using the data entry control. The meter setting will probably show the 04/4 default time signature.

- **4.** Press the right cursor button once to move the cursor underneath the numerator field.
- 5. Set the time signature numerator value using the data entry control.
- **6.** Press the right cursor button again to move the cursor underneath the denominator field.
- **7.** Set the **time signature denominator** value using the data entry control.
- 8. Press the Pattern Edit button again to exit pattern edit mode.

Setting Meter (Time Signature)

Metronome

The metronome is a timing aid when recording or playing back patterns and songs and can be set to a wide variety of different beats. The metronome produces an accented click on the first beat of each measure and a softer click on other beats. The following metronome beat options are available:

The higher metronome speeds are useful when recording a fast part since you may slow the tempo way down and still hear where you are in the pattern.

Play the pattern to listen to the Metronome while you set the Value.

Symbol		Symbol	
1/1	whole notes	1/2d	dotted half notes
1/2	half notes	1/4d	dotted quarter notes
1/4	quarter notes	1/8d	dotted eighth notes
1/8	eighth notes	1/4t	quarter note triplets
1/16	sixteenth notes	1/8t	eighth note triplets
1/32	thirty-second notes	1/16t	sixteenth note triplets
		denom	uses the denominator value of the meter setting

The metronome setting is NOT saved with the pattern.

• To Set the Metronome:

- 1. Press the **Pattern Edit** button. The Pattern Edit menu screen displays the menu page most recently selected since powering up Proteus 2500.
- 2. Scroll to the Metronome screen using the data entry control.

- **3.** Move the cursor underneath the **Metronome** field and turn the metronome to **On**, **Off** or **Rec** using the data entry control.
 - Off the metronome doesn't play.
 - On the metronome plays during recording and playback.
 - **Rec** the metronome only plays while recording.
- 4. Move the cursor underneath the **Value** field and set the metronome beat value using the data entry control.

Quantize

The timing can also be changed after a pattern has been recorded. Quantize moves all the note start times in the track to fall on (or closer to) the specified time values.

To Quantize a Pattern:

- 1. Select the pattern.
- **2.** Select the **Track(s)** you wish to quantize using the Track Enable/Mute buttons.
- **3.** Press the **Pattern Edit** button.
- **4.** Scroll to the **Quantize** screen shown below using the data entry control.

- **5.** Set up the **Quantize parameters** as desired. The Home/Enter LED will be flashing once the cursor is moved to one of the editable fields.
- **6**. Press **Enter** to Quantize or add Swing. Press any other button to **Cancel** the operation.

Quantize Parameters

- **Resolution** Sets the desired note value to which note-on events will be corrected. With sixteenth notes selected, Quantize will move played notes toward, or exactly onto, sixteenth note time slots.
- Amount Controls how much quantization is applied. With a setting of 100%, events are moved all the way to the specified note value. With a setting of 50%, events are moved 50% closer to the specified note value.

More about Swing

Swing can help add a more human "feel" to a series of repeating patterns. For example, if you repeat the same pattern four times, try setting a swing factor of 54% for, say, the third pattern. This results in a series of patterns which are more psycho-acoustically interesting than merely repeating the same pattern over and over.

67% is considered the "classic" jazz swing factor, where the first eighth note is 2/3 of a quarter note, and the second eighth note is 1/3 of a quarter note (i.e. the second eighth note behaves more like an eighth note triplet). If this sounds too "perfect", try a swing factor of 64% instead. The results will be similar, but the "feel" will be slightly different.

Scale/Shift Duration This filter allows you to either scale (multiply by a value) or shift (add a value to) the note durations in the selected tracks. The Scale function is performed before the Shift value is added.

- Scale Multiplies all note durations by a percentage from 0% to 125%. Scaling by 100% would leave all note durations untouched. Scaling by 50% would cut all note durations in half.
- **Shift** Adds or subtracts a specific note duration in quarter notes and ticks to note-on events in the selected tracks.

► To Scale or Shift Note Duration:

- 1. Select the pattern you wish to edit.
- 2. Select the Track(s) you wish to Scale or Shift using the Track Enable/ Mute buttons.
- 3. Press the Pattern Edit button.
- **4.** Scroll to the **Scale/Shift Note Duration** screen shown below using the data entry control.

SCALE/SHIFT NOTE DURATION Scale: 87% Shift: +00.000 Quarter Notes Ticks

- **5.** Select the **amount of note duration scaling or shift (offset)**. The Home/Enter LED will be flashing once the cursor is moved to the lower line of the display.
- **6.** Press **Enter.** The screen shown below appears to remind you to select the tracks you want to filter. Select a key range for filtering. The default setting is all keys.

7. Press **Enter** to scale/shift the note durations. Press any other menu button to **Cancel** the operation.

Tip: To set all notes to a particular value, set Scale to 0%, (this zeros the value) then set Shift to the desired duration.

Thin Events

Event thinning is usually performed to reduce the amount of extraneous controller data and thus reduce the memory size of patterns. This filter reduces the number of events in a musical fashion. Events may be reduced by a specified amount from 1 to 128. The setting represents the smallest change that will be kept. For example, if the setting were set to 3 and you were thinning a controller sweep that went 1-2-3-4-5-6-7, you would be left with:1-4-7. The filter also keeps any change in direction values.

The setting represents the smallest change that will be kept.

If too much data is recorded into a pattern, the sequencer may slow or clog. Use the "Thin Events" function to reduce the amount of extraneous data in the pattern.

The following types of events can be thinned:

- Tempo
- Poly Aftertouch
- Channel Aftertouch
- Pitch Wheel (Touchstrip)
- Any Continuous Controller (1-95)

► To Thin Events in a Pattern:

- 1. Select the pattern you wish to edit.
- 2. Select the Track(s) you wish to thin using the Track Enable buttons.
- 3. Press the Pattern Edit button.
- **4.** Scroll to the **Thin Events** screen shown below using the data entry control.

5. Select the **type of event** you want thinned, then set the **amount** of thinning. The Home/Enter LED will be flashing once the cursor is moved to one of the editable fields.

- 6. Press Enter. The screen shown below appears to remind you to select the tracks you want to thin. Select a key range for thinning. The default setting is all keys. SELECT TRACKS Key Range: C-2 to:G8 Low Key High Key 7. Press Enter to thin events. Press any other menu button to Cancel the operation. Frase Events Specific types of events can be completely erased from a pattern. The following types of events can be erased: • All Track Events • Notes • All Controllers Program Changes • SysEx Data • Meter • Tempo Poly Aftertouch • Channel Aftertouch • Pitch Wheel (Touchstrip) • Any Continuous Controller (1-119) ► To Erase Events from a Pattern: 1. Select the pattern you wish to edit. 2. Select the Track(s) you wish to erase using the Track Enable/Mute buttons. 3. Press the Pattern Edit button. 4. Scroll to the Erase Events screen shown below using the data entry control. ERASE EVENTS program change
 - **5.** Select the **type of events** you want erased. The Home/Enter LED will be flashing once the cursor is moved to the lower line of the display.

6. Press **Enter.** The screen shown below appears to remind you to select the tracks you want to erase. Select a key range. The default setting is all keys.

7. Press **Enter** to erase the events. Press any other menu button to **Cancel** the operation.

Transpose

All notes in a pattern can be transposed up or down from -127 to +127 semitones. For example with a setting of +7, all notes in the pattern would be transposed up a perfect fifth.

Warning: If you transpose notes past the hard limits of 0 and 127, those notes will be erased from the pattern.

• To Transpose a Pattern:

- 1. Select the pattern you wish to edit.
- **2.** Select the **Track(s)** you wish to Transpose using the Track Enable/Mute buttons.
- **3.** Press the **Pattern Edit** button.
- **4.** Scroll to the Transpose screen shown below using the data entry control.

TRANSPOSE +7 semitones

- **5.** Select the amount of transposition you want. The Home/Enter LED will be flashing once the cursor is moved to the lower line of the display.
- **6.** Press **Enter**. The screen shown below appears to remind you to select the tracks you want to transpose. Select a key range. The default setting is all keys.

7. Press **Enter** to transpose the selected tracks. Press any other button to **Cancel** the operation.

Scale/Shift Velocity

This filter allows you to either scale (multiply by a value) or shift (add a value to) the velocity values of notes in a pattern. The Scale function is performed before the Shift value is added.

- Scale Multiplies all note-on velocities by a percentage from 0% to 125%. Scaling by 100% would leave all velocity values untouched. Scaling by 50% would cut all velocity values in half.
- **Shift** Adds or subtracts a specific velocity value (-127 to +127) to every note-on event in the pattern.

► To Scale or Shift Velocity:

- 1. Select the pattern you wish to edit.
- 2. Select the Track(s) you wish to Scale or Shift using the Track Enable/ Mute buttons.
- **3.** Press the **Pattern Edit** button.
- **4.** Scroll to the **Scale/Shift Velocity** screen shown below using the data entry control.

Tip: To set all notes to a particular velocity value, set Scale to 0%, then set Shift to the desired velocity.

- **5**. Select the amount of velocity scaling or shift. The Home/Enter LED will be flashing once the cursor is moved to the lower line of the display.
- **6.** Press **Enter**. The screen shown below appears to remind you to select the tracks you want to velocity scale or shift. Select a key range. The default setting is all keys.

7. Press **Enter** to change velocity in the selected tracks. Press any other button to **Cancel** the operation.

Extend Sequence Data To

This feature lets you change the length of any selected tracks after recording a pattern. If you are lengthening a pattern, the pattern is looped to fill in the empty space. If you set the length shorter than the existing pattern, the pattern will be truncated.

You can set the pattern length before you extend so that only those bars will be copied. The copied data will be merged with the data in the subsequent bars of the pattern.

8. Press **Enter** again to extend the pattern or any other menu button to cancel the operation.

Erase Track

An entire track or a section of a track can be erased in a single operation. This feature makes it easy to erase a flubbed take or erase a section of track before pasting new data.

- **3. Select the track** you want to erase. The Home/Enter LED will be flashing once the cursor is moved to the lower line of the display.
- 4. Select the first Bar you want to erase. The bar range for patterns is 01-32; the bar range for songs is 001-999.
- 5. Select the Length of the track you want erased.
- 6. Press Enter to erase the selected section of the Track.
- **7.** Press any other menu button or exit the edit menu to **Cancel** the operation.

Cut Track to Clipboard

a way to erase a track.

Cut track can be used as

An individual track or a section of a track can be cut or copied and held on a digital "clipboard" so that it can be pasted into another track or pattern. This function cuts or removes a track (or section of a track) from the pattern and places it on the clipboard, where it will be held until it is replaced with another cut or copy operation, or the power to Proteus 2500 is turned off.

Cutting a section from a track will leave a blank space in the track.

The cut section is placed on the clipboard leaving a blank space in the track where the data was cut out.

To Cut a Track:

- **1.** Select the pattern you wish to edit.
- 2. Press the **Pattern Edit** button.
- **3.** Scroll to the **Cut Track to Clipboard** screen shown below using the data entry control.

- **4. Select the track** to be cut. The Home/Enter LED will be flashing once the cursor is moved to the lower line of the display.
- 5. Select the Start Bar and the Length (in bars) to be cut.
- **6.** Press **Enter** to cut the track. Press any other menu button to **Cancel** the operation.

Tracks can be freely cut, copied or pasted between songs and patterns.

Copy Track to Clipboard

An individual track or a section of a track can be copied and held on a digital "clipboard" so that it can be pasted into another track or pattern. This function makes a digital copy of the selected track and places it on the clipboard, where it will be held until it is replaced with another cut or copy operation, or the power to Proteus 2500 is turned off.

- 2. Press the **Pattern Edit** button.
- **3.** Scroll to the **Copy Track to Clipboard** screen shown below using the data entry control.

- 4. Select the track to be copied. The Home/Enter LED will be flashing once the cursor is moved to the lower line of the display.
- 5. Select the **Start Bar** and the **Length** (in bars) to be copied.
- **6.** Press **Enter** to copy the track. Press any other menu button to **Cancel** the operation.

Paste Clipboard to Track

Once a track (or a section of a track) has been cut or copied to the "clipboard", it can be pasted into another track or pattern from 1 to 99 times. The Paste operation *Merges* the clipboard data with the data on the destination track. It adds the new information to the existing data with the start of the data in the clipboard placed at the selected bar position.

Because of the data merging feature, the Paste operation can be used to "bounce down" multiple tracks to a single multichannel track. *See below.*

Tracks can be freely cut, copied or pasted between songs and patterns.

► To Paste the Clipboard into a Track:

- 1. Press the **Pattern Edit** button.
- 2. Cut or Copy data to the clipboard. See pages 80 and 81.
- **3.** Scroll to the **Paste Clipboard to Track** screen shown below using the data entry control.

You will not hear the results of the Paste operation until the sequence cycles around. (Hint: Press RTZ)

- **4. Select the track** where you want the clipboard data to be pasted. The Home/Enter LED will be flashing once the cursor is moved to the lower line of the display.
- 5. Select the bar where the clipboard contents will be pasted.
- **6.** Select the number of times you want the clipboard data pasted.
- **7.** Press **Enter** to paste the data. Press any other menu button to **Cancel** the operation.

To Bounce Tracks:

- 1. Copy the first track you wish to bounce.
- 2. Paste the track to the desired destination track.
- **3. Repeat steps 1 & 2** for the other tracks you wish to bounce down.
- 4. Press the Pattern Edit button and scroll to the Channel Assign screen.
- 5. Set the Track containing all your bounced tracks to MultiA. (or MultiB if the original tracks were recorded using the "B" channels.)

Channel Assign

You might want to designate a certain track to handle external program changes. Set this track to "Ext" and choose "MultiA" or "MultiB". This important screen assigns each track to a Main channel (01A-16B). This "rechannelizes" the data on the track to the channel you choose here. The default mode of operation for Proteus 2500 is to have tracks assigned to the same-numbered MIDI channel. This convention makes it easy to keep everything organized and it works well for most recording.

Because tracks can be recorded with multiple MIDI channels, "Multi A" and "Multi B" options are provided in the channel selection field. The Multi options route data to either the A or B channels (internal or external). For example, you could route a multichannel track to only use the B channels.

Each track can also be routed to: internal MIDI channels, the external MIDI port or none. Channels 1A-16A and Multi A are routed to MIDI port A if "ext" or "both" is selected as a destination for that track.

Important Note: Program change messages are NOT transmitted externally if the destination is set to Both. To transmit program changes to external MIDI devices, set the destination to External (EXT).

	 To Assign Tracks to MIDI Channels: Select the pattern you wish to edit. Press the Pattern Edit button. Scroll to the Select Track Changes screen shown below using the data entry control. 			
	Lhannel: UIH: Dest:both			
	4. Select the desired track(s).			
	5. Select the desired channel for the track.			
	6. Select the desired destination for the track.			
	7. Press the Pattern Edit button again to exit the module.			
Multichannel Track Recording	Each of Proteus 2500's 16 tracks can contain multichannel MIDI data. Because tracks can be routed internally or externally on either of the two MIDI ports, the Proteus 2500 sequencer can actually control up to 48 separate MIDI channels (16 internal-A, 16 internal-B, 16 MIDI port-A). Once a track is enabled for multichannel recording you can record into it using the rubber keypads or external MIDI.			
	 To Setup a Track for Multichannel Recording 1. Select the pattern you wish to record. 			
The Channel Assignment screen is a MIDI rechannelizer. The Multi A or B assignments allow multiple MIDI channels on a track	 Playback Setup (steps 2-7 set up the track for multi-channel play back) Press the Pattern Edit button. Scroll to the Select Track Changes screen shown below using the data entry control. 			
	Channel: 01A: Dest:both			

4. Select the desired track.

- 5. Set the track to MultiA or MultiB.
- **6**. Select the desired **destination** for the track (internal, external or both).
- **7.** Press the **Pattern Edit** button again to exit the module.

	 Continue on to Record a Multichannel Track using the Rubber Keypads 8. Press the Controllers button and make sure "Keyboard/Knob Channel" is set to "Basic". This feature automatically changes the channel of the keypad to whatever channel is shown in the preset view display. 9. Make sure the multichannel track you set up (step 4 above) is selected. 10. Set the Pattern Length.
	 <i>Ready to Record</i> 11. Press the Preset View button. 12. Select a preset for channel 01A. 13. Press Record, then Play. Start playing! <i>Record Channel 2</i> 14. Select channel 02A. 15. Select a preset for channel 02A. 16. Press Record, then Play. Start playing!
Aux Channel Assign	17. Continue to record channels. Each track can also be assigned to a separate Aux channel. This assignment works exactly like the main channel assignment (page 84). In certain situa- tions it may be useful to transmit using two MIDI channels or both MIDI ports.
	The Aux Channel assignments are NOT saved with the pattern or multi- setup and reverts to its default state upon power-up.

Note List Editor

Individual MIDI notes in the pattern can be edited, inserted or deleted from this screen. Place the cursor underneath the "Event Scroll Field" shown below and turn the data entry control to navigate through events.

• Hold the Enter button and turn the data entry control to scroll through events when the cursor is on any other field

- Erase button - - Erases the currently selected note.
- **Repeat** button - Duplicates the currently selected note, allowing you to edit and create a new note.
 - 1) Press Repeat.
 - 2) Change the time, channel, or MIDI note.

Note: You cannot have two events with the exact same time and data in a pattern. Proteus 2500 will delete any duplicate events as soon as you increment the event or exit the screen.

To Edit a MIDI Note:

- 1. Select the pattern you wish to edit.
- 2. Press the Pattern Edit button.
- **3.** Scroll to the **Note List Editor** screen shown below using the data entry control.
- 4. Press the Enter button as prompted by the display to begin editing.
- **5.** Select the **Track** that you want to edit using the Track/Channel select button near the LCD.

- **6.** Press the **right Cursor** button to move the cursor underneath the Event Scroll field (<->).
- **7.** Turn the **data entry control** to scroll through the event list and locate the event you want to edit.
- **8.** Move the cursor to the data field you want to edit and make changes using the data entry control.
- **9**. Press the **Pattern Edit** button to exit the Pattern Edit module.

You can edit notes and note velocity by playing the keyboard.

Event List Editor

Continuous controller, pitch wheel. mono pressure, poly pressure and program change MIDI messages can be edited, inserted or deleted using this menu. Place the cursor underneath the "Event Scroll Field" shown below and turn the data entry control to navigate through events.

The event list editor also allows you access to the *Conductor Track* which sets the tempo and meter for the pattern.

Hold the **Enter** button and turn the **data entry control** to scroll through events when the cursor is on any other field.

- Erase button - - Erases the currently selected event.
- **Repeat** button - Duplicates the currently selected event, allowing you to edit and create a new event.
 - 1) Press Repeat.
 - 2) Change the time, channel, or MIDI event type.
- Note: You cannot have two events with the exact same time and data in a pattern. Proteus 2500 will delete any duplicate events as soon as you increment the event or exit the screen.

Continuous Controller Edit

Continuous controller numbers 1-95 can be edited. Continuous controllers and Channel Pressure messages may range in value from 0-127.

Continuous Controller Screen

Pitch Strip Edit

Pitch Wheel messages are bidirectional and may range in value from -8192 to +8191.

Pitch Strip Screen

Poly Pressure Edit

Polyphonic pressure messages are assigned on a per note basis and have range of 0-127. Proteus 2500 cannot receive poly pressure messages.

Poly Pressure Screen

Program Change Edit

Program change numbers from 0-127, and on any bank number, can be inserted, deleted or edited in this screen. If you do not select bank numbers (off), the program change will be sent to the currently selected bank. See "Bank Select Commands" on page 174.

Program Change Screen

To Edit a MIDI Event:

- 1. Select the pattern you wish to edit.
- 2. Press the Pattern Edit button.
- **3.** Scroll to the **Event List Editor** screen shown below using the data entry control.
- 4. Press the Enter button as prompted by the display to begin editing.
- **5.** Select the **Track** that you want to edit using the Track/Channel select button near the LCD.

In order to send program changes to external devices, the Track must be assigned to an "external" channel. See page 84

for details.

- 6. Press the **right Cursor** button to move the cursor underneath the **Event** Scroll Field (<->).
- **7.** Turn the **data entry control** to scroll through the event list and locate the event you want to edit.
- **8.** Move the cursor to the data field you want to edit and make changes using the data entry control.
- **9.** Press the **Pattern Edit** button to exit the Pattern Edit module.

The Conductor Track (track 0)

The conductor track allows you to insert tempo and meter changes anywhere in the pattern. Select the track below track 1 and the first screen shown below will appear.

Conductor Track Screens

- 6. Move the cursor under the **bpm field** and set the tempo.
- **7**. Set the **Time Location** where you want the tempo change to occur.

To Insert a new Event: 1) Press the Repeat button. 2) Modify the Time & Tempo.

- 8. If you want to add another tempo change, press the **Repeat** button on the Proteus 2500 front panel.
- **9**. Change the **Time Location** and **Tempo**.
- **10.** Press the **Pattern Edit** button to exit the Pattern Edit module.

• To Remove or edit a Tempo Change from the Conductor Track:

- 1. Select the pattern you wish to edit.
- 2. Press the Pattern Edit button.
- **3.** Press the (-) **Track/Channel** button until "CT" appears in the track field.
- 4. Press the Enter button as prompted by the display to begin editing.
- **5.** Press the **right Cursor** button twice to move the cursor underneath the **Event Scroll** field (<->).
- **6.** Turn the **data entry control** to scroll through the event list and locate the tempo change you want to edit.

- **7.** Press the front panel **Erase** button on Proteus 2500 to erase the tempo event.
- **8**. Simply change the **Tempo** or **Location** fields to modify the tempo or time of the event.
- **9.** Press the **Pattern Edit** button to exit the Pattern Edit module.

► To Insert or Edit Meter Changes:

Meter changes are inserted and edited exactly like tempo changes.

This screen allows you to discard any edits made to the pattern and restore the last saved version. This is not the same as an "Undo" function since Revert permanently discards any edits you have made since saving. This function removes the asterisk in the display that appears after you've edited the pattern.

Revert to Saved Pattern

Caution: Never "Revert to Saved" while the sequencer is in record mode or the computer may crash.

Song Mode

Song mode is selected by pressing the **Song mode** button beneath the liquid crystal display. The screen shown below is displayed in Song mode. See "Songs" on page 50.

STOP

Pressing Play in Song mode causes the selected song to play.

Pressing the **Stop** button stops the song immediately. Pressing **Stop again** rewinds the song to the beginning (RTZ). Pressing **Stop** a third time reloads the initial setup information for the Song.

Song Step Recording

As described on page 50, songs can be recorded in two ways. Step recording involves linking patterns together to form more intricate arrangements.

To Step Record a Song:

1. Press the **Song** mode button. The screen shown below appears.

- 2. Select a Blank song to begin recording using the data entry control.
- **3.** Press the **Record** button twice to select Step Record mode. The Step record LED illuminates and the screen shown below appears.

Note: Hot Tip: You can audition patterns In Song Step Record by pressing the Play button. Press **Play** again to stop auditioning.

You must press the Enter button to confirm each step change. Any changes you make without pressing Enter will be discarded.

HOME/ENTER

You can move the cursor to any field and change it while in step record mode.

- **4.** The cursor is on the lower line of the display. Turn the data entry control to **select a Pattern** for step one.
- **5.** Press **Enter** to choose the pattern and increment the step counter. Note that the current position (Bar) field now indicates the bar position just beyond the length of the first pattern.
- **6. Select another pattern** for song step 2. Press the **Play** button to audition the pattern before pressing Enter.
- **7.** Press **Enter** when you've made your selection and the step counter increments again.
- **8.** Continue to add Patterns. When you're ready for the Song to end, turn the data entry control counter-clockwise and select the **STOP** command. If you don't insert a "Stop" command, the last pattern will simply continue to play indefinitely.

Changing the Length of Patterns

9. While in Step Record mode, you can move the cursor to the Length (Ln) field and change the length of the pattern at that step. Lengthening a pattern will cause it to loop. Shortening a pattern will truncate the playback to the selected length.

Deleting a Pattern

10. Pressing the **Erase** button (located below the controller knobs) erases the currently selected step from the song.

Inserting a Pattern

- 11. You can insert a pattern at any bar of the song. Select the insert point by moving the cursor beneath the **Step Number** or the **Bar** field.
- 12. Select the pattern you wish to insert, press and hold the **Repeat** button (located below the controller knobs), then press **Enter**. The new pattern will be inserted at the selected bar location.

Inserting Track Mutes

13. You can set the Track Mutes for each step in the song by simply selecting them. Track mutes are selected at the beginning of each step.

Stop the Song

14. Turn the data entry control counter-clockwise until you find the STOP command. This will be the last step of your song.

Time to Save?

15. Changes are not made permanent until you Save the song. An asterisk will appear in the Song display if the Songs has been modified and needs to be saved. The Save/Copy button LED will also be flashing. Press Save/Copy, scroll to the Save Song screen, select a location and press Enter.

The following parameters are also saved with the Song. Set these parameters, then save the song again if you wish. The "Event Source" option in the Song Edit menu (page 97) determines whether song or pattern events will be used in the song.

- Initial Tempo
- Volume for 16 channels
- Pan for 16 channels
- Mix Output setup for 16 channels
- Arp channel status (off/on/preset/master) for 16 channels
- Master FX setup
- Event Source

Realtime Song Recording lays down a single track which may contain multichannel: note, program change and controller data (but no SysEx). Realtime data will retain its recorded channel information so you can lay in multichannel note and controller information. Multiple channel information received over MIDI will also be recorded.

► To Record a Song in Realtime mode:

1. Press the **Song** mode button. The screen shown below appears.

- **2.** Select a Blank song to begin recording using the data entry control.
- **3.** Press the **Record** button once to select Realtime Record mode. The Realtime record LED illuminates and the screen shown below appears. If you have already step recorded any pattern inserts, their numbers will appear on the lower line of the display.
- 4. Set the metronome to **On** or **Rec** if you want a timing reference.

The 16 tracks of a song can be assigned to either the A or B channels using the "Song Channel Assign" function on page 108.

Realtime Song Recording

5. Press the **Play** button to begin realtime recording. As in Pattern Record Mode, the Record button can be pressed at any time to disable recording. Similarly, the Play button can be pressed while recording to affect a "record-pause" mode.

To Erase Specific Notes:

6. Press the Erase button in Realtime Record mode and hold down the keyboard note you wish to erase. The note will be erased when it comes around in the pattern.

► To Overdub Realtime Controller Data over Patterns

This may be the most common way to use Realtime Song mode. After arranging your song using step record mode, you can mix and embellish your song by recording continuous controllers over the top. You might also want to add additional musical lines over your patterns.

1. Start by recording and saving a song by following the instructions on page 92.

Volume Mixing

- 2. Press Song Edit and scroll to the Event Source page.
- **3.** Move the cursor to the lower line and select "volume: song events only".
- 4. Press Song Edit again to exit the menu.
- **5.** Select **Volume** knob mode by repeatedly pressing the Controller Function Select button (page 37).
- 6. Select Mix View mode if you wish to view the volume settings.
- **7.** Press the **Stop** button twice to make sure the song starts at the beginning.
- **8**. Press the **Record** button in Song mode to get ready to record. The Play button LED will be flashing.
- **9.** Press the **Play** button to begin recording. The controller knobs now adjust the volumes of all 16 tracks.
- **10.** Press **Stop** when you're finished recording.

66

Too much controller information can clog the sequencer causing sluggish performance and sloppy timing. Use the "Thin Events" function (page 101) to reduce the amount of controller data in the song.

Use the "Erase cc# Events" function (page 102) to erase controller data from the song.

Realtime Panning

- **11.** Select **Pan Knob** mode by pressing the Controller Function Select button.
- **12.** Select **Mix View** mode by pressing the Mix button (if it's not already selected).
- **13.** Turn the data entry control clockwise to select **Ch Pan** view.
- 14. Press the **Stop** button twice to make sure the song starts at the beginning.
- **15.** Press the **Record** button in Song mode to get ready to record. The Play button LED will be flashing.
- **16.** Press the **Play** button to begin recording. The controller knobs now adjust the pan positions of all 16 tracks.
- 17. Press **Stop** when you're finished recording.

Recording Quick Edits

The Quick Edit knobs always record on the Basic Channel (the channel currently displayed in the Preset View screen).

- **18.** Select **Quick Edit** mode by pressing the Controller Function Select button.
- **19.** Select the channel with the preset you wish to Quick Edit.
- **20.** Practice your knob movements before recording by playing back the song and twisting the knobs.
- **21.** When you're ready to record, press **Record**, then **Play**, then perform the knob movements.

Erasing Controller Data

- **1.** The **Erase Events** function (page 102) can be used to erase controller data.
- 2. Find the realtime controller # of the knob you wish to erase in the Controllers menu.
 (Volume is always cc#7, and Pan is always cc#10. The numbers of the 16 controller knobs can vary.)
- 3. Press the Song Edit button.
- **4.** Scroll to **Erase Events** and move the cursor to the lower line of the display.
- **5.** Select the realtime controller number from step 2.
- **6.** Press **Enter** to erase the controller data.
| Song Edit
Menu | The Song Edit menu allows you to name and edit songs as well as control which controller data will be used when the song is played. The Song Edit button is DISABLED unless you are in Song Mode. A Proteus 2500 Song is a one track sequence of any length. Pattern Play events will typically be recorded into a song so that specific patterns will begin playing at specific bar locations (only one pattern can play at a time). Note-on/off, controller and program change information can also be recorded into the Song track. | |
|--|--|--|
| Song Name | Songs can be named with up to 16 characters. Position the cursor under the character location and use the data entry control to change the character. SONG NAME Blue Beats | |
| Event Source | This function determines how certain controls programmed into the pattern will be used in the song. Event Source is a playback filter. Realtime Song data will be recorded regardless of the Event Source settings, but it might be confusing if you don't hear what you just recorded. Therefore, it's always a good idea to check the Event Source settings before recording realtime song data. Tempo Preset (program change) Volume Pan Mix Arp Master Effects (FX) | |
| When you save a sequence (song or pattern) it picks up the current settings and saves them at the head of the track. | For each type of control listed above, you can choose one of these options: Song Events Only Uses song events; ignores pattern events 1st Pattern Only Uses events from the 1st pattern; ignores song events All Patterns Uses the events programmed into each pattern Song & Patterns Uses both song and pattern events The song and pattern option makes the song track extremely flexible because the song track can be used for volume mixing, realtime control or | |

because the song track can be used for volume mixing, realtime control or lead lines over a traditional pattern-based song structure. The song and pattern option also allows presets to be selected correctly when using channels 1B-16B for song events.

Proteus 2500 Operation Manual 97

► To Set the Event Sources for a Song:

- 1. Select the Song you wish to edit in Song mode.
- 2. Press the Song Edit button.
- **3.** Scroll to the **Event Source** screen shown below using the data entry control.

- 4. Select: Song Events Only, First Pattern Only, All Patterns, or Song & Patterns for each event type.
- 5. Press the Song Edit button again to exit the module.

Setting Meter (Time Signature)

Proteus 2500 allows you to set almost any conceivable time signature. The numerator (indicating number of beats in a measure) can be set from 1 to 99. The denominator (indicating the rhythmic value of each beat) can be set to 1, 2, 4, 8, 16, 32, or 64. The time signature can be changed at any time before or after recording.

The meter setting affects the bar:beat display, the pattern length, metronome accent, and the grid recording display.

For more information about Time Signatures, see page 311.

► To Set the Time Signature:

- 1. Select the song in which you want to record in Song mode.
- **2.** Press the **Song Edit** button. The Song Edit menu screen displays the menu page most recently selected since powering up Proteus 2500.
- **3.** Scroll to the **Meter** screen using the data entry control. The meter setting will probably show the 04/4 default time signature.

- **4.** Press the right cursor button once to move the cursor underneath the numerator field.
- 5. Set the time signature numerator value using the data entry control.
- **6.** Press the right cursor button again to move the cursor underneath the denominator field.
- **7.** Set the **time signature denominator** value using the data entry control.
- 8. Press the Song Edit button again to exit Song Edit mode.

Metronome

Play the pattern to listen

to the Metronome while you set

the Value.

Quantize

The metronome is a timing aid when recording or playing back songs and can be set to a wide variety of different beats. The metronome produces an accented click on the first beat of each measure and a softer click on other beats. The metronome beat options are listed on page 70.

The metronome setting is NOT saved with the Song.

► To Set the Metronome:

- 1. Press the **Song Edit** button. The Pattern Edit menu screen displays the menu page most recently selected since powering up Proteus 2500.
- 2. Scroll to the Metronome screen using the data entry control.

- **3.** Move the cursor underneath the **Metronome** field and turn the metronome to **On**, **Off** or **Rec** using the data entry control.
 - Off the metronome doesn't play.
 - On the metronome plays during recording and playback.
 - **Rec** the metronome only plays while recording.
- **4.** Move the cursor underneath the **Value** field and set the metronome beat value using the data entry control.

The timing of note events can be changed after a song has been recorded. Quantize moves all the note start times in the track to fall on (or closer to) the specified time values. *See "Quantize" on page 71 for more information about quantization.*

Note: This filter quantizes note data recorded in Realtime Song mode. It does NOT affect the notes in Patterns.

► To Quantize Note Events in a Song:

- 1. Select the song.
- 2. Press the Song Edit button.
- **3.** Scroll to the **Quantize** screen using the data entry control.

- **4.** Set up the **Quantize parameters** as desired. The Home/Enter LED will be flashing once the cursor is moved to one of the editable fields.
- 5. Press Enter to Quantize or add Swing. Press any other button to Cancel.

Scale/Shift Duration

This filter allows you to either scale (multiply by a value) or shift (add a value to) the note durations in the song track. The Scale function is performed before the Shift value is added.

- Scale Multiplies all note durations by a percentage from 0% to 125%. Scaling by 100% would leave all note durations untouched. Scaling by 50% would cut all note durations in half.
- **Shift** Adds or subtracts a specific note duration in beats and ticks to note-on events in the selected tracks.

• To Scale or Shift Note Duration:

- 1. Select the song you wish to edit.
- 2. Press the **Song Edit** button.
- **3.** Scroll to the **Scale/Shift Note Duration** screen shown below using the data entry control.

Tip: To set all notes to a particular value, set Scale to 0%, (this zeros the value) then set Shift to the desired duration.

- **4.** Select the **amount of note duration scaling or shift**. The Home/Enter LED will be flashing once the cursor is moved to the lower line of the display.
- **5. Press Enter.** Select a key range for filtering. The default setting is all keys.

6. Press **Enter** to scale/shift the note durations. Press any other button to **Cancel** the operation.

Thin EventsEvent thinning is usually performed to reduce the amount of extraneous
controller data and thus reduce the memory size and microprocessor load.
This filter reduces the number of events in a musical fashion. The setting
represents the smallest change that will be kept. See page 74 for more infor-
mation. The filter also keeps change in direction values.

Note: This filter thins note and controller data recorded in Realtime Song mode. It does NOT affect Pattern data.

The following types of events can be thinned:

- Tempo
- Poly Aftertouch
- Channel Aftertouch
- Pitch Wheel (Touchstrip)
- Any Continuous Controller (1-95)

► To Thin Events from a Song:

- 1. Select the song you wish to edit.
- 2. Press the Song Edit button.
- **3.** Scroll to the **Thin Events** screen shown below using the data entry control.

THIN EVENTS chan aftertouch Amt: 40

- 4. Select the **type of event** you want thinned, then set the **amount** of thinning. The Home/Enter LED will be flashing once the cursor is moved to one of the editable fields.
- **5.** Press **Enter**. Select a key range for thinning. The default setting is all keys.

6. Press **Enter** to thin events. Press any other button to **Cancel** the operation.

Erase Events

Specific types of events can be completely erased from a song. **Note:** This filter erases event data recorded in Realtime Song mode. It does NOT affect Pattern data.

Events that can be Erased

Notes	Tempo	
Program Changes	Poly Aftertouch	
SysEx Data	Channel Aftertouch	
Meter	Pitch Wheel	
Any Continuous Controller (1-95)		

• To Erase Events from a Song:

- **1.** Select the song you wish to edit.
- 2. Press the Song Edit button.
- **3.** Scroll to the **Erase Events** screen shown below using the data entry control.

ERASE EVENTS

program change

- **4.** Select the **type of events** you want erased. The Home/Enter LED will be flashing once the cursor is moved to the lower line of the display.
- **5.** Press **Enter**. Move the cursor to the lower line to select a key range for erasure. The default setting is all keys.

6. Press **Enter** to erase the events. Press any other button to **Cancel** the operation.

Transpose

All notes in a song can be transposed up or down from -127 to +127 semitones. For example with a setting of +7, all notes in the song would be transposed up a perfect fifth.

Note: This filter transposes note data recorded in Realtime Song mode. It does NOT affect notes recorded into Patterns.

• To Transpose Notes in a Song:

- **1. Select the song** you wish to edit.
- 2. Press the **Song Edit** button.
- **3.** Scroll to the Transpose screen using the data entry control.

TRANSPOSE +7 semitones

- **4.** Select the **amount of transposition** you want. The Home/Enter LED will be flashing once the cursor is moved to the lower line of the display.
- **5.** Press **Enter**. Move the cursor to the lower line to select a key range to be transposed. The default setting is all keys.

6. Press **Enter** to transpose the pattern. Press any other button to **Cancel** the operation.

Scale/Shift Velocity

This filter allows you to either scale (multiply by a value) or Scale (add a value to) the velocity values of notes in a song. The Scale function is performed before the Shift value is added.

- **Scale** Multiplies all note-on velocities by a percentage from 0% to 125%. Scaling by 100% would leave all velocity values untouched. Scaling by 50% would cut all velocity values in half.
- **Shift** Adds or subtracts a specific velocity value (-127 to +127) to every note-on event in the song.

Note: This filter scales velocity data recorded in Realtime Song mode. It does NOT affect the velocity values of Pattern data.

► To Scale or Shift Velocity:

- **1. Select the song** you wish to edit.
- 2. Press the Song Edit button.
- **3.** Scroll to the **Scale/Shift Velocity** screen shown below using the data entry control.

Tip: To set all notes to a particular value, set Scale to 0%, (this zeros the value) then set Shift to the desired duration.

- **4**. Select the amount of velocity scaling or shift. The Home/Enter LED will be flashing once the cursor is moved to the lower line of the display.
- **5.** Press **Enter**. Move the cursor to the lower line to select a key range to be velocity scaled or shifted. The default setting is all keys.

6. Press **Enter** to change velocity in the song. Press any other button to **Cancel** the operation.

- **4.** Select the **Start Bar** and the **Length** (in bars) to be cut. The Home/Enter LED will be flashing once the cursor is moved to the lower line of the display.
- **5.** Press **Enter** to cut the track. Press any other menu button to **Cancel** the operation.

Copy Track to Clipboard

A section of a track can be copied and held on a digital "clipboard" so that it can be pasted into another location on the song track. This function makes a digital copy of the track and places it on the clipboard, where it will be held until it is replaced with another cut or copy operation, or the power to Proteus 2500 is turned off. The copied *Paste* functions.

Pattern Play events are NOT affected by the copy operation. Pattern play events must be edited using Step Record.

The copied section is placed on the clipboard leaving the song track intact and untouched.

► To Copy a Track:

- 1. Select the pattern you wish to edit.
- 2. Press the Pattern Edit button.
- **3.** Scroll to the **Copy Track to Clipboard** screen shown below using the data entry control.

- 4. Select the **Start Bar** and the **Length** (in bars) to be copied. The Home/ Enter LED will be flashing once the cursor is moved to the lower line of the display.
- **5.** Press **Enter** to copy the track. Press any other menu button to **Cancel** the operation.

The Track Number cannot be changed in a Song since there is only one track.

Paste Clipboard to Track

Once a track or track section has been cut or copied to the clipboard, it can it can be pasted into another location on the song track from 1 to 99 times. The Paste operation *Merges* the clipboard data with the data on the destination track at the selected bar position. This feature allows you to "bounce down" multiple tracks to a single multichannel track. *See below.*

Pattern Play events are NOT affected by the Paste operation. Pattern play events must be edited using Step Record.

► To Paste the Clipboard into a Track:

- 1. Select the pattern you wish to edit.
- 2. Press the Pattern Edit button.
- **3.** Scroll to the **Paste Clipboard to Track** screen shown below using the data entry control.

- 4. Select the bar where the clipboard contents will be pasted.
- 5. Select the number of times you want the clipboard data pasted.
- **6.** Press **Enter** to paste the data. Press any other menu button to **Cancel** the operation.

Tracks can be freely cut, copied and pasted between songs and patterns.

The Track Number cannot be changed in a Song since there is only one track.

کم You will not hear the results of the Paste operation

results of the Paste operation until the sequence cycles around. (Hint: Press RTZ)

Song Channel Assign

66 *Important Note:*

Program change messages are NOT transmitted externally if the destination is set to Both. To transmit program changes to external MIDI devices, set the destination to External (EXT). This screen allows you to assign the song track to channels1A-16A, or 1B-16B, or to MIDI Out port A. The song track can be routed to: internal MIDI channels (either A or B), the external MIDI port, both, or none. Multi A is routed to MIDI port A if "ext" or "both" is selected as a destination. Selecting "None" disables playback.

► To Assign the Song Track to the A or B channels:

- 1. Press the Song Edit button.
- **2.** Scroll to the **Song Channel Assign** screen shown above using the Data Entry control.
- **3.** Select **MultiA** if you want the song track to go to channels 1A-16A or MIDI port A. Select **MultiB** if you want the song track to go to channels 1B-16B.
- **4.** Select the desired **destination** for the track (internal channels, external MIDI channels, both, or none).
- 5. Press the **Song Edit** button again to exit the module.

Note List Editor

Individual MIDI notes in the song can be edited, inserted or deleted from this screen. Place the cursor underneath the "Event Scroll Field" shown below and turn the data entry control to navigate through events.

• Hold the **Enter** button and turn the **data entry control** to scroll through events when the cursor is on any other field

- Erase button - - Erases the currently selected event.
- **Repeat** button - Duplicates the currently selected note, allowing you to edit and create a new note.
 - 1) Press Repeat.
 - 2) Change the time, channel, or MIDI note.

Note: You cannot have two events with the exact same time and data in a song. Proteus 2500 will delete any duplicate events as soon as you increment the event or exit the screen.

► To Edit a MIDI Note:

- 1. Select the song you wish to edit.
- 2. Press the **Song Edit** button.
- **3.** Scroll to the **Note List Editor** screen shown below using the data entry control.
- 4. Press the Enter button as prompted by the display to begin editing.

- **5.** Press the **right Cursor** button to move the cursor underneath the Event Scroll Field (<->).
- **6**. Turn the **data entry control** to scroll through the event list and locate the event you want to edit.
- **7.** Move the cursor to the data field you want to edit and make changes using the data entry control.
- **8**. Press the **Song Edit** button to exit the Song Edit module.

You can edit notes and note velocity by playing the keyboard.

Event List Editor

Continuous controller, pitch wheel. mono pressure, poly pressure and program change MIDI messages can be edited, inserted or deleted using this menu. Place the cursor underneath the "Event Scroll Field" shown below and turn the data entry control to navigate through events.

The event list editor also allows you access to the *Conductor Track* which sets the tempo and meter for the pattern.

Hold the **Enter** button and turn the **data entry control** to scroll through events when the cursor is on any other field.

- Erase button - - Erases the currently selected event.
- **Repeat** button - Duplicates the currently selected event, allowing you to edit and create a new event.
 - 1) Press Repeat.

2) Change the time, channel, or MIDI event.

• Note: You cannot have two events with the exact same time and data in a pattern. Proteus 2500 will delete any duplicate events as soon as you increment the event or exit the screen.

Continuous Controller Edit

Continuous controller numbers 1-95 can be edited. Continuous controllers and Channel Pressure messages may range in value from 0-127.

Continuous Controller Screen

Pitch Strip Edit

Pitch Wheel messages are bidirectional and may range in value from -8192 to +8191.

Pitch Strip Screen

Poly Pressure Edit

Polyphonic pressure messages are assigned on a per not basis and have range of 0-127. Proteus 2500 cannot receive poly pressure messages.

Poly Pressure Screen

Program Change Edit

Program change numbers from 0-127, and on any bank number, can be inserted, deleted or edited in this screen. If you do not select bank numbers (off), the program change will be sent to the currently selected bank. See "Bank Select Commands" on page 174.

Program Change Screen

► To Edit a MIDI Event:

- 1. Select the pattern you wish to edit.
- 2. Press the Pattern Edit button.
- **3.** Scroll to the **Event List Editor** screen shown below using the data entry control.
- **4.** Press the **Enter** button as prompted by the display to begin editing.

 Press the right Cursor button to move the cursor underneath the Event Scroll Field (<->).

- **6.** Turn the **data entry control** to scroll through the event list and locate the event you want to edit.
- **7.** Move the cursor to the data field you want to edit and make changes using the data entry control.
- **8**. Press the **Pattern Edit** button to exit the Pattern Edit module.

Revert to Saved Song

This screen allows you to discard any edits made to the song and restore the last saved version. This is not the same as an "Undo" function since Revert permanently discards any edits you have made since saving. This function removes the asterisk in the display that appears after you've edited the song.

66

Caution: Never "Revert to Saved" while the sequencer is in record mode or the computer may crash.

REVERT TO SAVED SONG 000° Patterns 0-9

Connection Example

Using the Internal Sequencer with an External MIDI Keyboard The internal architecture has been changed in this software revision. These examples will help you with some common setups. When you have a working setup, it's a good idea to save and name the Multisetup to preserve your work.

In this setup, an external MIDI keyboard transmitting on a single MIDI channel is used to record into the internal sequencer. This demonstrates the new Rechannelize Input feature which frees you from changing the MIDI channel of your controller keyboard.

- Setup the Following Controls:
- 1. RECHANNELIZE INPUT (MIDI) always
- 2. KEYBOARD OUTPUTS MIDI (MIDI) don't transmit
- 3. KNOBS OUTPUT MIDI (MIDI) don't transmit
- 4. MERGE MIDI IN TO OUT (MIDI) Out A: off, Out B: off
- 5. LOCAL CONTROL (Controllers) on
- 6. Save and Name the Multisetup. (Global)

Optional Steps:

- **7. TRIGGERS** (Controllers) **Seq** (If you want to record them into the sequencer.)
- 8. **PROGRAMMABLE KNOBS** (Controllers) Seq (If you want to record them into the sequencer.)

If Channel Assign in the song/pattern edit menu is set to to external or both, you'll get duplicate MIDI data if steps 2 & 3 in the setup are not set to Off.

► To Record a Sequence:

- **1**. Select an empty pattern or song.
- 2. Press Preset View and select a preset for your first track.
- **3.** Press **Record**, then setup the Quantize, Metronome and Length parameters.
- **4.** Press **Play** to begin recording. Recording begins after the count-in period (if any). If you're recording into a Pattern it will loop when it reaches the end of its length.

To Record another Track

- **5.** Press the **Track** button to the left of the LCD to increment the track number.
- 6. Press Preset View and select a preset for the next track.
- **7.** Press the **Stop** button twice to return to the beginning of the song or pattern.
- 8. Press Record, then Play to begin recording.
- **9.** Repeat steps 5 through 8 to continue laying down tracks.
- **Optional:** Recording Tracks to control an External Sound Module

The diagram on page 113 shows two external sound modules connected. The channel assignment screen controls the routing of sequencer tracks to internal and external MIDI channels.

1. Set CHANNEL ASSIGN (Song/Pattern Edit) - Destination - ext

2. Set the MIDI channel as desired for the external sound module. Channels 01A-16A go to the "A" MIDI port; channels 01B-16B go to the "B MIDI port.

Controllers Menu

The Controllers menu contains functions related to the keypad, knobs or trigger buttons of Proteus 2500. For example, the programmable knobs and triggers are programmed in this menu. All Controllers menu data is saved with the Multisetup. See page 124 for more information about Multisetups.

To enable the Controllers menu

Press the Controllers button, lighting the LED. The Controllers Menu screen displays the menu page most recently selected since powering up Proteus 2500. The cursor appears below the first character of the screen heading on line one.

To select a new screen

Press the Home/Enter button or press the Cursor button repeatedly until the cursor is below the screen title heading. Rotate the data entry control to select another screen.

► To modify a parameter

Press either Cursor button repeatedly (or hold down the right cursor button while turning the data entry control) until the cursor is below the desired parameter value. Rotate the data entry control to change the value.

► To return to the previously selected Mode/View screen Press the Controllers button, turning off the LED.

Realtime Control Functions

Keyboard Transpose

This section describes how set up the Realtime Controllers on Proteus 2500. Realtime Controllers are performance controls such as the controller knobs, velocity-sensitive keypads, and trigger buttons.

This option allows you to offset the transposition of the keyboard in semitone intervals. This is allows you to easily play in different keys with the one octave keypad and lets you access different groups of instruments in a drum map. The transpose range is ± 36 semitones.

KEYBOARD TRANSPOSE

+00 semitones

Keyboard Channel

in Quick Edit mode the front panel knobs only control the "Basic Channel".

Local Control On/Off

This option allows you to select which channel is controlled by the front panel knobs. You can select any of the 32 channels or "Basic". The "Basic" channel is the normal connection. With Basic selected, the knobs always control the preset showing in the Preset View screen.

KEYBOARD CHANNEL

Channel: Basic

Local Control is used to disconnect the controllers (knobs, footswitches) from the sound generating section. Even though disconnected from the internal synthesizer, the controllers are still transmitted over MIDI. Local Control is normally turned Off when recording into an external MIDI sequencer (set sequencer to Echo Thru). Played data and recorded data are merged in the computer sequencer and then sent back to the module. This feature can also be used if you want to control another MIDI sound generator from the knobs without playing internal sounds.

MIDI local control mode change messages can either be accepted or ignored depending on the setting of the change field. With this set to "ignored", an incoming command to turn local control on or off would be ignored

The two footswitch jacks on Proteus 2500's rear panel can be programmed to perform a variety of functions. The footswitch jacks are designed to accept momentary footswitches which connect the tip and ring. Proteus 2500 senses either normally-on or normally-off switches on power-up.

Each footswitch can be independently programmed. The following functions can be controlled via the footswitches.

- MIDI Footswitch In this mode the footswitch is routed to the Patch-Cord in the Preset Edit, Cords menu. *(See pages 207 and 214.)* It is also transmitted out on the Footswitch Controller number as programmed in the Controllers menu. *(See page 122.)*
- Play/Stop Pressing the footswitch once activates the Play button on the front panel. Pressing the footswitch again activates the front panel Stop button.
 - Pressing the footswitch activates the **Play** button on the front panel. This works well in combination with the following function.

Footswitch Jack Function

• Play

	• Stop/RTZ	Pressing the footswitch activates the front panel Stop button. Pressing the footswitch again invokes the Return-to-Zero function.
	• Punch I/O	When the sequencer is playing, the footswitch will activate the Record button in order to punch-in to record mode. Pressing the footswitch again will punch-out of record.
		When the sequencer is stopped, repeatedly pressing the footswitch cycles through the three record modes: realtime, grid & step record.
	• Tap Tempo	Pressing the footswitch activates the front panel Tap button, allowing you to tap in the current tempo with your foot.
	• Channel +	Pressing the footswitch increments the MIDI channel number.
	Channel -	Pressing the footswitch decrements the MIDI channel number.
	• Sequence +	Pressing the footswitch increments the current pattern or song number. The next pattern will begin playing when the current pattern ends.
	• Sequence -	Pressing the footswitch decrements the current pattern or song number. The next pattern will begin playing when the current pattern ends.
Trigger Buttons Function	This option selects the "Triggers" button can Events.	e function of the front panel "Triggers" button. The be used either to Play Beats Parts or to Play Note
	• Play Beats Parts	In this mode and when the Triggers button is selected, the sixteen command buttons turn Beats parts on and off.
	• Play Note Events	In this mode and when the Triggers button is selected, the sixteen command buttons work like keyboard notes. Each button can be assigned to any MIDI note, on any MIDI Channel (01-16), with any velocity (0-127), and can be set to be latched or momentarily on.
	TRIGGE Play No	R BUTTONS FUNCTION ote Events

Trigger Buttons

Use the Trigger Button Key Velocity to adjust the volume of Beats relative to volume of the Pattern or Song.

Trigger button presses can be recorded into patterns and songs.

Latched buttons are especially useful for triggering arpeggiated presets. Select Triggers mode by pressing the mode select button so that the "Triggers" LED is illuminated. Now the 16 buttons work like keyboard notes. Each of the 16 buttons can be assigned to any MIDI note, on any MIDI Channel (01A-16B), with any velocity (0-127), and can be set to be latched or momentarily on. Latched notes will hold until the button is pressed again. Latched notes will be indicated by the LEDs. Each trigger can also be routed to: the internal synth engine, to the MIDI ports, both internal and MIDI, or to the sequencer input.

Simply move the cursor from the "TRIGGERS" field and play a note to enter the MIDI key and velocity. Pressing a Trigger Button anytime while in this screen automatically selects that trigger button for programming!

See the block diagram showing "Triggers & Programmable Knobs" on page 314 for detailed information about the actual routing path.

To Setup the Trigger Buttons

- 1. Press the Controllers button. Its LED will illuminate.
- 2. Turn the data entry control to select the "TRIGGERS" screen.
- **3.** Use the left/right cursor controls to select the fields shown above.
- **4.** Select the MIDI key, the MIDI channel, the Velocity, Latch on/off and destination for each of the 16 trigger buttons.
- 5. Save the Multisetup if you want to save these settings. See page 125.

To Play the Trigger Buttons

- 1. Press the Mode button so that the Triggers LED illuminates.
- **2**. Play the Trigger buttons.

Programmable Knobs

If this parameter is set to "Ext," or "Both," the system sends MIDI controller messages when you turn the Controller knobs. If set to External, the knobs do NOT control internal synth parameters and only used as external MIDI controllers. When the programmable knobs are routed to "Seq" they can be recorded into the internal sequencer.

Each knob can be programmed to send on any MIDI channel (01A-16B) and on any continuous controller number from 1-95 The "Controller Function Select" button (page 37) must be set to "Program" in order to transmit. The knobs only generate a message when you move a knob to a new value. The Controller Knob LEDs always remain off in this mode.

See the block diagram showing "Triggers & Programmable Knobs" on page 314 for detailed information about the actual routing path.

► To Program the Programmable Knobs

- 1. Press the Controllers button. Its LED will illuminate.
- 2. Turn the data entry control to select the "Programmable Knobs" screen.

- **3.** Use the left/right cursor controls to select the fields.
- 4. Select the MIDI Continuous Controller number, the MIDI channel, and Internal/External/Both/Sequencer for each of the 16 knobs.
- 5. Save the Multisetup if you want to save these settings. See page 125.

"Quick-Edit" changes the initial controller setting in the preset whenever you move a Control Knob. This parameter selects whether or not the front panel Controller Knobs are used to Quick-Edit the currently selected preset. See "Real-time Controller Knobs" on page 37 in the Operations chapter for more details.

KNOBS PRESET QUICK-EDIT disabled

Turning a knob while in this screen automatically selects that knob for programming!

Knob Preset Quick-Edit

Real-time Controller Assignment

Tip: Proteus 2500 factory presets have certain synth parameters assigned to each controller letter and so these are "Global" controller assignments.

For example, assigning a MIDI controller to "A" in this screen would let you control filter Fc for all the factory presets. See "Front Panel Knob Functions" on page 287.

Use these three pages to assign sixteen real-time control sources. Each MIDI Controller is assigned a letter (A - P). The front panel Controller Knobs and sixteen MIDI controller numbers share the A-P controller routings. These screens let you select which MIDI real-time controllers numbers will be received (from 1 to 31 and from 64 to 95) and which controller numbers will be transmitted over MIDI if the front panel controls are turned. The PatchCord routing and amount in the Preset Edit menu determine what effect the controller has on each preset. Real-time controllers are shown in the PatchCord menu as MIDI A through MIDI P.

The Real-time Controller assignment also specifies which controller numbers are transmitted when the "Knobs MIDI Out" is enabled (see "Knobs Output MIDI" on page 140).

> **REALTIME CONTROLLER #** A: 74 B: 71 C: 25 D: 26

REALTIME CONTROLLER #

E: 73 F: 75 G: 85 H: 72

REALTIME CONTROLLER # I: 78

J: 77 K: 27 L: 28

REALTIME CONTROLLER # M: 01 N: 03 0: 82 P: 83

Note: Controllers 7 and 10 are already assigned to Volume and Pan for each MIDI channel. Controllers 91 & 93 are the standard controller numbers for reverb and chorus send amounts, but are not assigned.

Following are a few of the standardized MIDI Controller numbers as defined by the MIDI manufacturers association. The controllers shown in **Bold** are automatically routed to the destination (volume & pan) or have their own PatchCord source. Others, such as Portamento Time, can be routed using a PatchCord to have the desired effect.

1 - Modulation Wheel 7 - Volume 2 - Breath Controller 8 - Balance 3 - Aftertouch 9 - Undefined 4 - Foot Pedal 10 - Pan 5 - Portamento Time 11 - Expression 6 - Data Entry **MIDI** Footswitch Like the MIDI Controllers, you can assign three MIDI footswitches to MIDI footswitch numbers. Footswitches numbers are from 64-79. Destinations Assign for the footswitch controllers are programmed in the PatchCord section of the Preset Edit menu. The rear panel footswitches 1 & 2 are connected to footswitch controllers 1 & 2 in this screen. Pressing a footswitch transmits on the MIDI controller number programmed here. Footswitch 3 routes incoming MIDI footswitch data to the PatchCord section of Proteus 2500. FOOTSWITCH CONTROLLER # 1: 64 2: 65 3: 66 Tempo Controller This function allows a MIDI controller to change the Base Tempo of the Master Clock. The Master Clock is used by the sequencer, arpeggiators, clock divisor PatchCords, tempo-based envelopes and synced LFOs. (See "Clock Modulation" on page 154.) You can assign any controller number from 0-31, mono key pressure, or the Pitch Wheel to change the Global Tempo. A different controller can be used to change the tempo up or down. The Pitch Wheel can be assigned to both the up and down parameters to vary the tempo up and down from a single controller. If any other controller is assigned to both the up and down parameters, Proteus 2500 redefines the center of the controller's range as zero (so it acts like a pitch wheel). MIDI Controller values are added to the Base Tempo with a range of ± 64 . When the controller is set to "off" the tempo returns to its original setting. Controllers are only recognized on the selected MIDI channel, unless Proteus 2500 is in Omni mode, in which case all channels are accepted. This control has no effect when using an external clock. TEMPO CONTROLLER# CHAN Uo: 03 Down: 09 16B

Global Menu

The Global menu contains functions that affect the overall operation of Proteus 2500. For example, changing the Master Tune parameter changes the tuning of all the presets, not just the one currently displayed.

► To enable the Global menu

Press the Global button, lighting the LED. The Global Menu screen displays the menu page most recently selected since powering up Proteus 2500. The cursor appears below the first character of the screen heading on line one.

► To select a new screen

Press the Home/Enter button or press the Cursor button repeatedly until the cursor is below the screen title heading. Rotate the data entry control to select another screen.

To modify a parameter

Press either Cursor button repeatedly (or hold down the right cursor button while turning the data entry control) until the cursor is below the desired parameter value. Rotate the data entry control to change the value.

► To return to the previously selected screen

Press the Global button, turning off the LED.

Warning: Global Menu changes are automatically saved when you exit the menu. If the power is turned off before you exit the menu any changes you have made will be lost.

Multisetups

A Multisetup is a group of parameters that you might associate with a particular performance setup or song. It is like a "snapshot" of the current configuration of the Proteus 2500. There are 64 setups numbered 0-63. All the Multisetups are user programmable except 63, the factory setup.

A Multisetup includes ALL the following parameters:

- Preset/Volume/Pan/Arp assignments for each of the 32 MIDI channels.
- Multisetup Name
- ALL Controllers menu parameters
- ALL Global Menu parameters, *except...* User Key Tuning Tables
- ALL Arp Menu parameters, *except...* User Arp Patterns
- ALL MIDI Menu parameters, *except...* MIDI Program Change->Preset Map

When a Multisetup is selected, it overwrites the current Preset/Vol/Pan/Arp selections on all MIDI channels. It also overwrites the Controllers, Global, Arp, and MIDI menu parameters (with the exceptions noted above).

If you make changes to any of these menus, Proteus 2500 will retain the changes, even if power is turned off. They are of course, overwritten when you restore a Multisetup.

Restoring Multisetups

Proteus 2500 contains 64 Multisetup locations. These are all User locations except location 63, which is a factory defined Multisetup.

Multisetups can be restored using a MIDI Bank Select command. Select: cc00 = 80, cc32 = 00, (dec) then send a Program Change command corresponding to the Multisetup you wish to select.

RESTORE MULTISETUP

003 Jazzercide

• To Restore (Select) a Multisetup:

1. From the Global menu, scroll to the **Restore Multisetup** screen using the data entry control. The menu page most recently selected since powering up Proteus 2500 will be displayed. The cursor appears below the first character of the screen heading on line one.

- 2. Press either **cursor** button to move the cursor to the bottom line of the screen.
- **3.** Now, use the **data entry control** to select a Multisetup. The Enter LED will be flashing.
- 4. Press the Enter button to load the selected Multisetup.

Multisetup Name

Multisetups can be named to make it easier to remember their purpose.

1. Scroll to the "Setup Name" screen (shown below) using the **data entry control**.

MULTISETUP NAME 020 User Setup 23

- **2.** Press either **cursor** button to move the cursor to the bottom line of the screen.
- **3.** Change the characters using the **data entry control**. Change the cursor position using the cursor buttons.
- **4.** Press **Enter** or move the cursor to the top line when you're finished naming the multisetup.

Saving Multisetups

► To Save a Multisetup:

- **1.** Set the Preset, Volume, Pan and Arp settings (in Preset View mode) for all channels. Set the Global, MIDI, and Controllers menu parameters the way you want them.
- **2.** Press the **Global** button, then scroll to the "Save Setup" screen (shown below) using the **data entry control**.

SAVE SETUP TO 020 Destination Multisetup

- **3.** Press either **cursor** button to move the cursor to the bottom line of the screen.
- **4.** Now, use the **data entry control** to select the destination location. The Enter LED will be flashing.
- **5**. Press the **Enter** button to save the Multisetup.

Defining Global Parameters

Transpose/Tune

Global setup parameters affect overall performance, range, and global effects. This section describes the Global parameters and how to define them.

The Transpose parameter transposes the key of all presets, in semitone intervals. The transpose range is ± 24 semitones.

Master Tune adjusts the fine tuning of all presets so that you can tune Proteus 2500 to other instruments. The master tuning range is ± 1 semitone in 1/64th semitone increments (1.56 cents). A master tune setting of "+00" indicates that Proteus 2500 is perfectly tuned to concert pitch (A=440 Hz).

> MASTER TRANSPOSE TUNE +00 semitones +00

Bend Range

The Master Bend Range parameter sets the range of the touchstrip or pitch wheel if you have a MIDI keyboard connected. This affects only presets that have their individual Pitch Bend range (defined in the Preset Edit menu) set to Master. *See page 208*. The maximum pitch bend range is ±12 semitones or one octave in each direction.

MASTER BEND RANGE +/- 7 semitones

Velocity Curve

Incoming velocity data or keypad velocity can be altered by one of thirteen velocity curves. These specially designed curves allow you to customize the dynamic feel of the pads to your individual playing style, or to better adapt Proteus 2500 to a external MIDI controller. You can select one of thirteen global velocity curves or to leave the data unaltered (linear).

For a complete list of all available velocity curves, see "Velocity Curves" on page 309 of the Appendix.

Mix Output

The Mix Output parameter allows you to override the routing assignments made in each preset and instead assign the outputs according to MIDI channel. For each of the 32 MIDI channels, you can select Send 1-4, or Preset. When Preset is selected, the output assignment defined in the Preset Edit menu is used.

The **Output Routing** field (pointed to by the arrow) reflects the true routing of Send 2 or Send 3 to either:

1) the effects processor input or... 2) the rear panel submix jacks.

Since the Sub 1 output is NOT being used, the signal is routed through the effects processors, then on to the main outputs. If a plug were inserted into one of the Sub 1 jacks the destination field would read "Sub1" and the dry signal would be routed directly to the Sub 1 outputs on the back panel.

MIX OUTPUT

channel 15A: use preset

The Sends function as effect processor inputs (effect sends). Send 2 and Send 3 are also used to route sounds to the Sub 1 and 2 outputs on the back panel. When a plug is inserted into the associated Submix jack on the back panel, **the Dry portion of the Send is disconnected** from the effects processor and the signal is routed directly to the output jack. **The Arrow points to the actual output routing.** If you don't want the wet portion of the signal in the main mix, turn down the Send Level. *The entire Send is disconnected from the Effects Processors even if only one plug is inserted into the Submix jack.*

The four Effect Sends allow you to get the most out of the two effect processors. For example, with Effect B set to an echo algorithm, you could route one MIDI channel to Send 3 and set the effect amount to 80%. Another MIDI channel could be routed to Send 4 with an effect amount of only 5%. This is almost like having two different effects!

The Mix Output function is also useful when sequencing since it lets you route specific MIDI channels (and thus sequencer tracks) to specific Sub outputs (on the back panel) where there they can be processed with EQ or other outboard effects.

- Send 1 Main Outputs
- Send 2 Subout 1 or Main Outs Send 3 - Subout 2 or Main Outs
- Send 4 Main Outputs

Sends 2 and 3 can be routed to the effects processors or to rear panel submix jacks. When a plug is inserted into a Submix jack, the dry portion of the Send is disconnected from the effects processor and is routed **directly** to the Submix output jacks.

Master Effects

Effects Mode

The digital effect processors can be programmed as part of the preset (using the Preset Edit menu) so that effects will change along with the preset. However, there are only two effect processors, and so you cannot have a different effect on each preset when in Multi mode.

The Master Effects settings assign the effect processors "globally" for all presets to provide a way to use the effects in Multi mode. Detailed information is presented in the Effects chapter (see Effects on page 249).

The FX Mode page enables or bypasses the effects. When the FX Mode is set to "bypass," the effects are turned off on a global scale. This includes Effects programmed in the preset.

FX MODE enabled

Effects Multi Mode Control

The routing scheme for the two stereo effects processors provides a lot of versatility. When in multi mode, you can "use master settings" which applies the Master effects settings to all 32 MIDI channels.

FX MULTIMODE CONTROL

use master settings

If you want more control, you can use the "channel" setting which applies the effects settings of the preset on a specified channel to all the other channels. Changing the preset on the specified channel changes the effect.

FX MULTIMODE CONTROL

preset on channel 1

If you are in Omni or Poly modes this parameter is disabled and the message in parentheses explains that Proteus 2500 is currently in Omni mode.

FX MULTIMODE CONTROL

(using Omni mode)

Master FXA Algorithm

This function selects the type of effect used for the "A" effect. The following effect types are available.

MASTER FXA ALGORITHM

Room 1

A Effect Types

- **1.** Room 1
- **2**. Room 2
- **3.** Room 3
- 4. Hall 1
- 5. Hall 2
- 6. Plate
- 7. Delay
- 8. Panning Delay
- 9. Multitap 1
- **10.** Multitap Pan
- 11. 3 Tap
- **12.** 3 Tap Pan
- 13. Soft Room
- 14. Warm Room
- 15. Perfect Room
- **16.** Tiled Room
- **17.** Hard Plate
- 18. Warm Hall
- 19. Spacious Hall
- **20.** Bright Hall

22. Bright Plate

21. Bright Hall Pan

- 23. BBall Court
- 24. Gymnasium
- 25. Cavern
- **26.** Concert 9
- 27. Concert 10 Pan
- 28. Reverse Gate
- **29.** Gate 2
- **30.** Gate Pan
- **31.** Concert 11
- 32. Medium Concert
- 33. Large Concert
- 34. Large Concert Pan
- 35. Canyon
- **36.** DelayVerb 1
- **37.** DelayVerb 2
- **38.** DelayVerb 3
- **39.** DelayVerb 4 Pan
- 40. DelayVerb 5 Pan
- **41.** DelayVerb 6
- 42. DelayVerb 7
- **43**. DelayVerb 8
- 44. DelayVerb 9

	B Effect Types	
	1 Chorus 1 17 Ensemble	
	2 Chorus 2 18 Delay	
	3 Chorus 3 19 Delay Stereo	
	4 Chorus 4 20 Delay Stereo 2	
	5 Chorus 5 21 Panning Delay	
	6 Doubling 22 Delay Chorus	
	7 Slaphack 23 Pan Delay Chorus 1	
	8 Flange 1 24 Pan Delay Chorus 2	
	9. Flange 2 25. Dual Tan 1/3	
	10 Flange 3 26 Dual Tap 1/4	
	11 Flange 4 27 Vibrato	
	12 Flange 5 28 Distortion 1	
	13 Flange 6 29 Distortion 2	
	13. Hange 0 23. Distorted Flange 14. Flange 7 30. Distorted Flange	
	15 Big Chorus 31 Distorted Chorus	
	16 Symphonic 32 Distorted Double	
FXB Parameters: Feedback/LFO Rate Delay Time	The FXB parameters setup the characteristics of the effect. Use this page define the feedback amount, the LFO rate and delay amount for the selected type "B" effect. See "Effect Parameters" on page 251 for details FXB FEEDBK LFORATE DELAY 000 003 0	e to
FXB Send Amounts	These parameters set the effects amounts for each of the four stereo effects see the Effects chapter for detailed information.	ects
	FXB_SEND_HMOUNTS 1:100% 2: 50% 3: 10% 4: 0%	

Miscellaneous Parameters			
Edit All Layers Enable	This function allows you to turn the Edit All Layers feature on or off. "Edit All Layers" is an Edit menu feature which allows you to select all layers (the letter "A" appears in the layer field) in order to edit all four layers simulta- neously. Because this feature can be confusing to the beginning programmer, it can be disabled here in the Global menu. EDIT ALL LAYERS enabled		
User Key Tuning The user key tuning can be used to tune individual percussion instruments.	User Key Tuning lets you create and modify 12 user definable tuning tables. The initial frequency of every key can be individually tuned, facilitating the creation of alternate or microtonal scales. Using the cursor keys and the data entry control, select the user table number, the key name, the coarse tuning and the fine tuning. The key name is variable from C-2 to G8. Coarse Tuning is variable from 0 to 127 semitones. The fine tuning is variable from 00 to 63 in increments of 1/64 of a semitone (approx. 1.56 cents). For each preset, the specific tuning table is selected in the Preset Edit menu. See page 216. USER KEY TUNING Table: 1 Key: C1 Crs: 036 Fine: 00		
Output Format	The Output Format parameter sets the digital audio output format. The available formats are S/PDIF, and AES pro. If you are using the digital output, choose either S/PDIF or AES pro to match the format of the receiving device.		

Although the S/PDIF digital output can transmit AES Pro format, you'll need an adapter cable for the electrical connections. The diagram below shows how an adapter cable for AES pro should be wired.

If you use an adapter cable to connect the S/PDIF digital audio output to AES gear, make sure to use high quality, low capacitance cable.

This function changes the viewing angle of the display so that you can read it easily from either above or below the unit. The angle is adjustable from +7 to -8. Positive values will make the display easier to read when viewed from above. Negative values make the display easier to read from below.

> VIEWING ANGLE +0

DON'T CHEAP OUT! Always use high quality cable for digital audio connections.

Screen Viewing Angle

MIDI Menu

Most of the parameters in Proteus 2500 that relate to MIDI are contained within this menu. You can merge MIDI data, change the continuous controller assignments, turn program changes off or on, and lots more.

MIDI menu settings are saved with the current Multimap.

To enable the MIDI menu

Press the MIDI button, lighting the LED. The MIDI Menu screen displays the menu page most recently selected since powering up Proteus 2500. The cursor appears below the first character of the screen heading on line one.

To select a new screen

Press the Home/Enter button or press the Cursor button repeatedly until the cursor is below the screen title heading. Rotate the data entry control to select another screen.

► To modify a parameter

Press either Cursor button repeatedly (or hold down the right cursor button while turning the data entry control) until the cursor is below the desired parameter value. Rotate the data entry control to change the value.

► To return to the previously selected Mode/View screen Press the MIDI button, turning off the LED.

Warning: MIDI Menu changes are automatically saved when you exit the menu. If the power is turned off before you exit the menu any changes you have made will be lost.

Base Tempo

Proteus 2500 contains an internal Master Clock which runs the sequencer, arpeggiators, synchronizes the LFOs when in tempo-based mode, controls the times of tempo-based envelopes, and can be used as a modulation source in the PatchCords section.

You'll notice that there are two tempo values shown in the display.

- **Base Tempo** This is the base tempo setting before being modified by the Tempo Controller (if engaged). *See "Tempo Controller" on page 122.*
- (Current Tempo) This is the actual tempo! The current tempo is equal to the base tempo modulated by the MIDI controller specified in the Tempo Controller screen. If no MIDI Tempo controller message has been received since the last Base Tempo change, the Current Tempo will be equal to the Base Tempo.

The LED to the right of the button blinks at the current tempo rate.

► To Change the Base Tempo

- 1. Move the cursor to the lower line of the display.
- **2.** Adjust the Base Tempo using the data entry control.

<u>B</u>ASE TEMPO (0 = MidiClk) 120 bpm (current: 182)

3. To Tap Tempo - Tap the Tap button at least three times. Keep tapping to continuously update the tempo on each tap. The tap tempo range is 25-300 bpm. The Base Tempo values range from 1 through 300 beats per minute (BPM).

► To Use an External MIDI Clock:

- 1. Move the cursor to the lower line of the display.
- Turn the data entry control all the way counter-clockwise and select "ext" to use an external MIDI clock source.

Rechannelize Input

You can also tap tempo

using a footswitch. See

page 117.

This feature makes it easier to record to the internal sequencer using an external keyboard. **Rechannelize Input changes the channel of incoming MIDI data according to the settings in the Channel Assignment screen.**

To record multiple tracks, you simply change the track number and preset. You don't have to change the channel number of your external MIDI controller.

Rechannelize Input can be set to **Off**, **Always** or **On Record**. When set to On Record, the input will only be rechannelized when the Record LED is illuminated (Record or Record-Pause mode). This allows normal MIDI

channel routing except when recording, when the channel data will be changed to match the current track.

- ► Using Rechannelize Input to Record from a MIDI Keyboard:
- 1. Select an empty pattern.
- 2. Set Rechannelize Input to Always.
- **3.** Select a preset for Channel 1 (C01A) from the Preset View screen. (Note that your MIDI keyboard always plays the preset assigned to the channel shown in the display.)
- 4. Turn Preset View Off to show the pattern screen again.
- 5. Press Record, then set the Pattern Length, Quantize & Metronome.
- 6. Press Play to begin recording.
- 7. Press Stop when finished. (Press Stop twice to Return to Zero.)
- **8.** Select a preset for Channel 2 (C02A) from the Preset View screen. Notice that the keyboard now plays the new preset.
- 9. Press Record, then Play to begin recording.
- **10.** Continue to record tracks.

The Rechannelize Input feature routes performance data through the Sequencer Track Routing so that you don't have to change channels on your MIDI keyboard.

Knobs Output MIDI	This function allows you to select whether or not knob data is transmitted. The knobs transmit on the controller numbers defined by the Real-time Controller Assign parameter (See page 121).
Transmit MIDI Clock	This option enables or disables the transmission of MIDI clock from the MIDI out port. When Proteus 2500 is running on its own internal clock (page 138) it transmits 24 MIDI clocks per quarter note. When Proteus 2500 is slaved to an external MIDI clock, it mirrors the incoming clock data.
External Song Start/ Stop	This feature lets the sequencer receive or ignore incoming MIDI Song Start (0xFA), Continue (0xFB), Stop (0xFC) and Song Position Pointer (0xF2) messages. EXTERNAL SONG START/STOP accepted To use the instrument as a MIDI sound module with an external sequencer, set this control to "ignored." In this setting the internal sequencer won't start up every time your computer sequencer sends a start command. If you're using and external MIDI controller to start and stop the internal sequencer, set this control to "accepted."

Merge MIDI In to MIDI Out	MIDI data received at the MIDI In port can be merged with outgoing MID data at either, or both of the two MIDI out ports. the MIDI output port. This allows you to connect a MIDI keyboard to Proteus 2500 and control both Proteus 2500 and any other external synthesizers down the line.			
	ME Ou	RGE MIDI IN TO OUT t A: off Out B: on		
MIDI In Channels	This menu allows MIDI data received at the MIDI input port to control either the internal "A" or "B" channels. With this switch set to "B", you could play an external MIDI keyboard on channels 1B-16B while channels 1A-16A remain dedicated to the internal sequencer.			
	MII 0	DI IN CHANNELS to 16: A		
MIDI Enable	MIDI Enable lets you turn each MIDI channel on and off independently when in Multi mode. This feature is helpful when you have other devices connected to the same MIDI line and do not want the Proteus 2500 unit to respond to the MIDI channels reserved for the other devices.			
MIDI ENABLE channel 01A: On				
	Because the MII mode, Proteus 2	DI Enable function only makes sense if you are in Multi 2500 disables this feature when in Omni or Poly mode.		
	In Multi Mode	MIDI ENABLE channel 168: On		
	In Omni Mode	MIDI ENABLE (using Omni mode)		

Receive Program Change

Use this function to instruct Proteus 2500 to utilize or ignore incoming MIDI preset changes or Bank Select commands for each channel. Use the cursor buttons to select the channel number field, then use the data entry control to select a channel number. Use the cursor button again to select the On/Off field and the data entry control to change the value.

RECEIVE PROGRAM CHANGE

channel 01A : on

You can also remap incoming MIDI program changes to a different numbered preset. This is a handy feature when your master keyboard cannot send a bank change or you want to reorder preset numbers. Any preset can be mapped to any incoming MIDI program change number.

For example, you could set up the Program -> Preset map to call up preset #12 whenever Proteus 2500 receives MIDI program change #26.

The four fields shown below are editable.

MIDI Program Change -> Preset

N The Program->Preset Change only works for program changes received in Bank 0.

In this chart, program changes 10-29 have been remapped to new preset numbers. All other presets are selected normally.

MIDI SysEx ID

66 WARNING: When transferring SysEx data from one

Proteus 2500 to another, the ID numbers of both units must be the same. This page defines the MIDI system exclusive (SysEx) device ID number. The SysEx ID lets an external programming unit to distinguish between multiple Proteus 2500 units connected to the same preset editor. In this case each unit must have a unique SysEx ID number.

MIDI SYSEX ID

000

MIDI SysEx Packet Delay

The MIDI SysEx Packet Delay command lets you specify the amount of delay between MIDI SysEx packets going out of Proteus 2500 so that your computer sequencer can record this large chunk of data over a longer period of time. On playback from the sequencer, the SysEx data will be fed more slowly into Proteus 2500 so that the its input buffer does not overflow, causing an error. Many sequencers allow you to "Time Stamp" SysEx data as it is recorded. This is the preferred mode for recording SysEx.

The packet delay range is from 0 through 8000 milliseconds. A delay value of zero allows full speed MIDI transfer. If you are experiencing data transmission errors, try increasing the delay value until the problem disappears.

MIDI SYSEX PACKET DELAY

300 milliseconds

Send MIDI System Exclusive Data

The Preset, Volume, and Pan information for all 32 channels is included when the Multi mode Map settings are transmitted or received. This command transmits MIDI System Exclusive (SysEx) data to the MIDI Out port of Proteus 2500. The MIDI data can be sent to a computer, sequencer or to another Proteus 2500. When transferring data between two Proteus 2500s be sure both units have the same SysEx ID number! Using the cursor key and the data entry control, select the type of MIDI data you want to transmit. Following are descriptions of the types of MIDI data that can be transmitted.

Current Multisetup

Transmits all parameters in the Global menu except Tuning Tables, Program/Preset Map and Viewing Angle. Transmits the entire Controllers menu.

Program /Preset Map

Transmits the MIDI Program -> Preset Map.

Tuning Tables

Transmits all 12 user User Tuning Tables.

Multimode Map

Transmits the following parameters:

- Multimode Basic Channel
- Multimode Effects Control Channel
- Multimode Tempo Control Channel

and for each MIDI Channel...

- Preset, Volume, & Pan
- Mix Output
- Multimode Channel Enable
- Multimode Bank Map
- Multimode Receive Program Change

WARNING: When transferring SysEx data from one Proteus 2500 to another, the ID numbers of both units must match.

Bank 0 User Presets

Transmits all the user defined presets in Bank 0.

Bank 1 User Presets Transmits all the user defined presets in Bank 1.

Bank 2 User Presets Transmits all the user defined presets in Bank 2.

Bank 3 User Presets

Transmits all the user defined presets in Bank 3.

Any Individual Preset

Transmits only the selected preset.

The Enter LED will be flashing. Press the Enter button to confirm the operation. To receive MIDI data, simply send the MIDI data into Proteus 2500 from another Proteus 2500 or from a computer/sequencer.

SEND MIDI SYSEX DATA bank 1 user presets

► To Record MIDI SysEx Data into an External Sequencer:

- 1. Setup the sequencer to receive system exclusive data.
- **2**. Place the sequencer into record mode, then Send MIDI Data.

► To Receive MIDI SysEx Data from an External Sequencer:

Simply play back the sequence containing the SysEx data into Proteus 2500.

MIDI Mode

MIDI Mode selects one of the three MIDI modes: Omni, Poly or Multi.

The **MIDI Mode Change** parameter specifies whether mode changes made through an external MIDI controller are accepted or ignored.

The MIDI modes are as follows:

Omni

Responds to note information on all MIDI channels and plays the preset currently displayed in the main screen.

Poly

Responds only to note information received on the currently selected MIDI channel (on the preset selection screen) and plays that channel's associated preset.

Multi

Responds to data on any combination of MIDI channels and plays the specific preset associated with each of the MIDI channels. You must select multi mode for multitimbral operation.

Programming Basics

This chapter explains how Proteus 2500 sounds are constructed and contains important background information on how to create your own custom presets.

Your initial involvement with Proteus 2500 will most likely be using the existing presets and selecting MIDI channels. While the factory presets are very good, there are some things you will probably want to change eventually, perhaps the LFO speed, the filter frequency or the attack time. You may also want to make your own custom presets using complex modulation routings. This module will do far more than you ever imagined and there are whole new classes of sound just waiting to be discovered.

Each preset can consist of up to four instrument layers. Each of the four layers can be placed anywhere on the keyboard and can be crossfaded or switched according to key position, velocity, or by using a real-time control such as a wheel, slider, pedal, LFO or envelope generator. A preset can also be "linked" with up to 2 more presets creating additional layering or splits.

Proteus 2500 has an extensive modulation implementation using two multi-wave LFO's (Low Frequency Oscillators), three multi-stage envelope generators and the ability to respond to multiple MIDI controllers. You can simultaneously route any combination of these control sources to multiple destinations.

There are 512 user locations (USER Banks 0-3) available to store your own creations or edited factory presets. It's easy and fun to edit or create your own unique presets.

Modulation

To modulate means to dynamically change a parameter, whether it be the volume (amplitude modulation), the pitch (frequency modulation), and so on. Turning the volume control on your home stereo rapidly back and forth is an example of amplitude modulation. To modulate something we need a modulation source and a modulation destination. In this case, the source is your hand turning the knob, and the destination is the volume control. If we had a device that could turn the volume control automatically, we would call that device a modulation source.

Turning the volume control back and forth on your home stereo is an example of Amplitude Modulation.

Proteus 2500 is designed so that each of the variable parameters, such as the volume, has an initial setting which is changed by a modulation source. Therefore in the case of volume, we have an initial volume that we can change or modulate with a modulation source.

Two main kinds of modulation sources on Proteus 2500 are *Envelope Generators* and *Low Frequency Oscillators*. In the example above, an envelope generator could be routed to automatically turn the volume control as programmed by the envelope. Or, a low frequency oscillator could be routed to turn the volume up and down in a repeating fashion.

Positive modulation adds to the initial amount. Negative modulation subtracts from the initial amount.

Summing Nodes

All the modulation inputs on Proteus 2500 are summing nodes. This means that you can connect as many modulation sources as you want to an input *(such as Pitch or AmpVol)*. Modulation sources are simply added algebra-ically— connecting two knobs one set to -100 and the other set to +100 yields a net value of zero.

Modulation Sources

Modulation sources include *Envelope Generators, Performance Controllers* and *Low Frequency Oscillators*. In the previous example, an envelope generator was routed to automatically turn the volume control as programmed by the envelope, or, a low frequency oscillator could be routed to turn the volume control up and down in a repeating fashion. The following is a list of the modulation sources used in Proteus 2500.

Keyboard Key

Which key is pressed.

Key Velocity How fast the key is pressed.

Release Velocity How fast the key is released.

Gate

High if the key is pressed, low when the key is released.

Key Glide

A smoothly changing control source based on the Glide Rate and the interval between the last two notes played.

Pitch and Mod Controllers Synthesizer pitch bend and modulation controllers.

Keyboard Pressure (mono aftertouch) Key Pressure applied after the keypad is initially pressed.

Pedal

A continuously variable pedal controller.

Miscellaneous Controllers A -P Any type of MIDI continuous controller data.

Low Frequency Oscillators (2 per layer) Generate repeating waves.

Envelope Generators (3 per layer) Generate a programmable "contour" which changes over time when a key is pressed.

Noise & Random Generators Generate spectrums of noise and random signals.

Footswitches

Change a parameter when the switch is pressed.

Clock Divisor

The master tempo clock can be divided and used as a modulation source.

Tip: Try routing Key Glide to Filter Frequency if you want the filter to smoothly follow pitch in solo mode. Routing Key Glide to Pan creates another interesting effect.

Random Sources

Random modulation sources can be used when you want the timbre of the sound to be "animated" in a random or non-consistent manner.

- Key Random 1 & 2 generate different random values for each layer which do not change during the note.
- The White & Pink Noise Generators produce varying random values. Both white and pink noise sources are low frequency noise designed for control purposes. Either noise source can be filtered even more by passing it through a lag processor.
- The **Crossfade Random** function generates the same random value for all layers in a preset. This source is designed to be used for cross-fading and cross-switching layers, although you may find other uses.

When setting up modulation with the Proteus 2500, you define a modulation source and a modulation destination. Then, you connect the source to the destination using "PatchCords." Proteus 2500's PatchCords are connected in the software. Proteus 2500 has 24 general purpose PatchCords for each layer.

You can connect the modulation sources in almost any possible way to the modulation destinations. You can even modulate other modulators. Each PatchCord also has an amount parameter which determines "how much" modulation is applied to the destination. The modulation amount can be positive or negative. Negative values invert the modulation source.

Modulation PatchCords

The controller Knobs assignments printed on the front panel are the system defaults. You can change any of these assignments using the Real-time Controller Assignment page in the MIDI menu (see page 141 for details).

Envelope Generators

るる

If two adjacent segments have the same level in a "timebased" envelope, the segment will be skipped. Adjacent segments must have different levels for the rate control to work.

ADSR mode: To create a standard ADSR envelope: Set Atk1, Atk2 & Dcy1 Level to 100, Rls 1 & 2 level to 0, and Atk2, Dcy1, Rls2 Rates to 0. Program Atk1, Dcy2 and Rls1 segments as you wish. See page 279.

By routing the Auxiliary or Filter Envelopes to control the pitch (PatchCords) you can easily hear the shape of the envelopes you are creating. An envelope can be described as a "contour" which is used to shape the sound over time in a pre-programmed manner. There are three envelope generators per layer and all of them are the rate/level type.

This is how the rate/level *(time based)* envelopes work: When a key is pressed, envelope starts from zero and moves toward the Attack 1 Level at the Attack 1 Rate. As soon as it reaches this first level, it immediately begins the next phase and moves toward the Attack 2 level at the Attack 2 rate. As long as the key is held down, the envelope continues on through the Decay 1 and Decay 2 stages. If the key is still held when the envelope reaches the end of Decay 2, it simply waits there for you to release the key. When you release the key, the envelope continues into the Release 1 and Release 2 stages, stopping at the end of the Release 2 stage. Proteus 2500's envelope generators provide great flexibility for programming both complex and simple envelopes.

All three envelope generators have the six stages described above. The Volume Envelope generator controls the volume of the voice over time. The Filter Envelope generator is a general purpose envelope most often used to control the filter frequency. Unlike the Volume Envelope, however, the Filter Envelope can have a negative level value as well as a positive level. There is also an Auxiliary Envelope generator which is a general purpose envelope. The Auxiliary Envelope is identical to the Filter Envelope and can have negative as well as positive levels. You can adjust the time of each stage to create myriad envelope shapes, which in turn shape the sound over time.

• Volume envelopes contour the way the volume of a sound changes over time determining how we perceive that sound. For example, a bell struck with a hammer is instantly at full volume, then slowly dies away. A bowed violin sound fades in more slowly and dies away slowly. Using Proteus 2500's Volume Envelope, you can simulate the different types of natural instrument volume envelopes by programming them appropriately.

Tempo-based Envelopes

Tempo-based envelopes are based on *Time* which is controlled by the Master Tempo (*located in the Global menu*). The Master Tempo rate scales the time of the Tempo-based envelope segments. The Master Tempo can also be derived from an external MIDI clock to synchronize the envelope times with external sequencer or arpeggiator tempo changes. See page 138.

Envelope Repeat

The Envelope Generators can also be made to repeat. When the envelope repeat function is On, the Attack (1&2) and Decay (1&2) stages will continue to repeat as long as the key is held. As soon as the key is released, the envelope continues through its normal Release stages (1 & 2).

The diagram above show how the looping envelopes work. When the key is pressed the envelope goes through its regular Attack 1, Attack 2, Decay 1 and Decay 2 stages. In non-looping mode, the envelope would hold at the end of the Decay 2 stage until the key was released. In looping mode however, it jumps back to the Attack 1 stage and repeats the first four stages. It continues to loop through these four stages until the key is released where it immediately jumps to the Release 1 stage.

Only the Filter and Auxiliary Envelopes have the repeating feature.

Low Frequency Oscillators (LFOs)

LFO Tricks & Tips:

- The Random LFO wave is truly random and is different for each voice and layer.
- The Pattern (Pat) waveforms will sound the same on different layers and voices.
- Sine + Noise is very useful for simulating trumpet and flute vibrato.
- ★ When routing Hemi-quaver to Pitch:

+38 = major scale -38 = phrygian scale +76 = whole tone scale (+38) + (+76) = diminished (two cords)

odd amount = S+H sound

Note: References to musical intervals in the pattern LFO shapes are with the LFO routed to pitch and a PatchCord amount of +38.

N Try combining the Pattern LFOs, or controlling the amount of one with another, or combining them with the clock divisors.

A Low Frequency Oscillator or LFO is simply a wave which repeats at a slow rate. The Proteus 2500 has two multi-wave LFOs for each channel. The LFO waveforms are shown in the following illustration.

By examining the diagram of the LFO waveforms, you can see how an LFO affects a modulation destination. The shape of the waveform determines the result. Suppose we are modulating the pitch of an instrument. The sine wave looks smooth, and changes the pitch smoothly. The square wave changes abruptly and abruptly changes from one pitch to another. The sawtooth wave increases smoothly, then changes back abruptly. The sound's pitch follows the same course. Controlling the pitch of an instrument is an easy way to hear the effects of the LFO waves.

Like the Auxiliary Envelope, LFOs can be routed to control any real-time function such as Pitch, Filter, Panning, or Volume. A common use for the LFO is to control the pitch of the sound (LFO -> Pitch). This effect is called vibrato and is an important performance effect. Many presets use this routing with the modulation wheel controlling "how much" LFO modulation is applied. Another common effect, Tremolo, is created by controlling the volume of a sound with the LFO (LFO -> Volume).

You might use the LFOs to add a slight bit of animation to the sound by routing the LFO to control the filter. For this effect, set the LFO "amount" low for a subtle effect.

When a PatchCord amount is a negative value, the LFO shape is inverted. For example, inverting the sawtooth wave produces a wave that increases abruptly, then smoothly glides down.

Sawtooth

Inverted Sawtooth

Clock Modulation

Envelopes are triggered on the positive going edge of the clock. LFOs are triggered on the negative going edge of the clock.

% The tempo of the master clock is set in the Global menu.

You can use the Master Clock as a modulation source, to trigger the Filter or Auxiliary Envelope generators, trigger Sample Start, synchronize the LFOs, or directly as a square wave modulation source. The Clock source is available in eight divisions (octal whole note, quad whole note, double whole note, whole note, half note, quarter note, eighth note, sixteenth note). You can use the different rates separately or in conjunction to create complex "synchro-sonic" rhythm patterns. You can also use a MIDI Clock as the Master Clock to synchronize to an external MIDI device such as a drum machine or sequencer. *(See Master Tempo in the Global menu.)*

Clocks are routed exactly like the other modulations sources using the PatchCords. The PatchCord Amount MUST be positive (+) for the clock to pass. By modulating the PatchCord Amount, you can route the divided clocks using real-time controllers or other modulation sources.

When an LFO is triggered by a clock, the LFO wave resets to zero every time the clock wave goes low. If the LFO rate is close to the clock rate, the LFO virtually synchronizes with the clock. If the two rates are far apart, the waveform of the LFO will be mildly or radically altered.

LFO Trigger causes the LFO to reset each time the clock waveform goes low.

LFOs can also be perfectly synchronized with the clock at any of 25 note divisions. This allows you to create very cool "synchro-sonic" effects that work perfectly at any tempo. Choosing one of the note divisors in the LFO rate screen selects the synced LFO function.

There are many possibilities for clock modulation and retrigger. For example, you can create a repeating six segment curve of any shape by triggering the Filter or Auxiliary Envelope generators with the clock. A few other possibilities are listed below.

- Turn different voice layers on and off using different clock divisors.
- Switch between Auxiliary and Filter Envelope retriggering using a slider or footswitch.
- Retrigger LFOs or Envelopes using noise or other LFOs to create random or semi random effects.
- Alter the LFO waveform by modulating the rate of a triggered LFO.
- Route multiple clocks with different divisors to the same destination (such as pitch) to create complex patterns. (*Hint: Adjust the PatchCord Amounts.*)

Adding these two clocks together in equal amounts produces a stairstep waveform.

Adding multiple clocks with unequal amounts produces complex repeating patterns.

LFO Synced to 1/4 Note Clock

Modulation Destinations

The PatchCords section of the Preset Edit menu is where you connect sources to destinations. Each PatchCord has an amount associated with it which controls how much modulation is applied.

The PatchCords screen above and the diagram below show how modulation sources are connected to destinations. The modulation sources can control any of the destinations in the layer.

• Note-on modulation sources, such as key, velocity and gate output a single value at note-on time. Realtime modulation sources such as LFOs, envelope generators and modulation wheels output continuously changing values.

The possible modulation routings are completely flexible as shown in the diagram above. Multiple sources can control the same destination, or a single source can control multiple destinations.

All the modulation destinations are summing nodes. This means that you can connect as many modulation sources as you want to a destination. Modulation sources are simply added algebraically — connecting two sources, one with a value of -100 and the other with a value of +100 yields a net value of zero.

Modulation Processors

Modulation processors are devices which can modify modulation sources such as LFOs and envelope generators before they are applied to a destination. Modulation processors let you create patches and do tricks which would not be possible otherwise. These modulation processors are independently programmable on each of the four layers.

Switch

Outputs a digital "1" when the input is greater than "0".

Summing Amp

Lets you add several modulation signals together before applying them to a destination. This processor can save PatchCords when routing the output to multiple destinations.

Lag Processors

Slows down rapid changes in the input signal. The output "lags" behind the input at a pre-programmed rate. There are two lag processors, Lag 0 and Lag 1. Lag 1 has a longer lag time than Lag 0.

Absolute Value

This function inverts negative input values and outputs only positive values. This device is also called a full wave rectifier.

Diode

The diode blocks negative input values, passing only positive values.

Flip-Flop

The output of this processor alternates between a digital "1" and digital "0" each time the input goes positive from zero or a negative value. With an LFO input, the output will be a square wave of half the input frequency.

Quantizer

With the input PatchCord set to 100%, the output value is limited to 16 discrete values. The value of the input PatchCord controls the number of steps. The value of the output PatchCord controls the size of the steps.

4x Gain

This processor amplifies the modulation source by a factor of 4.

Lag Inputs

The Lag processors can be used as 2 additional summing amps. Lag0sum and Lag1sum are modulation sources which equal the sum of PatchCords connected to the Lag in destination. The summing amp is located before the lag processor as shown in the following illustration.

The value of a digital "1" is equal to the PatchCord amount.

Summing Amps can be useful in complicated patches where you want to control a combination of modulation signals with a single patchcord.

Preset Modulation Processors

Preset Modulation Processors start working as soon as the preset is selected. The Layer Modulation Processors take effect only when a key is pressed. There are also two "Preset Level" modulation processors located in the "Preset Patchcords" screen of the Edit menu. It is important to understand that although the preset processors *originate* at the *Preset Level PatchCords*, their output is used in the *Layer PatchCords*.

Preset Lag

Like the Layer Lag processors (*described on page 157*) the Preset Lag slows down rapid changes in the input signal. The output "lags" behind the input at a pre-programmed rate. Unlike the layer level lag processors, the *preset lag* takes effect as soon as the preset is selected. In contrast, the layer level lag processors begin acting only after a keyboard key has been depressed. The Preset Lag also has a *Lag Amount* input which controls the lag time. Positive lag amounts increase the lag time. A MIDI controller (*front panel knob*) is commonly used to control lag amount.

The preset lag can be used to "spin-up" and "spin-down" an LFO which controls some other effect, perhaps left/right panning, pitch, or the filter. A MIDI footswitch could be used as the input to the lag which acts to slow down the instantaneous change of the switch. The slowly changing output value is then routed using a layer patchcord to crossfade between layers or change the speed of an LFO.

Preset Ramp

This processor generates a positive or negative going slope whenever the **first** key is depressed on the MIDI channel.

The preset ramp instantly resets when all notes have been released and the next *first key* on the MIDI channel is pressed. The Ramp Rate polarity (+ *or* -) determines if the ramp will be positive or negative going. The value of the ramp rate sets the increment. Large values produce fast ramps and small values produce slow ramps. Multiple inputs can be connected to the ramp rate (just like all the other destinations in Proteus 2500).

The patch below shows an application for the Preset Ramp which generates an adjustable decay envelope ONLY on the first note played to bring in the sound from another layer. Instead of routing the output to the Amp Volume you could just as easily route it to control Pitch, LFO Speed or any other destination you can think of. Study this patch if you want to learn a few new tricks using the patchcords.

- 1. DC Sets initial ramp Fast-Positive (+100)
- 2. Decay Knob Inverted value slows ramp as the knob value is increased.
- 3. Ramp Out Cord Inverts Ramp slope (downward).
- **4. Amp Vol** Initial setting is Off (-96dB). Ramp cannot overcome this negative bias.
- **5. Perc. Amt** When this knob is turned up, the positive bias on the Amp is restored so that so that the Ramp can now affect Amp Volume.
- 6. Volume Envelope Fast Attack, Full Sustain, No Release

The combination of the DC & Perc. Decay Time Cords has the effect of reversing the Percussion Decay Time knob. The decay time increases as the knob is turned up.

Using the Modulation Processors

Modulation processors are inserted into a modulation routing as shown in the following diagram.

The modular analog synthesizers of yesteryear were incredibly flexible, partly because processing devices could be connected in any order. Modulation processors are designed according to this modular concept. They can be linked and used in a wide variety of ways limited only by your imagination. Consider the following example:

The patch illustrated above is programmed by setting the PatchCord screens as shown below.

This particular modulation shifts the overall pitch up a fifth when the key velocity exceeds 64. Velocities below 64 play at normal pitch. Notes with velocities of 64 and above are raised a perfect fifth. The Velocity "~" source scales the played velocity around zero. In other words, low velocities (below 64) will have negative values and high velocities (64 and above) will be positive. A velocity of 64 would be zero. The Switch module only outputs a "1" if the input value is greater than zero. This digital "1" value can be scaled through the attenuator on the PatchCord to raise or lower the pitch by any amount. In this case, a scaling value of +22 raises the pitch by a perfect fifth. The amount of the PatchCord on the input to the switch is unimportant because ANY velocity value equal or greater than 64 will flip the switch. If the input PatchCord amount were a negative value however, the action of the velocity would be reversed and velocities less than 64 would raise the pitch and velocities equal or greater than 64 would play the original pitch.

But what if you want the velocity switch point to be something other than 64? Thanks to modulation processors, it can be done. Here's how.

Connect the DC level to the input of the switch along with the velocity value. Note that more than one modulation source can be applied to the input of a processor.

DC offset adds a fixed value based on the PatchCord Amount setting. If applied to the switch along with the velocity, it changes the velocity value required to trip the switch. By setting the DC amount to a negative amount, higher velocity values are required to trip the switch. Setting the DC value to a positive value would bring the velocity switch point down. The PatchCord screens for this patch are shown below.

^{L1} PATCHCORD	#03
Switch -> Pitch	+055

More Examples

To derive a smooth random function you could route the Pink Noise generator through one of the Lag Processors. A smooth random wave is useful in small amounts to add a degree of natural variation to timbre when routed to filter cutoff. Normal pink noise is low pass filtered audio frequency noise with a 3 dB/octave slope to give equal energy per octave. Proteus 2500 pink noise is actually more like very low frequency filtered noise, but it is perfect for use as a random control source.

The **Quantizer** can generate interesting whole-tone scales when envelope generators or LFOs are routed to the input. The quantizer turns a smoothly changing input signal into a series of steps. By routing the output of the quantizer to Pitch and adjusting the PatchCord amounts, you can control both the number of steps and the pitch interval of each step.

The input PatchCord amount controls how many steps will be generated. With a sawtooth wave (LFO+) feeding the input and the PatchCord amount set to 100%, sixteen steps are generated. The output PatchCord amount controls the size (or interval) of the steps.

Try setting up the following patch exactly as shown below using your favorite preset as a starting point.

The 4x Amp can be used to get more steps or increase the interval of the Quantizer.

Experiment with this patch by connecting other sources and destinations to the Quantizer.

L¹ PATCHCORD #01 LF01+ -> Quantize +030

L¹ PATCHCORD #02 Quantize -> Pitch +100

This patch generates an ascending arpeggio every time a key is pressed. A diagram of the patch is shown below. The patch is very straightforward except for the DC offset which was added to bring the pitch down into tune. (Sometimes you have to fix a problem, but using the mod processors there's usually a way around it to achieve the desired result.)

You can start to see some of the possibilities (and there are many). Whenever you find yourself wishing for some esoteric type of control, take a minute to think and see if there is a way to achieve the desired result using the modulation processors.

Dynamic Filters

The block diagram of the Proteus 2500's signal path is shown below.

To understand how a filter works, we need to understand what makes up a sound wave. A sine wave is the simplest form of sound wave. Any waveform, except a sine wave, can be analyzed as a mix of sine waves at specific frequencies and amplitudes.

Any waveform can be analyzed as a mixture of sine waves.

One way to represent complex waveforms is to use a chart with frequency on one axis and amplitude on the other. Each vertical line of the chart represents one sine wave at a specific amplitude and frequency.

What is a Filter?

Most sounds are complex waves containing many sine waves of various amplitudes and frequencies. A **filter is a device which allows us to remove certain components of a sound depending on its frequency.** For example, a *low-pass filter* lets the low frequencies pass and removes only the high frequencies as illustrated in the following diagram.

A filter that lets only the high frequencies pass is called a *high-pass filter* as illustrated in the following diagram.

A filter which only lets a certain band of frequencies pass is called a *band-pass filter*.

A *notch filter* is just the opposite of a band-pass filter and is used to eliminate a narrow band of frequencies.

Another control found on traditional filters is called Q or resonance. A lowpass filter with a high Q emphasizes the frequencies around the cutoff frequency. The following chart shows how different amounts of Q affect the low-pass filter response. In terms of sound, frequencies around the cutoff tend to "ring" with high Q settings. If a filter with high Q is slowly swept back and forth, various overtones are "picked out" of the sound and amplified as the resonant peak sweeps over them. Bells and gongs are real world examples of sounds which have a high Q.

Another characteristic of a filter is the number of poles it contains. Traditional synthesizer filters were usually either 2-pole or 4-pole filters. The Proteus 2500 has selectable 2, 4, and 6-pole low-pass filters. The number of poles in a filter describes the steepness of its slope. The more poles, the steeper the filter's slope and the stronger the filtering action. The tone controls on your home stereo are probably one-pole or two-pole filters. Parametric equalizers are usually either two-pole or three-pole filters.

In terms of vintage synthesizers, Moog and ARP synthesizers used 4-pole filters, Oberheim and E-mu synthesizers were famous for their 2-pole filter sound.

Using a filter, we have a way to control the harmonic content of a sound. As it turns out, even a simple low-pass filter can simulate the response of many natural sounds.

For example, when a piano string is struck by its hammer, there are initially a lot of high frequencies present. If the same note is played softer, there are fewer high frequencies generated by the string. We can simulate this effect by routing keyboard velocity to control the low-pass filter. The result is expressive, natural control over the sound.

If you use an envelope generator to control the cutoff frequency of a filter, the frequency content can be varied dynamically over the course of the note. This adds animation to the sound as well as simulates the response of many natural instruments.
Parametric Filters

A more complex type of filter is called a parametric filter or *Swept EQ*. A parametric filter allows control over three basic parameters of the filter. The three parameters are: *Bandwidth, Frequency* and *Gain*. The Bandwidth allows you to select the width of the range of frequencies to be boosted or cut, the Frequency defines the center frequency of the bandwidth, and the Gain parameter either boosts or cuts the frequencies within the selected band by a specified amount. Frequencies not included in the selected band are left unaltered. This is different from a band-pass filter which attenuates (reduces) frequencies outside the selected band.

The parametric filter is quite flexible. Any range of frequencies can be either amplified or attenuated. Several parametric sections are often cascaded in order to create complex filter response curves.

If four parametric filter sections were cascaded, it would be possible to create the following complex filter response.

Many natural instruments have complex resonances which are based on their soundboard or tube size. The resonance shown above would be impossible to create using a normal synthesizer filter.

The Z-Plane Filter

A Z-plane filter is a filter which can change its function over time. In a Z-plane filter, we start with two complex filter types and interpolate between them using a single parameter. See the following diagram.

The Z-plane filter has the unique ability to change its function over time.

Filters A and B represent two different complex filters or "frames." Changing a single parameter, the Morph, changes many complex filter parameters simultaneously. Following along the Morph axis you can see that the filter response smoothly interpolates between the two filters. This is the essence of the Z-plane filter. Through the use of interpolation, many complex parameters are condensed into one manageable entity.

Consider, as an example, the human vocal tract, which is a type of complex filter or resonator. There are dozens of different muscles controlling the shape of the vocal tract. When speaking, however, we don't think of the muscles, we just remember how it feels to form the vowels. A vowel is really a configuration of many muscles, but we consider it a single object. In changing from one vowel to another, we don't need to consider the frequencies of the resonant peaks. You remember the shape of your mouth for each sound and interpolate between them.

This Z-plane filter sweep can be controlled by an envelope generator, an LFO, modulation wheels or pedals, keyboard velocity, key pressure, and so on. In fact, any of the modulation sources can control the Z-plane filter.

Because creating the complex filtering is difficult and very time consuming, we have created 50 different filters and installed them permanently in ROM for your use. You simply select and use the filters in a manner similar to choosing an instrument. Because there are so many types of instruments and filters to choose from, the number of possible permutations is staggering.

Signal Flow

Going back to the Signal Path diagram for a single channel we can reexamine the complete signal path.

Instrument

This is the sampled sound wave. The pitch of the instrument can be modulated by any modulation source. The sample start point can be changed only at the time the note is played.

Z-Plane Filter

The Z-Plane Filter is used to shape the harmonic content of an instrument. The filter envelope is commonly used to shape the harmonic content dynamically over time but the filter frequency can be modulated by any source. The Q parameter can be modulated only at note-on time. There are 50 types of filters available. See "Proteus 2500 Filter Types" on page 196 for a complete list of the filters.

Digitally Controlled Amplifier (DCA)

Together with the Volume Envelope, the DCA is used to shape the volume contour of a sound. The DCA can be controlled by any modulation source. Velocity is often used as a modulation source for the DCA so that the harder you play, the louder the sound becomes.

Pan

Adjusts the balance of sound to the left and right channels. Pan can be modulated by any modulation source.

MIDI Channels & Real-time Controls

The following MIDI controls are automatically routed in Proteus 2500:

Pitch Wheel	pwh
Modulation Wheel	01
Aftertouch	03
Pedal	04
Volume	07
Pan	10
Expression	11

The MIDI real-time controllers may seem confusing at first, but they are really very simple once you understand them. You already know that there are 16 MIDI channels per MIDI cable. Each MIDI channel uses three basic types of messages; note on/off, preset changes, and continuous controller messages. Your MIDI keyboard, in addition to telling Proteus 2500 which note was played, can also send real-time control information, which simply means control occurring in real-time or "live." (You may be using a MIDI device other than a keyboard, but for simplicity's sake we'll presume that you are using a keyboard.)Real-time control sources include such things as controller knobs, pitch wheels or touchstrips, modulation wheels, control pedals and aftertouch. These are used to add more expression or control.

The front panel control knobs send out real-time controller information on separate continuous controller numbers. There is a set of 32 continuous controller numbers for each MIDI channel. Some continuous controllers, such as modulation wheel, volume, and pan have standardized numbers. For example, volume is usually sent on continuous controller #7. The front panel controller knobs on are pre-programmed to control the Proteus 2500.

Any MIDI controller can be routed to any modulation destination. First, you have to know which controller numbers your keyboard transmits. Most modern MIDI keyboards let you select a controller number for each control on the keyboard. For example, it may let you select a number from 0-31 for the data slider. The realtime controller numbers that the keyboard transmits must match the numbers Proteus 2500 is receiving, otherwise nothing will happen when you move the controls.

Suppose you wanted to send the four data sliders on your master keyboard. Proteus 2500 can handle up to 16 MIDI controllers (A-P) of your choosing. "MIDI A-P" are simply names for the internal connections that link external MIDI continuous controllers to the PatchCord section of Proteus 2500. There are two parts to the connection. First, MIDI controller numbers are assigned to the letters A-P in the Controllers menu. Next, the letters A-P are connected to synthesizer control parameters in the PatchCord section of the Preset Edit menu. The PatchCord Amount scales the amount of each controller by a positive or negative value. The factory presets have the MIDI A-P controls connected to standard synthesizer functions (marked on the front panel). By choosing any four of the 16 standard functions, the four sliders on your keyboard will work the same on every preset. The chart below shows how this might work if your keyboard transmitted the slider settings on MIDI controllers 21-24.

Control	MIDI Controller #	Routing	Standard Function
Slider 1	74	А	Controls Filter Frequency
Slider 2	71	В	Controls Filter Resonance
Slider 3	25	С	Controls Filter Attack
Slider 4	26	D	Controls Filter Decay

MIDI A-P are internal connections which simultaneously carry front panel controller knob data and MIDI continuous controller data.

The 16 controller knobs on the Proteus 2500 front panel work just like MIDI real-time controllers. The four controller knobs are permanently assigned to controllers A-P. The front panel knob (A-P) and incoming MIDI controller messages assigned to that letter, both control the same parameter that you select in the PatchCord screen.

Bank Select Commands	When the original MIDI specification was developed, no synthesizer had more than 40 preset locations. At that time being able to select up to 128 presets didn't seem like much of a limitation. So it was that the original MIDI specification provided for the selection of up to 128 presets.			
	Musicians wanted <i>MORE</i> presets and so the MIDI specification was later amended to include <i>Bank Select Commands</i> . It was decided that Bank Select Commands would use Continuous Controllers 0 and 32 to allow the selection of up to 16,384 banks of 128 presets (over two million presets).			
	Because Bank Selects are implemented using Continuous Controllers, the Bank Selections can be made <i>per channel</i> . (This is getting better and better.) For each MIDI channel, you can select any of 16,384 banks and then one of the 128 presets in the bank. Of course no synthesizer has 16,384 banks (yet), but hey, it's nice to know it's possible (for that really BIG project).			
~	Continuous Controller (CC) 0 is the MSB (most significant byte) and CC 32 is the LSB (least significant byte). Normally you send both the MSB and LSB controllers to implement a bank change.			
When you press the Audition button, the Bank Select MSB and LSB are displayed on the top line of the display.	Proteus 2500 remembers the MSB and the LSB that were last sent (or last changed from the front panel). For example, if you have already set the Bank MSB to 04, you need only send the LSB to change banks within the Proteus 2500 sound set. See the MIDI Bank Select chart below.			
	The selected bank remains selected until you change it (either via MIDI or by changing the bank from the front panel). Standard MIDI Program Change commands select from 128 presets within the selected bank.			
Stereo Mix Outputs	This feature is useful for adding signal processing (EQ, reverb, etc.) of individual sounds prior to final mixdown. The routing can be performed according to MIDI channel from the Mix Output screen in the Global menu. Simply assign each channel to the desired output.			
	Global MIX OUTPUT Menu channel 01: Send 2			
	To route a particular preset to a Send, first go to the Mix Output screen in the Global menu and set the MIDI channel to "Preset".			

Global Menu MIX OUTPUT channel O1: Preset

Next set the Mix Output routing in the preset to the desired output (for each layer). Yes, you can send each layer to a different send if you want.

Preset Edit Menu ^{L1} MIX OUTPUT Send 2

By sending different amounts of presets to the effects, subtle or striking effects can be achieved using the two effect processors. This feature allows you to get the most out of two effects since you can have eight different mixes.

For more information, refer to the diagram on the following page or, *See "Mix Output" on page 128.*

The Mix Output screen in the **Global** menu assigns each MIDI channel to a Send (1-4) or to "Preset".

The Mix Output screen in the **Preset Edit** menu is ONLY used if the Global Mix Output is set to "Preset". Otherwise the Preset Edit menu Mix Output settings are ignored.

Preset Edit Menu

The Preset Edit Menu contains four layers of preset parameters that you can modify and then save as preset information in one of the user preset locations. There are four instrument layers in the Preset Edit menu. See the illustration on page 178 for a description of the Preset Layer model.

To Access the Preset Edit Menu

Press the Preset Edit button, lighting the LED. The Preset Edit Menu screen displays the menu page most recently selected since powering up Proteus 2500. The cursor appears below the first character of the screen heading on line one.

• To Scroll through Layers

Place the cursor below the layer field. Rotate the data entry control to select a layer (1-4).

You can also select **All Layers** by choosing "A" in the layer field. When All Layers is selected, the existing parameter value for any field will be displayed if the values of all four layers are equal. If the values of all four layers are NOT equal, the value of layer 1 will be displayed with flashing characters. If you change the parameter value, all layers will assume the new value and the display will stop flashing.

• To Scroll through Pages

Whenever you are in the Preset Edit menu, the sixteen command buttons function as "jump" buttons to various screens in the Preset Edit menu, which are labelled below each button. Pressing a jump button instantly takes you to the first screen in the selected category. Pressing the button again takes you to the second screen in the category and so on. Repeated pressing will rotate you back to the first screen in the category.

You can also change pages by placing the cursor below the page title field. This will automatically be done when you press the Home/Enter button. Rotate the data entry control to scroll through the pages.

• To Change a Parameter

Place the cursor below the parameter field. Rotate the data entry control to change the parameter value.

While the Preset Edit menu is activated, all incoming MIDI preset changes on the selected channel are ignored.

If there is no "A" option in the Layer field, you must enable the "Edit All Layers" function in the Global Menu (page 134).

Preset Name

The Preset names consists of two parts: a 3 letter preset category and a 12 letter preset name. Position the cursor under the character location and use the data entry control to change the character.

The preset category is used in conjunction with the Sound Navigator feature. Using the Sound Navigator, a category is selected and the presets in that category are listed in alphabetical order. Creating categories makes it easier to find specific sounds when you need them. For more information on Sound Navigator, see Sound Navigator in Chapter 2: Operations.

You can also select characters using the keypads or MIDI keyboard.

000¹ syn: VOSIM-Voc

Four Layer Architecture

Proteus 2500 provides a 4 layer instrument structure. Each layer is a complete synthesizer voice with 50 filter types, over 64 modulation sources, more than 64 modulation destinations and 24 patchcords to connect everything together. In addition, the four layers can be crossfaded or switched by key position, velocity or any real-time modulation source.

Selecting Layers

In most of the Preset Edit screens, the selected layer is shown in the upper left corner of the display. Layers 1-4 or All can be selected by positioning the cursor on this field and using the data entry control to change the layer. In the screen shown below, Layer 1 is selected.

When "All Layers" (A) is selected, the existing parameter value for any field will be displayed if all layers are equal. If the layer parameter values are NOT equal, the value of Layer 1 will be displayed with flashing characters. If you move the data entry control all values will be equal to this new value and the parameter value will no longer flash.

Defining Layer Parameters

Selecting an Instrument The Preset Edit menu parameters define the four layers and include the instrument assigned to the layer, the ranges of the layer, tuning, envelopes, filters, and patch cords. These parameters are defined for each layer on an individual basis (based on the currently selected layer). See "Common Preset Parameters" on page 209 for global preset settings.

The Instrument parameter defines which of the available instrument sounds is played by the current layer.

To select an instrument for the selected layer(s), move the cursor to the bottom line of the display and change the instrument using the data entry control.

Sound Navigator

Sound Navigator also works to help select Instruments although the category names are predefined. When the cursor is on the Instrument Category field, turning the data entry control selects different instrument categories. The Name Field will change to show the first instrument in each category. Move the cursor to the instrument name to select instruments in the selected category.

Defining Key Range

The Key parameter defines the range on the keyboard used by the current layer. The Key range is from C-2 through G8.

To define the range, set the low key value and the high key value.

You can select key numbers by simply pressing the desired keyboard key when the cursor is positioned on the low or high key field in the display.

Layers can be crossfaded according to key position by adjusting the Low and High Fade parameters. The first Fade field determines how many semitones it takes the layer to Fade In from the low key. The second Fade field determines how many semitones it takes the layer to Fade Out to the high key. The screen shot above and the diagram below show Layer 1 being faded out over a one octave range.

With a High Fade value of zero (as in layer 3 of the diagram), the layer simply switches off at the high key.

► To Switch Layers According to Key Position

The Key Range parameter allows you to create a "split" keyboard with up to four sounds adjacent to each other on the keyboard. This is shown in the diagram below.

Just assign the low and high key range for each of the four layers with Fade set to zero. Set the Low and High Keys so they don't overlap other layers.

You can select key numbers by simply pressing the desired keyboard key when the cursor is positioned on the low or high key field n the display.

^{L1} KEY:	LO	FADE	HIGH	FADE
	<u>C</u> 0	000	F1	000

L2 KEY:	LO	FADE	HIGH	FADE
	<u>F</u> #1	000	С3	000

L ³ KEY:	LO	FADE	HIGH	FADE
<u>(</u>	<u>_</u> #3	000	F#4	000

L ⁴ KEY:	LO	FADE	HIGH	FADE
	<u>6</u> 4	000	C6	000

If two layers do overlap, both will play as shown in the next example.

► To Stack Layers

If the ranges of two or more Layers overlap it is called *stacking layers*. All Layers assigned to a key sound when the key is played. This is shown in the following diagram. It's very easy to stack layers. Simply duplicate the key ranges for any layers you want to stack.

Defining the Velocity Crossfade Range

Velocity is a measure of how hard the key is pressed. Velocity Range lets you control the volume of the layers using velocity. Using this function you can crossfade or cross-switch between layers according to how hard you play the keyboard.

Set the velocity range of the layer by defining the high and low velocity values. Values range from 0 (off) to 127 (hardest).

L2 VEL:	LO	FADE	HIGH	FADE
	<u>3</u> 6	012	96	012

The Fade fields define the velocity crossfade range for the currently selected layer. The first Fade field defines the Fade In range for the low velocity value. The second defines the Fade Out range for the high velocity value.

With soft playing, Layer 1 sounds. As you play harder, Layer 1 gradually fades out and Layer 2 fades in. When the keyboard is played hard, Layer 3 plays.

To Set Up a Velocity Crossfade Between Layers

Set the velocity fades so that layer 1 fades out with higher key velocity, while layer 2 fades in. At a velocity of 64, the two sounds are equal volume. You may want to adjust the fade in and fade out points to achieve a natural sounding crossfade. These parameters vary depending on the sounds.

Defining the Real-time Crossfade Range

The Real-time Crossfade window lets you control the volume of the four layers using a real-time controller such as a front panel knob, a pedal or an LFO or Envelope generator. The controller is defined by the PatchCord parameter (see "PatchCords" on page 205).

The Fade fields define the crossfade range in velocity for the currently selected layer. The first Fade field defines the Fade In amount for the low Real-time Control value. The second defines the Fade Out amount for the high Real-time Control value. The Fade value range is from 0 to 127.

After the Ranges and Fades have been adjusted for each layer in the Realtime Crossfade screen, you must assign a real-time controller to RTXfade (Real-time Crossfade) **on each Layer** in the PatchCord screen. Set the PatchCord Amounts to +100.

► To Set Up a Real-time Crossfade Between Two Layers

As the real-time control (knob, pedal, LFO, etc.) is increased, Layer 1 fades out as Layer 2 fades in. This example only uses two of the possible four layers. Refer to the screen diagrams below.

^{L1} RT: LO	FADE	HIGH	FADE
000	000	127	<u>1</u> 27

^{L2} RT: LO	FADE	HIGH	FADE
000	<u>1</u> 27	127	000

- 1. Select a preset.
- 2. Press the Preset Edit button to access the Preset Edit menu.
- **3.** Go to the **Instrument** page and select instruments for Layers 1 and 2.

- 4. Press Enter, then use the data entry control to advance to the **Real-time** Crossfade page.
- **5.** Define the High and Low range of each Layer. In this example the entire range of 0-127 is used.
- **6.** Define the Fades for each Layer. This is just an initial setting. The Range and Fade parameters may have to be adjusted later to get a smooth crossfade.
- 7. Press Home/Enter and use the data entry control to advance to the PatchCord page. Select Layer 1.
- Select the modulation source for the crossfade (knob, pedal, LFO, Envelope) and set the destination to RTXfade. Set the Cord Amount to +100.
- **9. Select Layer 2**. Select the same source and destination for the crossfade and set the Cord Amount to +127.

10. Play the keyboard while adjusting the real-time controller. Go back to the Real-time Crossfade screens to fine tune the crossfade if necessary. Decreasing the fade size will narrow the region where both layers are sounding.

► To Randomly Cross-Switch Between Four Layers

In certain situations, you may want to switch between several layers randomly. **Crossfade Random** is a modulation source specifically designed to handle this situation. Unlike the other random sources, Crossfade Random generates one random number for all layers each time a key is pressed.

To set up a four layer Cross-Switch, simply assign each of the four layers to a different Real-time Crossfade range, then assign XfdRnd to RTXfade in the PatchCords for each layer.

- 1. Press the **Preset Edit** button to access the Preset Edit menu.
- **2.** Go to the **Instrument** screen and select Instruments for Layers 1 through 4.
- **3.** Press Enter, then use the data entry control to advance to the **Real-time Crossfade** page.

^{L1} RT: LO	FADE	HIGH	FADE
000	000	<u>0</u> 31	000

L2 RT:	LO	FADE	HIGH	FADE
<u>D</u> ;	32	000	063	000

^{L3} RT: LO	FADE	HIGH	FADE
<u>о</u> 6ч	000	095	000

^{L4} RT: LO	FADE	HIGH	FADE
09 <u>6</u>	000	127	000

- 4. Define the High and Low range of each Layer as shown above.
- **5.** Press **Home/Enter** and use the data entry control to advance to the **PatchCord** page. Select Layer 1.
- 6. Select XfdRnd as the modulation source and RTXfade as the destination. Set the Cord Amount to +100.
- **7**. Repeat step 6 for the remaining three layers.

Tuning The Tuning parameter changes the pitch of the key in semitone and 1/64 semitone intervals.

	j		
Coarse:	+36	Fine:	+63

Use the Coarse field to shift the tuning by semitone intervals. Use the Fine field to shift tuning by 1/64 semitones (or 1.56 cents) intervals.

Background: Transpose vs. Coarse Tuning

Transpose works by shifting the keyboard assignment of the Instrument (as if you were sliding the keyboard up and down with the Instrument remaining in the same position). Coarse Tuning keeps the instrument placement on the keyboard and actually tunes the samples up using a digital process called interpolation. Use Course Tuning on drum instruments to change the pitch while keeping sample placement constant. Coarse Tuning can also be useful to slightly change the timbre of the instrument.

This parameter sets the initial volume and pan position of the current layer. These values can be changed using any Real-time Controller set up in the PatchCords. The value range for the volume is from -96 dB to +10 dB. 0 dB is the default setting. Routinely turning the volume up to +10 dB is not recommended because it doesn't allow other modulation sources to increase the volume further.

^{L1} <u>A</u> MPLIFIER				
Volume: +10a	JB	Pan:	48∟	

This field determines the initial Pan value for the current layer. The value range for Pan is from 64L to 0 (left) and 0 to 63R (right). Pan adjusts the volume into the left and right output channels relative to the Pan setting in the main Preset Select screen (see "Channel Pan" on page 45). So, if you, for example, set the Pan value in the Preset Select screen to 64L and set this Pan value to 63R, the actual pan amount would be 0 as these two pan parameters are relative to each other.

Amplifier

Volume Envelope

Factory Mode is useful for Instruments containing multiple drums, since each drum can have its own envelope settings.

A factory drum kit envelope actually contains a separate envelope for every voice on every key instead of a single global envelope.

If two adjacent segments have the same level in a "timebased" envelope, the segment will be skipped. Adjacent segments must have different levels for the rate control to work. An envelope can be described as a "contour" which is used to shape the sound over time. The *Volume Envelope* controls the volume of the sound in the current layer over time. The way the volume of a sound evolves has a profound effect on how we perceive the sound.

Each instrument has its own Factory preset Volume Envelope setting. The Volume Envelope allows you to program your own envelope settings.

Selecting the Mode

The Mode field determines whether the layer will use the instrument's default envelope (Factory) or use the user-programmed Volume Envelope. There are three mode options and repeat.

• Factory: Uses the factory preset envelope contained in each instrument. If you select the "Factory" mode, the Volume Envelope parameters are disabled and the factory defined settings are used instead.

^{L1} VOLUME ENVELOPE

Mode: factory

- Time-based: Defines the Volume Envelope rates from 0 to 127 (approximately 1 ms to 160 seconds). The Master clock has no affect on time-based rates.
- **Tempo-based**: The Volume Envelope times vary based on the master tempo setting. Note values are displayed instead of a number when the time corresponds to an exact note value. Tempo-based envelopes are useful when using external sequencers and arpeggiators because the envelope rates compress and expand according to the Master Tempo setting, keeping the envelopes in sync with the sequence or arpeggio.

Tempo-based envelope rates change according to the Master Tempo rate.

See the Programming Basics section of this manual for detailed information about how the Envelopes work.

Defining the Volume Envelope

The Volume Envelope controls the volume of the layer over time. The Volume Envelope has six stages to the contour: Attack 1, Attack 2, Decay 1, Decay 2, Release 1 and Release 2. When a key is pressed, the Envelope goes through the first four stages. If you continue to hold down the key, the envelope holds at the Decay 2 level. When the key is released, the envelope continues through the Release stages ending at the Release 2 level.

	RATE	LEVEL
<u>A</u> ttack 1	84	100%

As soon as the Attack 1 level is reached, the Attack 2 phase begins. When the Attack 2 Level is reached, the Decay 1 phase begins. When the key is released, the envelope immediately jumps to the Release 1 stage, then the Release 2 stage finally ending at the Release 2 level.

If you have selected the factory mode, the Volume Envelope parameter screen looks like the following illustration.

On the Volume Envelope, levels can only be set to positive values. The value range is from 0 to +100.

If the Release 2 level is set at a value other than zero, the note will continue to sound after the key is released. This might be useful for drone effects, but the channel won't stop sounding until all channels are used up.

Chorusing the Layer

WARNING: Because it works by doubling instruments, Chorusing halves the number of notes you can play. Chorusing "thickens" the sound by doubling the sound in stereo and then detuning it. Every layer with chorus turned on uses twice the polyphony for that layer.

The first field in this screen turns Chorus On or Off and allows you to adjust the amount of detuning (1 to 100%). The *Width* parameter controls the stereo spread. 0% reduces the chorus to mono and 100% provides the most stereo separation.

Sound Start Offset and Delay

Sound Start sets where the instrument begins playing when you hit a key. Setting the Start Offset amount to "0" plays the sample from the beginning. Higher values move the Sample Start Point further into the sample toward the end. There is also a PatchCord source which can be used to change the Sound Start point at note-on time.

Controlling the Sound Start using Key Velocity (< Amt -) brings in the attack of the wave only when you play hard. This is especially effective with percussion instruments.

Delay defines the time between when you hit a key (note-on) and the onset of the current layer's note and the start of the envelopes (if applicable). Delay values below zero are *Tempo-based* values, meaning the time is based on the Master Tempo setting. Note values are displayed by adjusting the Delay Time value below zero. The sound will be delayed by the selected note value based on the master clock. Non-Transpose Mode This function turns keyboard transposition On or Off for the current layer. With Nontranspose "on," the keyboard will not control the pitch of the instrument. This is a useful function for drones, attack "chiffs," or other sound effects which you may not want to track the keyboard.

.1	NONTRANSPOSE	Ξ
----	--------------	---

Solo Mode

In order to define a monophonic glide (see the Portamento parameter), you must be in Solo mode. Provides the playing action of a monophonic instrument such as a lead synthesizer by preventing more than one note from sounding at once. There are eight different solo modes provided. Try setting up different layers with different solo mode and glide rates or combine solo mode with polyphonic playing modes.

^{L1} SOLO MODE

synth (low)

The Solo modes are:

off

Multiple Trigger: Last note priority. No key-up action. Retriggers envelopes and samples when a key is pressed.

Melody (last): Last note priority. No key-up action.

First solo note: Envelopes start at Attack segment from zero. Samples start at the beginning.

If previous note is releasing: Envelopes start at Attack segment, but from current level. Samples start at the beginning.

When playing "Legato": Envelopes continue from current segment and level. Samples start at the loop or the beginning if unlooped.

Melody (low): Same as Melody (last), but with low note priority. Newly played keys which are higher than the lowest solo key held do not sound.

Melody (high): Same as Melody (last), but with high note priority. Newly played keys which are lower than the highest solo key held do not sound.

Synth (last): Similar to Melody (last) but this mode has key-up action. When you release the currently sounding solo key while holding other keys down, the highest held solo key sounds in a Legato fashion.

Synth (low): Same as Synth (last) but with low note priority. When you release the currently sounding solo key while holding other keys down, the lowest held solo key sounds in a Legato fashion (MiniMoog).

Synth (high): Same as Synth (last) but with high note priority. When you release the currently sounding solo key while holding other keys down, the highest held solo key sounds in a Legato fashion.

Fingered Glide: Same as Synth (last), except that Glide is disabled when playing Staccato, enabled when playing Legato.

Assign Group

Use the Assign Group parameter to assign a certain number of channels to each layer. By assigning all voices in the preset to assign groups, important parts are protected from being "stolen" by more recently played keys. Or you can assign a voice, such as an open high hat, to a mono channel so it is cancelled by a closed high hat on the same mono channel. Layers rotate within their assigned "bin" of channels, not interfering with other bins.

^{L1} ASSIGN GROUP

poly all

The modes are:

Poly All: Notes are played polyphonically with dynamic channel assignment using all 64 channels.

Poly 16 A-B: Two bins of 16 channels each. Notes are played polyphonically with dynamic channel assignment using no more than 16 channels.

Poly 8 A-D: Four bins of 8 channels each. Notes are played polyphonically with dynamic channel assignment using no more than 8 channels each.

Poly 4 A-D: Four bins of 4 channels each. Notes are played polyphonically with dynamic channel assignment using no more than 4 channels each.

Poly 2 A-D: Four bins of 2 channels each. Notes are played polyphonically with dynamic channel assignment using no more than 2 channels each.

Mono A-I: Nine monophonic channels. Any layers assigned to the same letter interrupt each other without affecting other layers.

Glide |

Glide creates a smooth transition from one note to the next instead of the normal instantaneous change in pitch when a new key is pressed. This effect is commonly heard on slide guitars, synthesizers and violins.

The front panel **Glide Button** LED comes on when the any layer of the current preset has a glide rate greater than 0.000 seconds (regardless of if a PatchCord is connected or not). Pressing the button turns the LED and glide off. Pressing the front panel glide button when all layers are set to a glide of 0.000 turns glide on with a rate of 0.142 seconds/octave.

The **Glide Rate** parameter defines the time it takes to glide to the new pitch (the larger the value, the slower the glide rate) The glide rate value range is from 0 through 32.738 seconds (zero means off).

The **Glide Curve** describes how the glide accelerates as it slides between notes. Because of the ear's non-linear response to pitch, a linear glide sounds slow at the beginning and speeds up toward the end. Exponential curves actually sound smoother and more linear. Eight exponential curves are provided. Choose one that suits your style.

Glide can be either polyphonic or monophonic depending of the state of *Solo Mode*.

► To Set up a Glide Rate Knob:

- **1.** Set at least one layer to the minimum setting of 0.002 sec/oct. (This forces the Glide LED to come on.)
- **2.** Connect the MIDI controller of your choice to Glide Rate on the layers you'd like to glide. Adjust the Cord Amount for the desired range.
- **3.** Disconnect the MIDI controller from whatever else it was connected to before you started mucking about.
- **4.** The Glide button turns Glide on/off and the knob controls the rate.

Z-Plane Filters A filter is a device which changes the output of a signal (sound) by removing certain elements of the signal based on the frequency and amplitude. The "Order" of a filter defines the number of filter elements it contains. The more elements, the more complex the filter.

Proteus 2500 contains 50 different types of E-MU's celebrated Z-plane filters. In addition to the standard Low pass, High pass and Band pass filters, Proteus 2500 contains Swept Octave Equalizers, Phasers, Flangers, Vocal Formant Filters, and digital models of classic synthesizer filters.

In the filter chart below you will notice that the "Order" of the filters varies from 2 to 12 order. Higher order filters have more sections and can produce more complex formants. Proteus 2500 can produce 128 filters of up to 6th order or 64 filters of 12th order complexity. Therefore, if you decided to use all 12th order filters, Proteus 2500 would be limited to 64 voices.

Proteus 2500 Filter Types

This screen allows you to choose the type of filter for the current layer.

^{L1} FILTER	Ord	Туре
Phazer 2 E4	б	PHA

		Filter Name	Order	Туре	Description
		Smooth	02	LPF	Typical OB type low-pass filter with a shallow 12 dB/octave slope.
		Classic	04	LPF	4-pole low-pass filter, the standard filter on classic analog synths. 24 dB/octave rolloff.
	Filter Types	Steeper	06	LPF	6-pole low-pass filter which has a steeper slope than a 4-pole low-pass filter.
LPF	Low-pass filter	MegaSweenz	12	I DE	"Loud" LPE with a hard O. Tweeters heware
PHA	Phaser	EarlyRizer	12	LPF	Classic analog sweeping with hot Q and Lo-end.
HPF FLG	Flanger	Millennium	12	LPF	Aggressive low-pass filter. Q gives you a variety of spiky tonal peaks.
BPF	Band-pass filter	KlubKlassik	12	LPF	Responsive low-pass filter sweep with a wide spectrum of Q sounds
vow	Vowel/ formant	BassBox-303	12	LPF	Pumped up lows with TB-like squelchy Q factor.
EQ+	EQ boost	Shallow	02	HPF	2-pole high-pass filter. 12 dB/octave slope.
EQ-	EQ cut	Deeper	04	HPF	Classic 4-pole high-pass filter. Cutoff sweep progressively cuts 4th Order High-pass.
SFX	Special Effect	Band-pass1	02	BPF	Band-pass filter with 6 dB/octave rolloff on either side of the passband and Q control.
		Band-pass2	04	BPF	Band-pass filter with 12 dB/octave rolloff on either side of the passband and Q control.

Filter Name	Order	Туре	Description
ContraBand	06	BPF	A novel band-pass filter where the frequency peaks and dips midway in the frequency range.
Swept1>1oct	06	EQ+	Parametric filter with 24 dB of boost or cut and a one octave bandwidth.
Swept2>1oct	06	EQ+	Parametric filter with 24 dB of boost or cut. The bandwidth of the filter is two octaves wide at the low end of the audio spectrum, gradually changing to one octave wide at the upper end.
Swept3>1oct	06	EQ+	Parametric filter with 24 dB of boost or cut. The bandwidth of the filter is three octaves wide at the low end of the audio spectrum, gradually changing to one octave wide at the upper end.
DJAlkaline	12	EQ+	Band accentuating filter, Q shifts "ring" frequency.
AceOfBass	12	EQ+	Bass-boost to bass-cut morph
TB-OrNot-TB	12	EQ+	Great Bassline "Processor."
BolandBass	12	EQ+	Constant bass boost with mid-tone Q control.
BassTracer	12	EQ+	Low Q boosts bass. Try sawtooth or square waveform with Q set to 115.
RogueHertz	12	EQ+	Bass with mid-range boost and smooth Q. Sweep cutoff with Q at 127.
RazorBlades	12	EQ-	Cuts a series of frequency bands. Q selects different bands.
RadioCraze	12	EQ-	Band limited for a cheap radio-like EQ
AahAyEeh	06	VOW	Vowel formant filter which sweeps from "Ah" sound, through "Ay" sound to "Ee" sound at maximum frequency setting. Q varies the apparent size of the mouth cavity.
Ooh-To-Aah	06	VOW	Vowel formant filter which sweeps from "Oo" sound, through "Oh" sound to "Ah" sound at maximum frequency setting. Q varies the apparent size of mouth cavity.
MultiQVox	12	VOW	Multi-Formant, Map Q To velocity.
Ooh-To-Eee	12	VOW	Oooh to Eeee formant morph.
TalkingHedz	12	VOW	"Oui" morphing filter. Q adds peaks.
Eeh-To-Aah	12	VOW	"E" to "Ah" formant movement. Q accentuates "peakiness."
UbuOrator	12	VOW	Aah-Uuh vowel with no Q. Raise Q for throaty vocals.
DeepBouche	12	VOW	French vowels! "Ou-Est" vowel at low Q.
PhazeShift1	06	РНА	Recreates a comb filter effect typical of phase shifters. Frequency moves position of notches. Q varies the depth of the notches.

Filter Name	Order	Туре	Description
PhazeShift2	06	РНА	Comb filter with slightly different notch frequency moving the frequency of notches. Q varies the depth of the notches.
FreakShifta	12	PHA	Phasey movement. Try major 6 interval and maximum Q.
CruzPusher	12	PHA	Accentuates harmonics at high Q. Try with a sawtooth LFO.
FlangerLite	06	FLG	Contains three notches. Frequency moves fre- quency and spacing of notches. Q increases flanging depth.
AngelzHairz	12	FLG	Smooth sweep flanger. Good with vox waves.
DreamWeava	12	FLG	Directional Flanger. Poles shift down at low Q and up at high Q.
MeatyGizmo	12	REZ	Filter inverts at mid-Q.
DeadRinger	12	REZ	Permanent "Ringy" Q response. Many Q variations.
ZoomPeaks	12	REZ	High resonance nasal filter.
AcidRavage	12	REZ	Great analog Q response. Wide tonal range. Try with a sawtooth LFO.
BassOMatic	12	REZ	Low boost for basslines. Q goes to distortion at the maximum level.
LucifersQ	12	REZ	Violent mid Q filter! Take care with Q values 40-90.
ToothComb	12	REZ	Highly resonant harmonic peaks shift in unison. Try mid Q.
EarBender	12	WAH	Midway between wah & vowel. Strong mid-boost. Nasty at high Q settings.
FuzziFace	12	DST	Nasty clipped distortion. Q functions as mid-frequency tone control.
BlissBatz	06	SFX	Bat phaser from the Emulator 4.
KlangKling	12	SFX	Ringing Flange filter. Q "tunes" the ring frequency.

Filter Parameters

The Freq and Q parameters control various elements of the filter depending on the type of filter used. See the table in the *Filter Types* section for details about what the Freq and Q fields control in each filter.

^{L1} FILT	ER			٦
Freq:	<u>2</u> 55	Q:	019	

Filter Envelope The Filter Envelope is normally used to control the filter frequency and has six stages. Unlike the Volume Envelope, the Filter Envelope must be patched to the Filter Frequency using a PatchCord. In this respect, it can be thought of as a general purpose envelope generator which is normally patched to control the filter. The Filter Envelope Levels can be negative as well as positive.

There are three mode options:

• **Time-based**: Defines the Filter Envelope rates from 0 to 127 (approximately 1 ms to 160 seconds). The Master clock has no affect on time-based rates.

• **Tempo-based:** The Filter Envelope times vary based on the master tempo setting and are displayed in values such as 1, 2, 3, etc. Note values are displayed instead of a number when the time corresponds to an exact note value. Tempo-based envelopes are useful when using arpeggiators and sequencers because the envelope rates compress and expand according to the Master Tempo setting, keeping the envelopes in sync with the music. See the illustration on page 152.

• Envelope Repeat: The Envelope Generators can also be made to repeat. When the envelope repeat function is On, the Attack (1&2) and Decay (1&2) stages will continue to repeat as long as the key is held. As soon as the key is released, the envelope continues through its normal Release stages (1 & 2). For more information see page 152.

► To Turn on Envelope Repeat:

1. Move the cursor until it is underneath the Mode field as shown below.

2. Turn the data entry control clockwise. The lower line changes to:

^{L1} FILTER ENVELOPE

Repeat: off

3. Move the cursor underneath the on/off field, then turn the data entry control clockwise so that Repeat is On.

Defining the Filter Envelope

The Filter Envelope controls the filter frequency of the layer over time. The Envelope has six stages to the contour: Attack 1, Attack 2, Decay 1, Decay 2, Release 1 and Release 2. When a key is pressed, the Envelope goes through the first four stages. If the key continues to be held, the envelope holds at the Decay 2 level. When the key is released, the envelope immediately jumps to the Release 1 stage, then the Release 2 stage finally ending at the Release 2 level.

Auxiliary Envelope

The Auxiliary Envelope is a supplementary general purpose envelope that can be routed to any real-time control destination in the PatchCords. It is identical to the filter envelope generator. See "Filter Envelope" on page 199 for full details.

See the Programming Basics section of this manual for detailed information about how the Envelopes work.

The default PatchCord settings connect the Filter Envelope to Filter Frequency but the envelope can be routed to any real-time control destination using a PatchCord.

Low Frequency Oscillators (LFOs)

A Low Frequency Oscillator or LFO, is simply a wave that repeats at a slow speed. Proteus 2500 has two LFOs per layer identified on the display as LFO1 and LFO2.

An LFO can be routed to any real-time control destination using a PatchCord. LFOs have a myriad of uses, some of which probably haven't been thought of yet. The following examples show a few common uses.

- Control the pitch of the sound (LFO -> Pitch). This effect is called "vibrato" and is an important performance tool. Many presets use this routing with the modulation wheel controlling "how much" modulation is applied.
- Create a "tremolo" effect by routing the LFO to control the volume (LFO -> AmpVolume).
- Add a bit of animation to the sound by routing the LFO to control the filter. Set the PatchCord amount low for a subtle effect.

The LFOs have five parameters: Shape, Sync, Rate, Delay and Variation.

Shape

LFO waveforms have different shapes. The shape of the waveform determines the effect of the LFO. LFOs have traditionally been used to add vibrato or repeating movement to a sound. These new shapes offer a lot of new programming possibilities.

If you modulate the pitch of an instrument, it's easy to visualize the shape of the waveform. For example, the sine wave has a smooth, rolling shape that changes the pitch smoothly. The square waveform changes between two pitches abruptly. A sawtooth waveform increases the pitch smoothly, then abruptly changes back down. The available waveforms are shown below.

LFO Tricks & Tips:

- The Random LFO wave is truly random and is different for each voice and layer.
- The Pattern (Pat) waveforms will sound the same on different layers and voices.
- Sine + Noise is very useful for simulating trumpet and flute vibrato.
- ★ When routing Hemi-quaver to Pitch:

+38 = major scale -38 = phrygian scale +76 = whole tone scale (+38) + (+76) = diminished

odd amount = S+H sound

(two cords)

Note: References to musical intervals in the pattern LFO shapes are with the LFO routed to pitch and a PatchCord amount of +38.

LFO Synced to 1/4 Note Clock

Sync

The Sync field specifies whether the LFO is synchronized to a key stroke or is Free Running. Key Sync starts the LFO wave at the beginning of its cycle each time you press a key on the controller. In Free Run mode, the LFO wave begins at a random point in its cycle each time you press a key on the controller.

Rate

The Rate field determines the LFO speed in absolute frequency rate values or tempo-based note values. All values equal to or greater than zero specify absolute frequency values from 0.08 Hz to 18.14 Hz.

Values less than zero specify tempo-based rates. If you modulate the rate of a tempo-based LFO, the rates will jump between the tempo-based note values with each PatchCord increment of "1". As an example: if the LFO rate was set to 8/1 and you patched the Mod Wheel to control rate with a PatchCord amount of +1, turning the Mod Wheel to maximum would change the LFO rate to 4/1d. Refer to the chart below.

^{L1} LFO1	RATE	DELAY	VAR
	<u>0</u> .08Hz	60	020

Tempo-based Rates (based on Master Tempo)	Display
octal whole note	8/1
dotted quad whole note	4/1d
octal whole note triplet	8/1t
quad whole note	4/1
dotted double whole note	2/1d
quad whole note triplet	4/1t
double whole note	2/1
dotted whole note	1/1d
double note triplet	2/1t
whole note	1/1
dotted half note	1/2d
whole note triplet	1/1t
half note	1/2
dotted quarter note	1/4d
half note triplet	1/2t
quarter note	1/4
dotted 8th note	1/8d
quarter note triplet	1/4t
8th note	1/8
dotted 16th note	1/16d
8th note triplet	1/8t
16th note	1/16
dotted 32nd note	1/32d
16th note triplet	1/16t
32nd Note	1/32

Delay

The Delay parameter defines the amount of time between hitting a key on the controller and the onset of the LFO modulation. Delay can be used to simulate an effect often used by acoustic instrument players where the vibrato is brought in only after the initial note pitch is established. The following illustration demonstrates how delay works.

All Delay values equal to or greater than zero specify absolute time rates from 0 to 127. Values less than zero specify Tempo-based mode. Refer to the previous table for times and tempo-based rates.

Variation

LFO Variation sets the amount of random variation of the LFO each time you press a key on the controller. This creates a chorus or ensemble effect since each note played has a slightly different modulation rate. The higher the value entered, the greater the note to note variation in the LFO.

The Variation value range is from 0 through 100.

LFO variation changes the rate of each note to create an "ensemble" effect.

Variation is disabled when a Tempo-Based LFO is selected.
PatchCords

PatchCords tie everything together by connecting modulation sources to destinations. Each PatchCord has its own *Amount* control which can be positive or negative (negative amounts invert the signal). In addition, the PatchCord amounts themselves can be controlled by any modulation source. Proteus 2500 provides 24 patches for each layer.

There are three permanently connected control routings: volume envelope to amplifier, pitch wheel to pitch and key to pitch. All other connections must be made using the PatchCords.

Each patch has an amount field which determines how much modulation is applied to the destination. The modulation amount can be positive or negative. Negative values invert the input. The amount value range is from -100 to +100.

Modulator Polarity

You will notice that some of the modulation sources have symbols following their names. For example, there are three Velocity modulation sources, Vel +, Vel \pm , and Vel <.

"+" Modulation: Uses only the positive half of the range, adding to the current value. For example, if the filter frequency were set to 100 and you patched Vel+ to the filter, the filter frequency would increase from 100 as velocity was applied.

" \pm " Modulation: Uses both sides (full) range and both adding and subtracting from the current value. For example, if the filter frequency were set to 100 and you patched Vel \pm to the filter, the filter frequency would decrease from 100 with key velocities of 63 or less and increase from 100 with key velocities of 64 and above. Therefore with medium velocity, the Filter frequency is approximately where you set it at 100.

An LFO \pm works the same way; on the positive half of the cycle it increases the initial amount and on the negative half of the cycle it decreases the initial amount. With a \pm modulation source, a value of 64 equals 0.

"<" Modulation: Uses only the negative half of the range, subtracting from the current value. For example, if the Amplifier Volume were set to +3 dB and you patched Vel < to AmpVol, the volume would be at +3 dB only when maximum key velocity were applied. Lower key velocities would scale back the volume. In general, < modulation is the proper choice when modulating Volume.

Here is a list of all layer modulation sources and destinations in P2500.

Modulation Sources:

Off Key (+, +) Velocity $(+, \pm, <)$ RlsVel (Release Velocity) Gate Pressure (Aftertouch) PitchWhl (Pitch Wheel, TouchStrip) ModWhl (Modulation Wheel) Pedal MIDI Volume (Controller 7) MIDI Pan (Controller 10) MIDI Expression (Controller 11) MIDI A-P PLagOut (Preset Lag Out) PRampOut (Preset Ramp Out) FootSw1 - 3 (Foot Switch 1-3) FootFF (Flip-Flop Foot Switch 1 -3) Key Glide VolEnv +, \pm , < (Volume Envelope) FilEnv +, <u>+</u>, < (Filter Envelope) AuxEnv +, \pm , < (Auxiliary Envelope) LFO 1 & 2 (+, ±) White (White Noise) Pink (Pink Noise) XfdRand (Crossfade Random) KeyRand 1 & 2 (Key Random) Lag 0 sum (summing amp out) Lag 1 sum (summing amp out) Lag 0 & 1 (Lag Processor) Clk Divisors (Octal, Quad, Double Whole, Whole, Half, Qtr, 8th, 16th) DC (DC Offset) Summing Amp Switch Absolute Value Diode Flip-Flop Quantizer 4x Gain

Off KeySust (Key Sustain) FinePtch (Fine Pitch) Pitch Glide ChrsAmt (Chorus Amount) 'SStart (Sample Start) -note-on) SLoop (Sample Loop) SRetrig (Sample Retrigger) FiltFreq (Filter Frequency) 'FiltRes (Filter Resonance -note-on) AmpVol (Amplifier Volume) AmpPan (Amplifier Pan) RTXfade (Real-time Crossfade) VEnvRts (Volume Envelope Rates -all) VEnvAtk (Volume Envelope Attack) VEnvDcy (Volume Envelope Decay) VEnvSus (Volume Envelope Sustain) VEnvRls (Volume Envelope Release) FEnvRts (Filter Envelope Rates -all) FEnvAtk (Filter Envelope Attack) FEnvDcy (Filter Envelope Decay) FEnvSus (Filter Envelope Sustain) FEnvRls (Filter Envelope Release) FEnvTrig (Filter Envelope Trigger) AEnvRts (Auxiliary Envelope Rates -all) AEnvAtk (Auxiliary Envelope Attack) AEnvDcy (Auxiliary Envelope Decay) AEnvSus (Auxiliary Envelope Sustain) AEnvRls (Auxiliary Envelope Release)

Modulation Destinations

AEnvTrig (Auxiliary Envelope Trigger) LFO 1 & 2 Rate LFO 1 & 2 Trigger Lag Processor In 0 & 1 Sum (Summing Amp) Switch Abs (Absolute Value) Diode Quantize Flip-Flop Gain 4x Cord 1-24 Amount

Important! The **Touchstrip** is programmed from the **PitchWhI** modulation source.

Note: Flip-Flop Footswitches 1 & 2 remain in their last condition when a new preset is selected.

Flip-Flop Footswitch 3 resets to the Off condition whenever a new preset is selected.

Note: The Envelope Sustain parameter controls the Decay 2 Level segment of the envelope generator.

Pitch Bend Range

Specifies the Pitch Wheel range in semitones for the current layer. Pitch Wheel is a standard synthesizer control which is transmitted as a MIDI continuous controller message used (normally) to bend the pitch up and down.

The PitchBend range is from 0 to ± 12 semitones or "Master." A setting of "0" turns the pitch wheel Off for the current layer. The Master setting uses the Pitch Bend range defined in the *Global menu*.

^{L1} <u>P</u>ITCHBEND RANGE +/- 12 semitones

Mix Output

This feature allows you to program the Effect Send as a part of the preset. Note that for this feature to work, the Mix Output setting in the Global menu MUST be set to "Preset" on the selected MIDI channel. If you want to define output routing by MIDI channel, set it up using the Mix Output page in the Global menu. *See "Mix Output" on page 128 for more information*.

The Sends function as effect processor inputs (effect sends). The Output Routing field shows the true routing of the Sends to the Main output.

► To Control the Mix Output from the Preset:

- 1. Move the cursor until it is underneath the Layer field and change the Layer using the data entry control.
- **2.** Move the cursor until it is underneath the FX Send Routing field and change the Send (1-4) using the data entry control.
- **3.** Locate the MIX OUTPUT screen in the Global menu.
- 4. Set the MIDI channel you are using to "use preset".

Common Preset Parameters

Preset Effects

This section of the Preset Edit menu chapter describes parameters that affect all layers in the preset.

Proteus 2500 has two stereo effects processors. When playing presets one at a time, the two processors can be programmed as part of the preset. The diagram below shows how the effects are integrated into the signal path using a parallel effects send/return model, similar to a mixing console.

Refer to the Effects chapter for additional information and instructions for setting up both the Preset Effects and the Master Effects.

The Mix Output setting in the Global Menu determines if the Preset's Mix Output routing will be used. This allows the Sends to be programmed by either **MIDI Channel** or by **Preset**, whichever you prefer.

FXA Algorithm

This screen selects the effect type for Effect Processor A. The "A" effects consist of different reverb types and digital delays. Move the cursor to the lower line of the display and select the effect you want.

FXA ALGORITHM Lg Concert Pan

A Effect Types

- **1.** Room 1
- **2.** Room 2
- **3.** Room 3
- 4. Hall 1
- 5. Hall 2
- 6. Plate
- 7. Delay
- 8. Panning Delay
- **9**. Multitap 1
- **10.** Multitap Pan
- 11. 3 Tap
- **12.** 3 Tap Pan
- 13. Soft Room
- 14. Warm Room
- 15. Perfect Room
- **16.** Tiled Room
- 17. Hard Plate
- **18.** Warm Hall
- **19.** Spacious Hall
- 20. Bright Hall
- **21**. Bright Hall Pan
- 22. Bright Plate

- 23. BBall Court
- 24. Gymnasium
- 25. Cavern
- 26. Concert 9
- 27. Concert 10 Pan
- 28. Reverse Gate
- **29.** Gate 2
- **30.** Gate Pan
- **31.** Concert 11
- 32. Medium Concert
- **33.** Large Concert
- 34. Large Concert Pan
- 35. Canyon
- **36.** DelayVerb 1
- **37.** DelayVerb 2
- **38.** DelayVerb 3
- 39. DelayVerb 4 Pan
- 40. DelayVerb 5 Pan
- **41.** DelayVerb 6
- 42. DelayVerb 7
- 43. DelayVerb 8
- 44. DelayVerb 9

FXA Parameters The FXA parameters are Decay, High Frequency Damping, and the FxB to FxA send. **Decay** sets the length of time it takes an effect to fade out. **HF Damping** causes the high frequency energy to fade away more quickly during the reverb decay. **FxB to FxA** controls the amount of the "B" effect sent through effect "A". This allows you to place the two effects in series and create setups such as "distortion through reverb" among others. Please refer to the Effects chapter for more information about the effects.

FXA Send Amounts

FXB Algorithm

These parameters set the effects amounts for each of the four stereo effects busses.

 FXA SEND AMOUNTS
 1:100%

 2: 50%
 3: 10%
 4: 0%

This screen selects the effect type for Effect Processor A. Move the cursor to the lower line of the display and select the effect you want.

B Effect Types

- 1. Chorus 1
- **2.** Chorus 2
- **3.** Chorus 3
- 4. Chorus 4
- 5. Chorus 5
- 6. Doubling
- 7. Slapback
- **8**. Flange 1
- 9. Flange 2
- **10.** Flange 3
- **11.** Flange 4

- 12. Flange 5
- **13**. Flange 6
- 14. Flange 7
- **15.** Big Chorus
- 16. Symphonic
- 17. Ensemble
- 18. Delay
- **19.** Delay Stereo
- **20.** Delay Stereo 2
- **21**. Panning Delay
- 22. Delay Chorus

- 23. PanDelay Chorus 1
- 24. PanDelay Chorus 2
- **25.** Dual Tap 1/3
- **26.** Dual Tap 1/4
- 27. Vibrato
- 28. Distortion 1
- 29. Distortion 2
- **30.** Distorted Flange
- **31.** Distorted Chorus
- **32.** Distorted Double

FXB ParametersThe FXB parameters are Feedback, LFO Rate and Delay. Feedback sends the
output of the effect back into the input. This creates multiple echoes on a
delay effect and intensifies a chorus or flange effect. LFO Rate allows you to
change the speed of the modulation oscillator for flange and chorus effects.
Delay sets the length of the delay line. This affects the time between
echoes, or the tone of flange effects.

EVD	EEENDV		
FVD	N32		DELHT 200ms
	UJL	005	LOONID

These parameters set the effects amounts for the four stereo effects busses.

3:10%

FXB SEND AMOUNTS

2: 50%

FXB Send Amounts

Preset Patchcords

To crossfade between effects.

 Set FXA Send 1 to 100%.
 Set FXB Send 1 to 0%.
 Set FX Cord #1 to FXA Send 1 at -100.
 Set FX Cord #2 to FXB Send 1 at +100.

Increasing the controller amount will crossfade from FXA to FXB.

Preset PatchCords give you real-time control of global parameters. The effect processors are a powerful synthesis tool and this feature lets you control and use them in exciting new ways. For example, you can dynamically adjust the effects mix during a sequence or live performance.

There are many exciting performance possibilities using Preset PatchCords to control Arpeggiator parameters and Effects Sends. The front panel knobs 15 & 16 are usually connected to Arp parameters in factory presets marked "arp:" Be sure to try out these controls

There are 12 Preset PatchCords per preset with a source, a destination and an amount control. The amount can be set from -100 to +100. The Preset PatchCord controls are *added* to the FX Send Amounts set in the Global or Preset Edit menus. In other words, multiple sources connected to destinations are *summed*.

PRESET CORDS#01Pedal-> FXBSend2+100

1:100%

Ч:

0%

Modulation Sources: Off

PitchWhl (Pitch Wheel) ModWhl (Modulation Wheel) Pedal MIDI Volume (Controller 7) MIDI Pan (Controller 10) MIDI A-L Footswitch 1 Flip-Flop Footswitch 1 Footswitch 2 Flip-Flop Footswitch 2 Footswitch 3 Flip-Flop Footswitch 3 DC

Modulation Destinations

Off Effect A Send 1 Effect A Send 2 Effect A Send 3 Effect A Send 4 Effect B Send 1 Effect B Send 2 Effect B Send 3 Effect B Send 4 Preset Lag In Preset Lag Amount Preset Lag Rate Preset Ramp Rate Arp Resolution Arp Extension Arp Velocity Arp Gate Arp Interval Beats Velocity, Group 1-4 Beats Transpose (Xps) Group 1-4 Beats Busy **Beats Variation**

Initial Controller Amount

This parameter sets the initial value of MIDI controllers A-P when the preset is first selected. The front panel Control Knobs can be thought of as front panel MIDI controllers because in the Proteus 2500, they are treated just as if they originated from an external MIDI device. Refer to the following diagram. There are 4 Initial Controller Amount screens (A-D, E-H, I-L, M-P).

External MIDI controller numbers are assigned to the Letters A-P in the MIDI menu. The Initial Controller Amount value is sent to the PatchCord destination when the Preset is first selected. If you move the Control Knob, then that value replaces the initial value. If MIDI controller data is received it will similarly replace the knob or initial setting.

The Initial controller amounts can be set from 000-127 or they can be turned Off. If set to Off, the current controller value is used when the preset is first selected. Setting the Initial Amount to "off" uses the values from the previously selected preset.

Keyboard Tuning

In addition to the standard equally divided octave tuning, Proteus 2500 contains twelve factory programmed tunings and 12 user-definable tunings. The Keyboard Tuning parameter selects which tuning is used by the current preset. The User Tuning tables are defined in the Global menu.

The factory Keyboard Tuning tables are described in the following table.

Tuning Tables	Description
Equal Temperament	Standard Western tuning (12 equally spaced notes per octave)
Just C	Just intonation. (Based on small interval ratios. Sweet and pure, non-beating intervals.)
Vallotti	Valotti & Young non-equal temperament. (Similar to 12 tone equal temperament. Each key has a different character for a given scale.)
19-Tone	19 tone equal temperament. (19 notes per octave. Difficult to play, but works well with a sequencer.)
Gamelan	5 tone Slendro and 7 tone Pelog. (Javanese. Pelog are white keys, Slendro are black keys. Exotic tunings of Gamelan flavor.
Just C2	Allows you to play the following chords in the key of C: C, E, F, G, A, B, C#m, D#m, Em, F#m, G#m, Am, Bm
Just C-minor	Allows you to play the following chords in the key of C: C, E, F, G, A, B, Em, Am, Bm, C#m, D#m, G#m
Just C3	Allows you to play the following chords in the key of C: C, D, F, Bb, C#m, Dm, Em, F#m, G#m, Am
Werkmeister III	A "well" temperament developed in the 17th century. Although you can play in all keys, each key sounds slightly different.
Kirnberger	Another well temperament developed by Johann Philipp Kirnberger where no pitch is more than 12 cents off from equal temperament.
Scarlatti	A variant of Meantone tuning which was used from the 15th to 18th centuries.
Repeating Octave	Middle C octave is repeated up and down the keyboard. Link with a preset in equal temperament to form unusual inversion up and down the keyboard.
User 1-12	Define your own tuning tables (Global menu).

Refer to "User Key Tuning" on page 134 in the Global Menu chapter for instructions on how to define your own Keyboard Tunings.

The Just C Tuning Tables

Well Tempered and Just were standard keyboard tunings up until the 20thcentury when the current "equal tempered" scale became prevalent. In an equal tempered scale, the octave is equally divided into 12 parts. In Just or Well Tempered scales, the 12 notes are separately tuned to produce pure chords. However, in Just tunings you are limited to playing certain chords and if you play the wrong chord it may sound very BAD!

Proteus 2500 allows you to modulate between keys by providing you 12 user tuning tables. Tuning tables can be changed as you play using a program change (create several presets with the same sound and different tuning tables), by MIDI SysEx command (using a programmable MIDI footswitch or other device), or using a continuous controller (link 2 presets and crossfade between them using a controller).

The Just C2, Just C min, Just C3 Tuning Tables

These new tuning tables take the concept of just intonation a step beyond previous E-MU products. Fully explaining the mysteries of just intonation is beyond the scope of this manual, but the subject is covered exhaustively in Hermann Helmholtz's <u>On the Sensations of Tone</u>, available at most libraries and bookstores.

The new tables are called Just C2, Just C3, and Just C Minor. Try playing in the key of C/Cm using each table. You'll quickly discover both the wonders and the frustrations of just intonation! In Just C, for example, you'll find that the chords C, Em, F, G, and Am sound beautiful. If you hold one of these chords, you'll hear no "beating". After playing for a few minutes, switch back to Equal Temperament for a rude awakening!

At this point you might wonder why anyone would use Equal Temperament to begin with. For the answer to that question, play a D, Dmi, or Bb chord!.The intervallic ratios that make the C & G chords sound so pure make the D chord sound horribly out of tune. That's why we had to include Just C3. In this tuning, D, Dmi and Bb sound in tune, but the G chord will sound wrong.

Each of the 4 tables allows you to play a different group of common chords in just intonation. Sadly, there is no single 12 note tuning that will allow all of the common chords to be in tune, and of course that's why they invented the equal temperament tuning system that we use today.

Just C

Play these chords: C, E, F, G, A, Cm, C#m, Em, F#m, Gm, Am

Just C2

Play these chords: C, E, F, G, A, B, C#m, D#m, Em, G#m, Am, Bm

Just C2 minor

Play these chords: C, D^b, D, E^b, G, A^b, Cm, Em, Fm, Gm

Just C3

Play these chords: C, D, F, B^b, C#m, Dm, Em, F#m, G#m, Am

Proteus 2500 implements the MIDI Tuning Dump protocol which allows you to create tuning tables on your personal computer and download them via MIDI. There are several computer applications available on the internet which let you create and download tuning tables via MIDI.

Preset Links

You can link presets to other presets to create layering or keyboard splits. The current preset can be linked with up to two other presets (Links 1 & 2). Each linked preset can be assigned to a specific range in order to create keyboard splits or can be assigned a velocity range to switch links according to key velocity. In addition, you can specify Volume, Pan, Transpose and Delay settings for each Link. The modulation parameters specified in each preset remain in effect for each preset in the link.

Links provide an easy way to create new sounds by combining the existing presets. Or, you can create your own custom stacked presets with up to 12 layers! We're talking LARGE sounds here. Of course Links can also be used when you just want to stack up two sounds.

As an example, let's stack two presets to create a big sound. Start with a preset you like, then go into the Links screen and start scrolling through the preset list while you play to hear both presets together. When you find a winner, simply Save the preset and you're finished!

- You can "Split" the keyboard up to 12 ways by using combinations of the Layers and Links.
- By adjusting the Velocity for the link, you can bring in the link by playing hard.
- Transposing the Link can radically change the sound.
- The delay parameter lets you create surprise effects, echoes or cascades of sound as you continue to hold the keys.

Preset Tempo Offset

This function allows you to double or halve the Master Tempo as it applies to this preset. When playing or sequencing several presets in Multimode, the Master Tempo may be too fast or slow for one preset. Using this feature, you can adjust the tempo for the misbehaving preset. The Tempo Offset can use the **current tempo** or be set to **half** or **twice** the current tempo.

> TEMPO OFFSET use current tempo x 2

A Riff is a short pre-recorded musical phrase which can be anything from a single note to a full 16-track sequence. This function allows you to assign a Riff to a Preset. The Preset Riff will be used when the front panel Audition button is pressed.

The Riffs themselves cannot be modified.

AUDITION SELECTION Plays:KEY-MiddleC

Play Solo Layers

Listening to the Riffs is a

quick way to learn the sounds in Proteus 2500. If a preset has hidden tricks or controllers, these

will be shown off in the Riff.

Audition Riff

Selection

When constructing multilayer sounds it is often useful to turn off one or more of the layers so you can hear what you're doing! This feature allows you to temporarily solo individual layers or listen to them in any combination. This screen differs from the other Preset Edit screens in that it is NOT saved with the preset. The values reset each time you exit the Preset Edit menu.

Solo is activated by setting any layer to On (On = the layer is being Soloed). Any layers set to **On will play** and any layers set to **Off will be muted**. If all layers are set to Off, then Solo mode ends and all layers play normally. When you exit the Preset Edit menu, all layers play normally.

PLAY SOLO LAYERS						
1: off	2: off	3: off	4: off			

Arpeggiator/Beats Menu

Proteus 2500 can run up to 32 simultaneously synced arpeggiators, each with a different preset sound. The arpeggiators can either play one of 7 chord arpeggios or can be set to play a pattern, which is a stored sequence of notes. Combined with sequencer, the number of musical permutations is staggering!

Beats mode allows you to trigger, latch and unlatch synced loops and grooves from separate keys on your keyboard. Simply select a bts: preset and play the 16 trigger keys to bring specific *Parts* in and out. This is *Macro-Music!*

► To enable the Arpeggiator/Beats menu

Press the Arp button, lighting the LED. The Arp screen displays the menu page most recently selected since powering up Proteus 2500. The cursor appears below the first character of the screen heading on line one.

► To select a new screen

Press the Home/Enter button or press the Cursor button repeatedly until the cursor is below the screen title heading on the top line of the display. Rotate the data entry control to select another screen.

► To modify a parameter

Press either Cursor button repeatedly (or hold down the right cursor button while turning the data entry control) until the cursor is below the desired parameter value. Rotate the data entry control to change the value.

► To access a submenu

The Master Arpeggiator screens have submenus which are accessed by pressing the cursor buttons to move the cursor to the lower left corner of the display. Select the submenu function using the data entry control.

To save Arpeggiator parameters

Press the Save/Copy button and scroll to "Save Setup To". Select a Setup number and press Enter. *See "Saving Multisetups" on page 125.*

► To return to the previously selected Mode/View screen

Press the Arp button, turning off the LED.

Arp parameters are automatically saved to the current multisetup when you exit the menu, but you may wish to save to another location.

If another Multisetup is "Restored" any unsaved changes will be lost if you haven't saved the Multisetup.

Arpeggiators

An arpeggiator moves a pattern of notes sequentially over a range of the keyboard. Proteus 2500 has the unique ability to play a different arpeggiator on each MIDI channel!

Arpeggiator settings can be defined as part of the preset (using the Arp parameters in the Preset Edit menu), or globally in the Arpeggiator menu. The preset and master arpeggiators have the same parameters which we define in this chapter.

The Arp field in the main screen defines which arpeggiator settings will be used. "M" uses the master Arpeggiator settings and on/off status (as defined in the Arpeggiator menu). "P" uses the preset's arpeggiator settings and on/off status (as defined in the Edit menu). Choosing "On" uses the preset's arpeggiator settings regardless of whether or not it is turned on in the Edit menu and Off turns off the arpeggiator regardless of the settings and status specified in either menu.

All arpeggiators share Proteus 2500's master clock and its current setting. The master clock can be Proteus 2500's internal clock or an external MIDI clock (page 138). Although the arpeggiators use the master clock setting, the tempo divisor can be unique for each arpeggiator setup.

Arpeggiator modes include up, up/down, forward assign, backward assign, forward/backward assign and random as well as play *Patterns*. Patterns are pre-recorded sequences of notes and rests. All key-on notes play the pattern. For example, if you play a chord, all the notes in the chord play the pattern in harmony. Proteus 2500 contains 200 factory patterns and 100 user definable patterns.

66

SAVE your Arp setups and name them using the "Save Setup To" function located in the Global menu. See"Saving Multisetups" on page 125.

Arp Controllers	The Arpeggiators can be controlled using the front panel real-time controllers or external MIDI continuous controllers. Controllers are patched to Arps via the Preset PatchCords located in the Preset Edit menu. <i>See "Preset Patchcords" on page 213.</i> The following Preset PatchCord destinations control the Arpeggiators.
	Arpeggiator Resolution (ArpRes) This control changes the Arpeggiator Note Value, which defines the length of the notes when playing arpeggiated chords. It <i>adds</i> to the note value set in the Arpeggiator Note Value screen. <i>See "Note Value" on page 225</i> .
	Arpeggiator Extension (ArpExt) This control changes the Arpeggiator Extension Count. It <i>adds</i> to the extension count programmed in the Arpeggiator Note Value screen. <i>See "Extension Count" on page 227.</i>
	Arpeggiator Velocity (ArpVel) This control changes the Arpeggiator Velocity Value. It <i>scales</i> the velocity value set in the Arpeggiator Note Value screen. <i>See "Velocity" on page 226</i> .
	Arpeggiator Gate (ArpGate) This control changes the Arpeggiator Gate Time. It <i>adds</i> to the gate time set in the Arpeggiator Gate Time screen. <i>See "Gate Time" on page 226</i> .
	Arpeggiator Interval (ArpIntvl) This control modulates the Arpeggiator Extension Interval. It <i>adds</i> to the extension programmed in the Arpeggiator Extension Interval screen. <i>See "Extension Interval" on page 227</i> .
Master Arpeggiator Parameters	The Master Arpeggiator is defined in the Arp menu. The Arpeggiator mode selected on the Main Screen determines whether the Master arpeggiator or the Preset menu arpeggiator settings are used.
runneters	To Access the Master Arpeggiator Parameters
	 Press the Arp menu button lighting the LED. The Arpeggiator menu screen displays the menu page most recently selected since powering up Proteus 2500. The cursor appears below the first character of the screen heading on line one.
	2. Use the right cursor button to advance the cursor to the first field in the bottom line of the screen.

- **3.** Now, use the **data entry control** to access the various Master Arpeggiator parameters.
- **4.** Save your Arpeggiator settings using the "Save Setup" function on the Save/Copy menu.

Status	The Status parame Arpeggiator setting you set the Arpegg still will not play.	ne Status parameter turns the Master Arpeggiator on and off. The Channel peggiator setting in the main screen overrides this setting. For example, if bu set the Arpeggiator in the main screen to "off," and turn it "on" here, it ill will not play.			
	MRS Stat	STER ARPEGGIATOR tus off			
Mode	The Mode parame arpeggiated notes.	ter determines the direction or pattern mode of the			
	The eight arpeggi • Up	ator modes are: Held notes arpeggiate continuously from lowest to highest pitch.			
	DownUp/Down	Held notes arpeggiate continuously from highest to lowest pitch. Held notes arpeggiate continuously from lowest to highest pitch, then from highest to lowest, then repeat this cycle.			
	Fwd AssignBkwd Assign	Held notes arpeggiate continuously in the order in which the keys were pressed.Held notes arpeggiate continuously in the reverse order in which the keys were pressed.			
	• Fwd/Bkwd	Held notes arpeggiate continuously in the order in which the keys were pressed, then arpeggiate in the reverse order that they were pressed. The cycle is then repeated.			
	• Random	eter turns the Master Arpeggiator on and off. The Channel g in the main screen overrides this setting. For example, if giator in the main screen to "off," and turn it "on" here, it STER ARPEGGIATOR tus off eter determines the direction or pattern mode of the STER ARPEGGIATOR deter determines the direction or pattern mode of the STER ARPEGGIATOR deter determines the direction or pattern mode of the STER ARPEGGIATOR deter modes are: Held notes arpeggiate continuously from lowest to highest pitch. Held notes arpeggiate continuously from lowest to highest pitch. Held notes arpeggiate continuously from lowest to highest pitch, then from highest to lowest, then repeat this cycle. Held notes arpeggiate continuously in the order in which the keys were pressed. Held notes arpeggiate continuously in the order in which the keys were pressed. Held notes arpeggiate continuously in the order in which the keys were pressed. Held notes arpeggiate continuously in the order in which the keys were pressed. The cycle is then repeated. Held notes arpeggiate continuously in a random fashion. Held notes play the selected pattern (see "Pattern" on page 225 for details).			
	• Pattern	Held notes play the selected pattern (see "Pattern" on page 225 for details).			

MASTER ARPEGGIATOR Note Value 1/8 dot Following is a list of possible Note Values and the relative number of clocks used for each. Note value has no effect Note Value **MIDI Clock** when the mode is set to Double Whole Note.....192 "pattern." Dotted Whole Note.....144 Double Note Triplet 128 Whole Note......96 Dotted Half Note.....72 Whole Note Triplet 64 Half Note Triplet 32 Quarter Note.....24 Dotted Eighth Note......18 Quarter Note Triplet......16 8th Note.....12 Dotted 16th Note.....9 8th Note Triplet......8 16th Note......6 Dotted 32nd Note 4.5 32nd Note......3 Arpeggiator Pattern The Arpeggiator Pattern Speed parameter lets you change the playback rate of Patterns by 1/4x, 1/2x, 1x (normal), 2x or 4x normal speed. Speed Pattern This field lets you choose the pattern used when the arpeggiator Mode is set to "Pattern." There are 200 factory programmed patterns and you can create an additional 100 user definable patterns (see "Editing a User Arpeggiator Pattern" on page 232). MASTER ARPEGGIATOR Pattern Name Pattern 991

The Note Value determines the duration of each note played. This

parameter is used in non-pattern mode only.

Note Value

Velocity The Velocity parameter determines the velocity at which each note arpeggiates. Velocity can be defined by the velocity value specified (from 1 through 127), or by the actual velocity of the played note (played). Bear in mind that velocity values do not have an effect on the sound unless the preset is programmed to respond to velocity. MASTER ARPEGGIATOR Velocity played Gate Time The Gate Time parameter works together with the Note Value parameter. Just as Note Value defines the length of a note, the Gate Time sets the percentage of the Note Value time played. This can have a dramatic effect on the sound depending on how the envelope generators are programmed. MASTER ARPEGGIATOR Gate 100% The note-on time is used With a Gate Time setting of 100% the note is held on until the next note for the start-of-time when starts. The envelope generators never advance to the Release stages. With a calculating note durations. See Gate Time setting of 50%, the note is released halfway through the note cycle and the envelope generators proceed to their release stages until the "Duration" on page 229. next note occurs. Refer to the following illustration. Selected Note Value (8th notes, 16th notes, etc.) Gate Time key-on 100% time key-on 75% time kev-or 50%

25%

Extension Count

The Extension Count parameter specifies how many times the Extension Interval is carried out. With an Extension Count of 0, the arpeggio plays only the notes pressed. With an Extension Count of 1, the arpeggio plays the notes pressed, then plays the same notes (in the same order), transposed by the Extension Interval amount. The cycle is then repeated.

For example, with the Extension Interval set to 12 (an octave) and an Extension Count of 2, and with the Arpeggiator Mode set to Fwd Assign, if you played E2, then C2, then G2, the arpeggiated sequence would consist of: E2, C2, G2, then E3, C3, G3, and then E4, C4, G4. The Extension Count values range from 0 through 15. Refer to the following illustration.

Extension Interval

The Extension Interval specifies the additional intervals played when you press a key. For example, suppose you played C2 with an Interval of 7 (a Major 5th), Up mode, and an Extension Count of 2. The arpeggio alternates between C2 and G2.

The Extension Interval values range from 1 through 16.

Sync

The Sync parameter defines when a note is played in relation to when the key is pressed. When set to "Key Sync", the note sounds the instant a key is pressed. When set to "Quantized", the note does not sound until the next occurrence of the selected note value.

The following diagram illustrates how Key Sync and Quantize work.

Pre-Delay

The Pre-Delay value determines how long the arpeggiator is delayed before becoming active after the first "note-on." During the pre-delay period, notes are played normally (as if the arpeggiator was off). After the pre-delay period has elapsed, the arpeggiator kicks in. Once you release all the keys on the controller, the pre-delay starts over with the next note-on. In combination with the Duration parameter, Pre-Delay lets you create many more variations in the arpeggio patterns. *Please refer to the diagram on page 230*.

You can play the preset normally as long as you don't hold the notes longer than the Pre-Delay. If you do, the arpeggiator starts in. When used in conjunction with multiple arpeggiators, Pre-Delay allows you to offset the time between the different patterns.

Duration	This parar Duration at a 16th giator wor the arpegg to Off, the	meter defines ho is specified in n Note Value and uld play 16 step giator remains i e arpeggio repea	ow long the arpeggiator potential of the Duration were set to be before stopping. After nactive until the key is national of the notes as long as the notes as ARPEGGIATOR	plays before stopping. The an arpeggio were running a whole note, the arpeg- the duration has elapsed, eleased. If Duration is set re held (Infinite Duration).	
		Duration		1 / 1d	
	L Duration pattern co length of the Durati arpeggio t	can be used to pombinations an arpeggiator pla ion is less than o repeat contin	modify the patterns and d variations. Because thi y time, it can change the the length of the arpegg uously using the <i>Recycle</i>	increase the possible s parameter limits the e arpeggio pattern when gio. You can set the function described below.	
Post-Delay	This parar parameter long the a <i>diagram or</i> normally elapsed, tl period or Recycle se	Duration" and "Recycle" elay value determines how a period. <i>Please refer to the</i> d, notes are played post-delay period has aning of the Pre-Delay d depending on the			
	If the arpeggiator is playing an extension when the Duration expires, the notes in the extension will continue to sound during the Post-Delay (and <i>Pre-Delay if on</i>). On the next pass through the Duration period, the extension continues where it left off.				
	Post-Delay allows the	Post-Delay increases the number of possible variations in the beat and allows the recycle loop to be set to an exact measure of time.			
		MASTER Post-Dela	ARPEGGIATOR	off	

Use the Key Range parameter to set the keyboard range for the arpeggiator. Notes inside the range will arpeggiate while notes outside the specified range will not arpeggiate. Use the Extensions parameters to exceed the upper boundary of the Key Range (see the information about Extensions beginning on page 227).

Move the cursor under the first key and use the data entry control to define the lowest key to be arpeggiated. Move the cursor under the second key value and use the data entry control to define the highest key to be arpeggiated.

Transmits the Arpeggiator Patterns via the MIDI out port as MIDI System Exclusive data to another Proteus 2500 or to a computer/sequencer for backup. Using the cursor key and the data entry control, select the MIDI data you want to transmit. See *Send MIDI System Exclusive Data* in the Master chapter for additional details about recording SysEx.

User Patterns

Transmits all the User patterns.

00⁰ to 99⁰

Transmits only the individual pattern you have selected.

SEND MIDI SYSEX DATA <u>A</u>ll User Arp Patterns

Send data as you would a regular sequence. Sending data in one huge chunk may clog the MIDI input buffer on Proteus 2500.

Send MIDI

Exclusive Data

System

Editing a User Proteus 2500 lets you create and edit your own arpeggiator patterns. Using the Edit User Pattern menu, you can create up to 100 user patterns and each Arpeggiator Pattern pattern can be up to 32 steps in length. When you edit a pattern, you are writing directly into memory—no Save command is required (however you must exit the Arp module). This is different from the Edit menu where you must Save a preset before it will be overwritten. If you want to modify an existing pattern and keep the original, you must first COPY the pattern you want to edit to another location using the function in the Save/Copy menu (See page 268). Refer to the instructions below and the following parameter descriptions to create your own patterns. **Bank 0** = User Patterns **Bank 1** = Factory Patterns Bank 2 = Factory Patterns EDIT USER PATTERN **U1**1 DRUMnBASS 1 To Select the Pattern to Edit Before editing a Pattern, 1. From the Edit User Pattern screen shown above, move the cursor to the select Master Arpeggiator (M) in bottom line and select the pattern you want to edit. The Enter LED begins flashing. Press Enter to move back to the Home position. the main screen and set the Arpeggiator to the Pattern you 2. Select the next screen in the list, "User Pattern Edit". This is where you are editing. This lets you hear edit the currently selected pattern. the Pattern as you edit it. PTRN KEY VEL DUR RPT 1/8501 2 +0οЦч ♠ ♠ ▲ Pattern Step Key offset Velocity Duration Repeat number 3. Move the cursor to the lower line of the display. For each step, you can select: key, velocity, duration, and number of repeats. Pattern Step Number You can set up to 32 steps for each arpeggiator pattern. This field selects which step you will be editing from 1 to 32. Key This parameter defines what happens during the current step. The Key parameter can do one of five different operations. Following is a description of each of the key functions and how to use them.

Key Offset

This parameter defines not the actual note of the arpeggiator playback, but instead specifies the amount of offset, in semitones, from the original note played. You can set a Key Offset from -48 to +48 for each step. For example, if you play a "C" on the keyboard with the Key Offset amount for the first step set to "+1," the first step in the pattern will be "C#."

Tie

This function *extends* the duration of notes beyond the values given in the duration field by "tying" notes together. You can tie together any number of consecutive steps.

Rest

Instead of playing a note, you can define the step as a Rest. The Duration parameter specifies the length of the rest. Rests can be tied together to form longer rests.

Skip

This command simply removes the step from the pattern. The Skip feature makes it easy to remove an unwanted step without rearranging the entire pattern. You'll be happy to know that the velocity, duration and repeat parameters are remembered if you decide to put the step back later.

End

This command signals the end of the pattern. Any steps programmed after the step containing the End command are ignored.

66

IMPORTANT: The Gate function in the arpeggiator MUST be set to 100% when using the tie function, otherwise the tied note is retriggered instead of extended.

Velocity	Each note in the pattern plays using either a preset velocity value (from 1 through 127), or using the actual velocity of the played note (ply). Note: Velocity values will not have an effect on the sound unless velocity is programmed to do something in the preset.			
Duration	This parameter sets the length of time for the value, based on the Master Tempo. The sel described below.1/3232nd Note11/16t16th Note Triplet11/32dDotted 32nd Note11/1616th Note11/1616th Note11/1616th Note11/1616th Note11/18t8th Note Triplet11/18d8th Note11/4tQuarter Note Triplet21/8dDotted Eighth Note11/4Quarter Note2		e for the cur he selectabl 1/2t 1/4d 1/2 1/1d 1/1t 1/2d 1/1 2/1t 2/1	rent step, defined as a note e note durations are Half Note Triplet Dotted Quarter Note Half Note Dotted Whole Note Whole Note Triplet Dotted Half Note Whole Note Double Whole Note Triplet Double Whole Note
Repeat	 1/4 Quarter Note 2/1 Double Whole Note Each step can be played from 1 to 32 times. A repeat setting of "1" indicate the step will be played one time (not repeated one time or played twice). To Edit a User Pattern 1. The first field in the Edit User Pattern field defines the pattern's step number. Start with the pattern Step 01. 2. Define the Key Offset, Velocity, Duration and Repeat values. 3. Repeat steps 1 and 2 until you have setup the desired number of steps in the pattern. 4. Set the Key Offset to "End" on the last step in the pattern. 			eat setting of "1" indicates he time or played twice). efines the pattern's step d Repeat values. e desired number of steps n the pattern.

User Pattern Name

The User Pattern Name page lets you enter a name for any User Arpeggiator Pattern.

To Name a User Pattern

- 1. From the Pattern Edit screen shown above, position the cursor under the **PTRN** field.
- 2. Turn the data entry control clockwise. The following screen appears.

<u>U</u>SER PATTERN NAME 00⁰ Mod Sycle

- **3.** Move the cursor to the bottom line and **edit the Pattern** name using the data entry control and Cursor keys.
- 4. Move the cursor to the "Home" position (shown above) by pressing the Home/Enter button.
- **5.** Turn the **data entry control** counter-clockwise one click to return to the Pattern Edit screen.
- **6.** Turn the **data entry control** counterclockwise multiple clicks to jump back to the main Arpeggiator menu screen.

Presets with the arpeggiator assigned will play when they receive MIDI note-on data from the keypad, internal sequencer or external MIDI source.

Please refer to the instructions on page 28 to learn one way to perform using multiple arpeggiators.

Multichannel Arpeggiating

Beats

Remember to SAVE your preset once you assign a BTS or KIT riff.

Beats mode is a 16-track play-only sequencer optimized for live performance and groove creation. BTS riffs, which are permanently stored in sound ROM, are special multi-part Audition Riffs. By playing keyboard or trigger keys you trigger, latch and unlatch different parts of these synced loops and grooves. Any preset can be selected and used by assigning a BTS riff *(or KIT riff)* in the Preset Edit menu.

► Here's how it works:

- **1. Select a bts: preset**, ...or **assign a BTS riff** to one of the percussion presets in the Preset Edit Menu. KIT riffs also have several tracks.
- 2. Set the "Trigger Buttons Function" in the Controllers menu to Play Beats Parts.
- 3. Select Triggers in the Command Functions section.
- **4.** Each of the Beats Parts is assigned to a trigger key. Bring each part in or out by pressing that key. Keys can also be Latched *(press the key once to turn the part on, press it again to turn the part off)*. Other control keys allow you to Mute All Parts, Clear All Parts, and Start & Stop the beat. For BTS Riffs the 16 parts are arranged in the following manner:

Main Groove	Alt. Groove	Perc / Fills	Instr/Wild
1. Kick1	5. Kick2	9. Perc3/Fill1	13. Inst1/Wild1
2. Snare1	6. Snare2	10. Perc4/Fill2	14. Inst2/Wild2
3. Hihat1	7. Hihat2	11. Perc5/Fill3	15. Inst3/Wild3
4. Perc1	8. Perc2	12. Perc6/Inst.	16. Bass

For each Beats Riff, you have 2 Grooves, 4 Fills which correspond to the four parts of the Main and Alternate groove, and 4 Instrument parts. By adding and removing parts, you control the complexity of the groove.

Each part can also be scaled by *Key Velocity*, allowing you to fade parts in and out (if velocity is routed to volume) as you play, or can be *Transposed* over a six octave range. Each part can be assigned to any one of four *Groups*, which allow multiple parts to be triggered from a single key. You can only access Groups using the keyboard trigger keys. See the Factory Setup diagram on the next page.

The factory **BTS** riffs range from 4-16 bars long, using 4 to 16 tracks each. Normally you'll use the Command Function buttons to bring parts in and out. Beat Parts can also be assigned to groups so that multiple parts can be triggered from a single key press. The Group Triggers, Clear Parts, Trigger Hold and Mute keys are only accessible via MIDI or the keypads.

Trigger layouts are saved with the Multisetup. The Factory Multisetup (63) has all the Beats controls assigned to the keyboard as shown in the diagram on the following page. These MIDI note numbers have been placed below the lowest key on the keyboard so as not to interfere with normal playing. Setting the Beats Keys Offset function (*page 244*) to +48 will allow you to access these hidden control keys.

Beats (bts:) Riffs are special 16-part riffs made especially for use with Beats mode. KIT riffs may have four or five parts.

Other riffs usually have only one part recorded.

By assigning Trigger Buttons to the keyboard Beats Layout Keys, you can trigger Beats and MIDI notes using the Trigger buttons. By assigning Trigger Buttons to the keyboard Beats layout keys shown at right, you can trigger Beats and MIDI notes at the same time using the Trigger buttons.

The chart above shows the Factory Multisetup assignment of each Part, the 4 Groups and the Control Keys. These assignments can be modified to suit your personal preference, then saved in one of the Multisetup locations.

Start/Stop Trigger

• Clear Parts

Mute

• Trig Hold

Starts the beat sequencer from the beginning of the sequence. When latched, pressing once starts and pressing again stops. When unlatched, the sequence runs as long as the key is held.Once the Beats sequencer is started, it continues to run even if no triggers are active.

Start/Stop doesn't clear latched parts when it stops the sequencer. Any trigger played after stopping will not only start the sequencer and play that trigger's part, but also play all previously latched parts.

Clears any enabled parts. This control provides a quick and easy way to shut off all latched Parts. Latch mode has no effect on this key.

Mutes all Parts while held, but the Beats sequencer continues running.

When this key is held, all other Trigger Keys behave as if they were in Latch mode.

Starting Beats mode with the Start/Stop key allows you to start the sequencer rolling silently. Then you can bring Parts in and out using the "Busy" control.

If Mute is set to 1-bar, the Part mutes for 1 bar then un-mutes.

	The Beats sequencer plays as long as any Beats triggers are active. Beats riffs can also be Restarted using a MIDI Song Start command even if the Beats channel is not currently selected. The Audition LED illuminates whenever the Beats sequencer is running (even if no Parts are playing). Pressing the Audition button or starting a Demo causes the Beats sequencer to stop. Pressing the Audition button plays the riff assigned to the preset. BTS and KIT riffs have multiple parts. Other riffs usually have one part. All Arp/Beats parameters are saved with the Multisetup.			
Beats Mode	This screen turns Beats mode on and has several other features which allow flexible control over Beats mode. There are several status modes that determine when Beats will be turned on and which Riff will be used. Beats and BEAT Triggers can be set to different MIDI channels. This allows you to perform on two MIDI channels at once with a keyboard that only transmits on a single MIDI channel.			
		BEATS MODE	Status: P	
	BtsCh: Basic TrigCh:Basic			
The Basic Channel is the MIDI channel currently displayed in the Main Screen.	 <i>Status</i> <i>Off</i> Beats mode off. <i>On</i> Beats mode on. The Riff assigned in the preset <i>P</i> Beats mode is turned on <i>ONLY</i> if the Riff assign preset is a "bts:" riff. The Riff assigned in the preset (<i>Default setting</i>) <i>M</i> Beats mode on. The Master Riff is used (Arp/Base) 			
		BEATS MODE	Status: P	
	BtsCh: Basic TrigCh:Basic			
	 Beats Channel (BtsCh) 01-16 Selects the MIDI channel on which Beats play. Basic Beats play on the MIDI channel displayed in the Main Screen. 			
	 • 01-16 Selects the MIDI channel on which Trigger Keys will be active. • Basic Sets the Trigger Keys to the MIDI channel displayed on the Main Screen. 			

66

The TRIGGER BUTTONS FUNCTION is a new screen which changes the 16 trigger buttons into "Beats Part Mute" buttons.

66

You can create your own Beats presets by assigning a BTS riff in the Preset Edit menu.

• If you don't select a preset with a **BTS** or **KIT** riff assigned, only the first trigger key may work.

• Riffs marked "BTS" have 16 parts. KIT riffs usually have 4 parts.

Beats Setup:

Set the Trigger Buttons to Beats Mode

- 1. Press the Controllers button on the front panel.
- **2.** Turn the **data entry control** clockwise until you find the "TRIGGER BUTTONS FUNCTION" screen.
- 3. Set the lower line of the display to read, "Play Beats Parts".
- 4. Press the **Controllers** button on the front panel again to exit the menu.

Set the Trigger Buttons to be Triggers

5. Press the **Triggers** button in the Command Functions section of the front panel. OK, now you're ready to start playing Beats.

Playing Beats:

Selecting Beats Presets (see sidebar)

1. Press the **right cursor button twice** so that the cursor is located beneath the **Category** field.

Category Field Preset Name Field

- 2. Turn the data entry control until bts: is shown in the Category field.
- 3. Press the **right cursor button** so that the cursor is underneath the **Preset Name** field.
- 4. Now turning the data entry control selects ONLY bts: presets!

Play Beats

5. Press any of the sixteen front panel **Trigger Buttons**. Notice that each button brings in a specific part. The chart below shows which buttons control which part in **bts**: presets.

Main Groove	Alt. Groove	Perc / Fills	Instr/Wild
1. Kick1	5. Kick2	9. Perc3/Fill1	13. Inst1/Wild1
2. Snare1	6. Snare2	10. Perc4/Fill2	14. Inst2/Wild2
3. Hihat1	7. Hihat2	11. Perc5/Fill3	15. Inst3/Wild3
4. Perc1	8. Perc2	12. Perc6/Inst.	16. Bass

- **6.** Also notice that the Audition LED comes on when Beats begin playing. Beats are simply multitrack Audition Riffs. You can use the **Audition** button to turn Beats on and off.
- **7.** Try out a few different **bts**: presets.

Get Busy!

The Controller knobs can be programmed to control Beats. Check it out!

8. Scroll to the **Preset PatchCords** screen in the **Preset Edit** menu. The screen below appears.

- **9.** Move the cursor under the Cord destination and change it to **BtsVari**. Exit the Preset Edit menu.
- **10.** Turn controller **Knob 15** /**O** with a Beats Riff playing. This knob now controls the *Beats Variation* parameter. Beats Variation changes which parts are playing without changing the number of parts. This makes it easy to try out different combinations of Beat Parts.
- 11. Try hooking controller knobs up to other Beats controls such as *Beats Busy*. See "Beats Controllers" on page 241 for more information.

► To Play Beats on a different MIDI channel:

Beats can be assigned to a certain MIDI channel while you play the keyboard on another channel. (*Make sure you have Beats mode set up correctly as described in "Beats Setup" on page 239.*)

1. Press the **Arp** button and turn the data entry control until the screen shown below appears.

- 2. Set the Beats Channel (BtsCh) to **01**.
- **3**. Select any **bts**: preset on channel 1 (main screen).
- **4.** Press any of the sixteen **Beats buttons** to start your Beat playing. (*Do NOT start Beats by pressing the Audition button.*)
- **5.** Press the **+** Channel button to the left of the LCD to select channel **2**.
- 6. Select a preset to jam along with the Beat.
- **7.** The Trigger Keys now play Beats and the other keys play the preset on channel **2**.
- **8.** The Audition button can be used to turn the Beat off. (*If you try to use it to turn Beats on while on channel 2, the Riff on channel 2 will play.*)

Wrong FX? In Omni mode, the FX assigned to channel 2 will be used. In Multi mode, the Master FX settings will be used.
Beats Controllers

Beats can be controlled using the front panel real-time controllers or external MIDI continuous controllers. **Controllers are patched to Beats via the Preset PatchCords located in the Edit menu.** The following Preset PatchCord destinations control Beats.

Beat Velocity Group 1-4 (BtsVelG1 -> BtsVelG4)

Parts assigned to one of the four Beats groups can have their velocity scaled by the controller input. Since most "bts" presets have velocity controlling volume, this control can be used to mix the relative levels of the Groups.

Beats velocity works as a percent *addition*. An input value of 0 (or no Cord) means change the velocity by 0%. A full scale modulation setting of 100% in the PatchCord adds 100% to the velocity value 100% + 100% = 200%. A PatchCord setting of -100% *subtracts* 100% from the velocity (making it 0). Beat velocity scalings are reset with a preset change.

Beat Xpose Group 1-4 (BtsXpsG1 -> BtsXpsG4)

Parts assigned to one of the four Beats groups are transposed by the controller input. Transpose works by shifting the keyboard position and not by changing the tuning of individual notes. Therefore, on a Beats presets (bts), where different instruments are assigned to each key, Transpose has the effect of changing the instrument used by a particular part. This control ADDS to the Part Transpose set in the Beats Transpose screen (page 245). Beat transpose offsets are reset with a preset change.

Beat Busy (BtsBusy)

This destination determines which parts are enabled. Beat Busy will accept either positive or negative values.

- Positive values Add parts to whatever parts are triggered
- Negative values *Remove* parts that are triggered.

A PatchCord amount of 50% is enough to drive Beat Busy to the maximum setting.

Hot Tip!

Bidirectional Mod Knob: Set Controller M to BtsBusy with a Cord amount of +100, then add a DC bias to BtsBusy with a Cord amount of -50. The controller knob now adds or subtracts "Busyness".

Key Pressure to Beat Busy at 50% increases BEAT complexity the harder you press. Suppose the pitch wheel *(which can output both positive and negative values)* were connected to Beat Busy and four Key Triggers are down. As the pitch wheel is moved from center to fully up, the remaining parts will be enabled until the pitch wheel is fully up and all parts are playing. Moving the pitch wheel from center to fully down, the four triggered parts are sequentially removed until at the most negative position of the wheel, no parts are playing.

The Busy control acts on the Beats condition whenever the control is changed. Playing more triggers without changing the Busy control simply adds them until the Busy control is changed again, at which point it will possibly add or subtract parts as needed.

The interaction between the Busy control, Triggers, Part Velocity and Group Velocity can get complicated, but works according to this simple rule:

WHICHEVER CONTROL WAS LAST CHANGED TAKES OVER

When interacting with the Group Velocity scale control, the Busy control ignores group velocity even when it is set to zero, enabling and disabling parts as necessary. If the Group Velocity is changed *after* the Busy control, it takes control, scaling parts as it deems necessary.

The Busy control *does* take the Part velocity into account when adding and subtracting parts. If a part has a velocity of 0%, it is removed from the list of parts that the Busy control adds or subtracts. Therefore, you can use the Part Velocity control to remove parts you don't want to hear.

Positive controller values bring in new Parts and negative controller values remove Parts that are latched or held. In this example, the Pitch Wheel is connected to Beat Busy since it outputs negative as well as positive values.

Beat Variation (BtsVari)

Beat Variation varies which Parts are brought in and out using the Beat Busy control. Increasing this control mixes up the order in which Parts are brought in and out, thus providing even more permutations to the Beat.

Beats Keys/Trigger Layout

Save your Beats Keys Layouts and all other Arp/Beats parameters using "Save Setup" function in the Global menu. This screen assigns the 16 Beats Triggers to keyboard notes on the Beats channel. For each Part, Group and Control Key you can select the following options:

- Key Selects which keyboard key triggers the Part
- Latch..... The first key press turns the Part on, the next turns it off.
- Unlatch The Part plays only while the key is held.
- 1-bar The Part plays for one bar then stops.

1-Bar Trigger Option

The 1-bar option requires a bit of explanation. When a trigger key is pressed before the last beat of the measure, the part will continue playing until the end of the measure. If the Trigger Key is pressed after the last beat of the measure, the part waits until the next measure before playing. Then it plays for the entire measure and stops. The time signature and the measure bounds are determined by the particular Beats Riff you are playing.

Beats Keys Offset

This function slides the Beats Trigger keys *(assigned in the previous screen)* up and down the keyboard. This makes it easy to change the keyboard location of the trigger keys without having to re-assign each key. A positive offset moves the group of triggers up the keyboard by the designated number of keys. Negative offsets move the trigger group lower on the keyboard.

Beats Keys Offset slides the entire group of beats triggers up or down the keyboard.

Beats Part Velocity

Use Beats Part Velocity to adjust the volume of Beats relative to volume of the Pattern or Song. Each note of a Beats Riff can have its recorded velocity scaled by a value (from 0 to 120%) of the recorded velocity or the actual played velocity of the trigger key can be used (trigger vel). For example, if a note's velocity is 80, scaling by 110% will increase the note's velocity to 88. This feature allows you to control the mix of the different parts in advance or "on-the-fly" as you play. If a part's velocity is set to 0%, that part will be removed from the mix.

Select Part

• To Set the Velocity for each Part:

- 1. Press the left cursor button to move the cursor under the Part field.
- **2.** Select the Part number using the Data Entry Control. Parts 1-16 can be selected. (*All parts, shown as an "A", can be edited at once if "Edit All Layers" is enabled in the Master menu.*)
- **3.** Move the cursor to the bottom line using the cursor keys and adjust the Velocity Scaling percentage using the Data Entry Control.
- 4. Repeat steps 1 through 3 for all the Parts you wish to adjust.
- **5.** Press the Enter/Home button or use the cursor keys to move the cursor back to the screen heading.

Beats Part Transpose Each Part of a Beat Riff can be transposed up to 36 semitones up or down. Transpose works by shifting the keyboard position and not by changing the tuning of individual notes. Therefore, on a Beats preset (bts:), where different instruments are assigned to each key, **Transpose has the effect of changing the instrument used by a particular part.** On a preset where a single sound covers the entire keyboard, Transpose will actually transpose the sound.

Select Part

► To set the Transposition for each Part:

- 1. Press the left cursor button to move the cursor under the Part field.
- **2.** Select the Part number using the Data Entry Control. Parts 1-16 can be selected. (*All parts, shown as an "A", can be edited at once if "Edit All Layers" is enabled in the Master menu.*)
- **3.** Move the cursor to the bottom line using the cursor keys and adjust the Transposition in semitones using the Data Entry Control.
- 4. Repeat steps 1 through 3 for all the Parts you wish to adjust.
- **5.** Press the Enter/Home button or use the cursor keys to move the cursor back to the screen heading.

Beats Part Group

All Parts assigned to a Group will stop playing when the Group key is triggered, then untriggered even if the individual Parts in the Group are latched.

Master Riff

This screen is where you assign Parts to one of the four Groups. By grouping, you can play multiple parts with a single key. A part can be in one and only one group, or in no groups.

• To Assign a Part to a Group:

- **1.** Press the left cursor button to move the cursor under the Part field.
- **2.** Select the Part number using the Data Entry Control. Parts 1-16 can be selected. (*All parts, shown as an "A", can be edited at once if "Edit All Layers" is enabled in the Master menu.*)
- **3.** Move the cursor to the bottom line using the cursor keys and select the Group (1-4 or none) using the Data Entry Control.
- 4. Repeat steps 1 through 3 for all the Parts you wish to assign.
- **5.** Press the Enter/Home button or use the cursor keys to move the cursor back to the screen heading.

The Master Riff is selected from this screen. The Master Riff is used when Master (M) is selected for Beats in Beats mode enable screen.

MASTER RIFF Plays: TranzAmbient 1 2500

► To Assign the Master Riff:

- 1. Use the cursor buttons to move the cursor to the lower line of the display.
- **2.** Select the desired Riff using the Data Entry Control. (Beats Riffs are identified by the **bts:** prefix.)
- **3.** If there is more than one ROM in your unit you can select Riffs from any ROM set. Move the cursor under the ROM ID and select using the Data Entry Control.
- **4.** Press the Enter/Home button or use the cursor keys to move the cursor back to the screen heading.

246 E-MU Systems

Riff Tempo	This setting determines whether Riff Tempo (the tempo stored with each Riff) or the Current Tempo (the Base Tempo from the Master Clock) will be used for Beats. Use "Current Tempo" if you want to synchronize Beats with the Pattern/Song sequencer. To control the Riff Tempo from MIDI clock, set Riff Tempo to "use current tempo" and Base Tempo to "use MIDI". RIFF TEMPO use riff tempo
	 To Set the Riff Tempo Mode: 1. Use the cursor buttons to move the cursor to the lower line of the
	display.2. Select "use riff tempo" or "use current tempo" using the Data Entry Control.3. Press the Enter/Home button or use the cursor keys to move the cursor back to the screen heading.
Riff Controllers	Riffs contain preprogrammed real-time control information. This function allows you to turn these controllers On or Off for the Riffs. This control affects Audition Riffs as well as Beats Riffs.
	RIFF CONTROLLERS use riff controllers
	 To Turn Riff Controllers On or Off: Use the cursor buttons to move the cursor to the lower line of the display. Select "use riff controllers" or "ignore riff controllers" using the Data Entry Control. Press the Enter/Home button or use the cursor keys to move the cursor back to the screen heading.

Arpeggiator/Beats Menu

Effects

Effects Overview

Proteus 2500 has two stereo effects processors. When playing presets one at a time, the two processors can be programmed as part of the preset. When the MIDI Mode is set to "multi," the Proteus 2500 uses a global effects assignment (Master Effects). The diagram below shows how the effects are integrated into the signal path using a parallel effects send/return model, similar to a mixing console.

The Effects Sends

On a mixing console you can control the amount of signal each channel Sends to the effect bus. This allows each channel to be placed in a slightly different "sonic space" which creates an airy, open sound.

Proteus 2500 uses this basic concept, but works in a slightly different manner. There are four effects busses: Send1-Send4. Each preset or each MIDI channel (you determine which), can be directed to one of the four busses. Each effect processor has four Send Amounts which allow you to set the wet/dry mix on each of the four busses going into the effect. A setting of 0% is completely dry (no effect). A setting of 50% contains an equal mix of affected and normal (dry) signal.

Send 2 and Send 3 are also used to route sounds to the Sub 1 and 2 outputs on the back panel. When a plug is inserted into the associated Submix jack on the back panel, the Dry portion of the Send is disconnected from the effects processor and the Dry signal is routed directly to the output jack. **The Arrow** (->) **in the display points to the actual output routing**. *The Dry Send is disconnected from the Effects Processors even if only one plug is inserted into a Submix pair*.

The Effects Send is programmed for each layer in the Preset Edit menu. These routings can be overruled in the Global menu *Mix Output* screen by changing the submix setting from "preset", which uses the preset routing, to Send1-Send4. In the diagram below, MIDI channel 1A is programmed to obey the preset routing which in this case is Send 1.

Individual layers or entire MIDI channels can be routed to any of the four busses.

The four Effect Sends allow you to get the most out of the two effect processors. For example, with Effect B set to an echo algorithm, you could route one MIDI channel to Send 3 and set the effect amount to 80%. Another MIDI channel could be routed to Send 4 with an effect amount of only 5%. This is almost like having two different effects!

The Mix Output function is also useful when sequencing since it lets you route specific MIDI channels (and thus sequencer tracks) to specific Sub outputs (on the back panel) where there they can be processed with EQ or other outboard effects.

Effects Effect Types

Effect Types

Effect Types		
<i><i>¹</i></i>	A Effect Types	Medium Concert
	Room 1-3	Large Concert
	Hall 1 & 2	Large Concert Pan
	Plate	Canyon
	Delay	DelayVerb 1-3
	Panning Delay	DelayVerb 4-5 Pan
	Multitap 1	DelayVerb 6-9
	Multitap Pan	
	3 Тар	B Effect Types
	3 Tap Pan	Chorus 1-5
	Soft Room	Doubling
	Warm Room	Slapback
	Perfect Room	Flange 1-7
	Tiled Room	Big Chorus
	Hard Plate	Symphonic
	Warm Hall	Ensemble
	Spacious Hall	Delay
	Bright Hall	Delay Stereo
	Bright Hall Pan	Delay Stereo 2
	Bright Plate	Panning Delay
	BBall Court	Delay Chorus
	Gymnasium	Pan Delay Chorus 1 & 2
	Cavern	Dual Tap 1/3
	Concert 9	Dual Tap 1/4
	Concert 10 Pan	Vibrato
	Reverse Gate	Distortion 1 & 2
	Gate 2	Distorted Flange
	Gate Pan	Distorted Chorus
	Concert 11	Distorted Double
Effect Parameters	"A" Effect types contain Rever Chorus, Flange and Distortion effects. In addition to the effec for each effect. The "A" effects	b and Delay effects. "B" Effect types contain effects. There are 44 "A" effects and 32 "B" ct type, there are user adjustable parameters have programmable Decay and High

Frequency Damping. The "B" effects have user programmable Feedback,

LFO Rate, and Delay Time.

Decay

The Decay parameter is used when setting "A" type effects. Decay sets the length of time it takes an effect to fade out. When setting up reverb effects, Decay controls the room size and the reflectivity of the room. For larger room sizes and greater reflectivity, set the Decay value higher. When setting up delay effects, the Decay parameter controls how many echoes are produced or how long the echoes last. The greater the value, the more echoes and longer lengths of time.

The Decay value range is from 0 through 90.

High Frequency Damping

The HF Damping parameter is used when setting "A" type effects. High Frequency energy tends to fade away first as a sound is dissipated in a room. the HF Damping parameter adjusts the amount of damping applied to the signal's high frequency elements which, in turn, changes the characteristics of the room. Rooms with smooth, hard surfaces are more reflective and have less high frequency damping. Rooms filled with sound absorbing materials, such as curtains or people, have more high frequency damping.

The value range for High Frequency Damping is from 0 through 127.

Feedback

The Feedback parameter is used when setting "B" type effects. The Chorus and Flange effects have a controllable feedback loop after the delay element. Feeding back a small amount of the signal intensifies the effect by creating multiple cancellations or images. Higher feedback values increase the amount of the Feedback loop.

The Feedback value range is from 0 to 127.

LFO Rate

The LFO Rate parameter is used when setting "B" type effects. Both Chorus and Flange effects use a Low Frequency Oscillator (LFO) to animate the effect. LFO applied to a chorus effect creates the slight changes necessary for a realistic choral effect. Applied to a flanger effect, the LFO moves the comb filter notches and adds animation to the sound.

The LFO Rate value range is from 0 to 127.

Delay

Flanging, chorus and echoes are all based on a delay line where the signal is delayed by some time period and then mixed back with the unaltered signal. This parameter specifies the how much time passes before you hear the delayed signal. On some effects, this value cannot be changed. In this case, the field contains a dash.

The Delay value range is from 0ms to 635ms.

Effects Programmed in the Preset

Effects are normally programmed as part of the preset allowing you to have a different effect for each. This section describes how to program and modify Proteus 2500's preset effects.

• To Program the Effects as Part of the Preset:

- **1.** Press the Preset Edit button. The LED illuminates and the Preset Edit screen appears.
- **2**. Use the data entry control to select the FXA Algorithm screen.

FXA ALGORITHM Lg Concert Pan

- **3.** Select an Effect. Do not select the "Master Effect" setting or the global effects set up in the Global menu will be used instead of the Preset Effect settings.
- 4. Use the data entry control to select the FXA parameter screen.

The FxB -> FxA parameter lets you route the B effect through the A effect. See "Effect B Into Effect A" on page 258.

- **5.** Set the other effect parameters to your preference. Refer to the information in the last section for detailed descriptions of these parameters.
- 6. Use the data entry control to select the FXB Algorithm screen.

FXB ALGORITHM Distorted Flange

- **7.** Select an Effect. Do not select the "Master Effect" setting or the global effects set up in the Global menu will be used instead of the Preset Effect settings.
- **8**. Use the data entry control to select the FXB parameter screen.

The FxB -> FxA parameter lets you route the B effect through the A effect. See "Effect B Into Effect A" on page 258.

- **5.** Set the other effect parameters to your preference. Refer to the information in the last section for detailed descriptions of these parameters.
- **6.** Use the data entry control to select the FXB Algorithm screen.

- **7.** Select an Effect.
- **8.** Use the data entry control to select the FXB parameter screen.

- **9.** Set the other effect parameters to your preference. Refer to the information in the last section for detailed descriptions of these parameters.
- **10.** Press the Preset Edit menu button. The LED illuminates and the Preset Edit menu displays the last screen used.
- **11.** Use the data entry control to access the FXA Algorithm page and select "Master Effect A."

FXA ALGORITHM Master Effect A

- **12**. Repeat step 11 for the FXB Algorithm
- **13.** Save the preset. The Master effects routing will be saved along with the preset.

The MIDI mode (MIDI Menu) must be set to Omni or Poly mode in order to select the effects in the preset.

Effects Mode

This control provides a true bypass of the effects engine. Bypass is a useful feature if you are using external effects at the mixing console and want to turn the effects off for all presets.

► To Bypass the Effects:

- 1. Press the Global menu button. The LED lights and the last Global parameter screen used is displayed.
- **2.** Use the data entry control to select the Effects Mode screen.

FX MODE enabled

- **3.** Use the cursor button to advance the cursor to the bottom line in the screen.
- 4. Use the data entry control to change the value.
- **5**. Press the Enter key to save the settings.

The Effects Mode values are "enabled" and "bypassed." Enabling the Effects Mode turns on effects. Selecting "bypassed" turns off the effects.

The effects processor controls are very flexible. The effects can be controlled in three different ways to suit your personal preference and to adapt to different situations.

When in Omni or Poly mode, effects are normally programmed as part of the preset. In Multi mode, the two effects processors can be controlled using the Master settings or by using the effects settings of a preset on a specific MIDI channel. Effects can be programmed in the following ways:

- 1. Programmed as part of the preset when playing single presets (Omni or Poly Modes).
- 2. Programmed from the Master Effects Section when playing either single presets (preset Effect Type set to "Master") or when in Multi Mode. This is the typical mode when using the sequencer because the master effects settings are saved with each pattern.
- 3. Programmed from the designated control preset when in Multi Mode.

Flexible Effects Control

You can create special "Effects Presets" which are assigned to the FX Multi mode Control channel, then use standard MIDI Program Change commands to switch effects during sequence playback.

Refer to the following diagram for a look at how effects are programmed.

3. Move the cursor to the Multi mode Effects Control page using the data entry control.

FX MULTIMODE CONTROL use master settings

- **4.** Set the Effect Control channel to *use master settings* using the data entry control.
- 5. Press the Enter key to save the settings and return to the main screen.

Using the Effects Channel Settings in Multi Mode

In Multi mode, the two effects processors can be controlled from the Master Effects settings or they can follow the effects settings of the preset on a special MIDI channel. The effect settings on this special channel will be applied to all the other MIDI channels. This allows the effects to be changed during a sequence simply by changing the preset on a specified MIDI channel.

To Program the Effects by Channel Number in Multi Mode

- **1.** Press the MIDI menu button. The LED illuminates and the MIDI menu screen appears.
- **2.** Use the data entry control to select the MIDI mode page. Choose "multi" for the mode.
- **3.** Move the cursor to the Multi mode Effects Control field using the data entry control
- **4.** Set the Effect Control to "preset on Channel #" (where # is replaced by the actual channel number from 1A through 16B) using the data entry control.
- 5. Press Enter to save the settings and return to the main screen.

Effect B Into Effect A

The output of effects processor B can be routed into effects processor A. This connects the effects in series instead of their normal parallel configuration. Two effects connected in series sound very different than the same two effects in parallel. For example, a chorus patched through reverb can turn a bland string section into a lush wall of sound. The B –>A amount can also be controlled for even more flexibility.

To Send the Output of Effect B through Effect A: In this example, 100% of Effect B will be sent into Effect A.

1. Access the FXA parameter screen (in either the Global or Preset Edit menus) that contains the FXB –>FXA parameter.

The Master effects are selected by the sequencer. If you want the sequencer to set the effects, set Multimode Control to "Use Master Settings". FXA DECAY HFDAMP FxB>FxA 127 127 127 127

- **2.** Set this amount to 127. Press the cursor button to return the cursor to the top line in the display.
- **3.** Use the data entry control to select the FXA submix routing parameter screen.

FXA SEND AMOUNTS1: 10%2: 20%3: 30%4: 40%

- 4. Press the cursor buttons to advance the cursor to the Main field.
- 5. Set the Main send amount to any amount other than zero.
- **6.** Press the cursor button again to return the cursor to the FXA title. Use the data entry control to advance to the FXB Algorithm page.
- 7. Select an effect.
- **8.** Advance to the FXB submix routing page and set the Main FXB send percentage to zero.
- **9.** Play the keyboard and you should hear the B Effect running through Effect A. This patch is shown below.

General Effect Descriptions

Reverb

Reverberation is a simulation of a natural space such as a room or hall. The reverb algorithms in Proteus 2500 simulate various halls, rooms and reverberation plates. In addition, there are several other reverb effects such as Gated Reverbs, Multi Tap (early reflections), Delay and Panning effects. There are two adjustable parameters on the reverb effects - Decay Time and High Frequency Damping.

Decay time defines the time it takes for the reflected sound from the room to decay or die away. The diagram below shows a generalized reverberation envelope.

After an initial pre-delay period, the echoes from the closest walls or ceiling are heard. These first echoes, or the early reflection cluster, vary greatly depending on the type of room. Roughly 20 milliseconds after the early reflection cluster, the actual reverberation begins and decays according to the time set by the Decay Time parameter.

High frequency energy tends to fade away first as a sound is dissipated in a room. The High Frequency Damping parameter allows you adjust the amount of high frequency damping and thus change the characteristics of the room. Rooms with smooth, hard surfaces are more reflective and have less high frequency damping. Rooms filled with sound absorbing materials such as curtains or people have more high frequency damping.

General Descriptions of the Reverb Types

Room: Programs simulate small rooms with high frequency absorption caused by drapes and furniture.

Plates: Simulates plate type reverbs with their tight, dense, early reflections and sharp reverb buildup.

Hall: Presets recreate the open, spacious ambience of large concert halls. **Gated Reverbs**: Add ambience only while the original signal is still sounding. As soon as the signal falls below a threshold, reverb is cut off.

Delay: Programs can be used to create echo and doubling effects.

Multi Tap: Programs consist of the reflection cluster only without the reverb decay.

Chorus	The function of a chorus device is to thicken the sound or to make one voice sound like many. This effect is usually created by mixing one or more delayed versions of the signal with the original. The delay times used are too short to be perceived as an echo, but long enough so that comb filtering does not occur. In addition, the delay time is varied via a low frequency oscillator to simulate the random differences which occur when multiple instruments are playing together. A slight amount of feedback improves the effect by creating multiple images of the sound as it recirculates again and again. All the choruses are true stereo using two separate delay lines controlled by a single set of controls. The delay times are slightly different for each channel and the LFO phase is inverted on one channel to help contribute to the overall chorus effect. The LFO Rate and Depth settings are critical to achieving a realistic effect, with faster LFO rates generally requiring less LFO	
	amount and vice-versa.	
Doubling	When a copy of a sound delayed by about 26 milliseconds is added back to the original, two audio images are perceived by your brain. When the delayed image is slightly varied or modulated, the illusion of two voices is created.	
Slapback	Slapback is a single short echo in the range of 50-60 milliseconds. A sound delayed by this length of time is perceived as a discrete and separate image which is useful for a thickening effect or as a pre-delay for reverb simulating a hard, reflective surface such a gymnasium wall.	
Stereo Flanger	A flanger consists of a short audio delay line whose output is mixed together with the original signal. Mixing the delayed and original signals results in multiple frequency cancellations called a comb filter. Since the flanger is a type of filter, it works best with harmonically rich sounds.	
	$(p)_{(p)} (p)_{(p)} (p)_$	
	Flanging was originally created using two tape recorders playing identical	

Flanging was originally created using two tape recorders playing identical recordings. By exactly synchronizing the two decks and then slowing the speed of one by grasping the tape reel flanges, the flanging effect was born.

	The Proteus 2500 flanger is a stereo device consisting of two separate delay lines controlled by a single set of controls. A Low Frequency Oscillator (LFO) varies this initial delay setting, changing the frequency of the notches and adding animation to the sound. LFO Rate controls the rate of change and LFO Depth controls how much the LFO changes the delay.
	The Feedback control sends some of the delayed signal through the delay line again. When feedback is used the comb filter notches are deepened.
Delay	Delay is an effect which can be used for doubling, reverb pre-delay, or echoes.
	Delay Time is variable from 0-635 mS and controls the time between echoes. Feedback and determines how long the echoes continue sounding. "Infinite" delay effects are also possible without the risk of runaway.
Stereo Delay	Similar to delay except that the delay line outputs a stereo signal from the mono input. The two output signals are a few milliseconds apart to create a stereo image. The delay times are variable from 0-635 mS.
Panning Delay	A panning delay is similar to the normal delay lines except that the echoes bounce back and forth between the two stereo speakers.
Dual Tap	These are delay lines where the signal is "tapped off" at two unevenly spaced locations. When feedback is used, multiple complex echoes are produced. The fraction in some of the algorithm names (i.e. 1/3, 1/4) refers to the time ratio between the taps.
Vibrato	Basically, this a delay line modulated by an LFO, but with none of the original signal added in. The LFO modulation creates a Doppler shift and a resultant cyclical pitch shift. The vibrato created in this manner sounds very different than vibrato created by frequency modulating the sample.
Distortion	Distortion uses a technique called "soft-clipping" to create additional harmonics in the signal. As the level increases, the top of the waveform becomes somewhat squared. As the level increases further, it transforms into a true square wave.
	$\longrightarrow \text{Distortion} \rightarrow \bigcirc \bigcirc$
	Soft clipping gradually squares the edges of the waveform as the amplitude is increased.

Save/Copy Menu

	The Save/Copy button is used to save changes to a pattern, song, preset, copy data between presets, randomize presets and to move other types of data. The menu is context-sensitive and will start at the appropriate save screen. If multiple items need to be saved, then the screens have the following priority: pattern, song, preset. Use the data entry control to navigate to other pages that support copying information.
Save Pattern	Changes made to the current pattern are not made permanent until the pattern is saved. The upper right corner of the display shows the percent of memory available for saving patterns. When the display reads 0%, you are out of memory and will not be able to save until you have erased other data from the sequencer.
	When a pattern (or song) has been edited and needs to be saved, an asterisk (*) appears in the display. The asterisk and your edits remain on the edited pattern even if you change patterns. Edits are only erased by saving the pattern, editing another pattern, invoking the "Revert To Saved" feature (page 91), or turning the unit off.
	000 ⁰ Any Pattern Number
^	► To Save a Sequencer Pattern
<i>Examine interesting</i> presets to learn how they work	1. With the Mode/View selector in "pattern" mode, select the pattern you want to save.
using the Edit menu.	2. Press the Save/Copy menu button.
	 Move the cursor to the bottom line on the display and select a destination pattern location.
	4. Press Enter when you have made your selection. <i>The Enter LED is flashing indicating that Proteus 2500 is waiting for your response.</i>
	5. The Sequencer Pattern is now saved into the chosen location.

Saving a Preset

Each time you change a preset parameter, an asterisk appears in the preset name and the Save/Copy button LED illuminates reminding you to save your work. Any time you make a change to a preset, either using the Preset Edit menu or by changing the Controller Knobs in Quick Edit mode, you must save the preset in order for the change to become permanent. When you save a preset it erases any existing preset information in that location. Make sure that the destination location does not contain preset information you want to keep.

SAVE PRESET to 020¹ Destination Preset

User

► To Save a Preset

- 1. Press the **Save/Copy** menu button.
- 2. Move the cursor to the bottom line on the display.
- **3**. **Select** the new preset location using the data entry control.
- 4. Press the Home/Enter button.

Copying The Copy operations let you copy information from any preset or layer to any other preset or layer. To use the copy command, first select the preset or Information layer to which you want to copy (the destination location). Then, from the copy screen, select the preset or layer you want to copy to the currently selected location (the source location). Using the copy commands you can copy preset, layer, PatchCord and arpeggiator information. Copy Preset The Copy Preset command lets you copy all of the preset information from one location into the preset of the current location. The preset information in the source location (the preset location from which you want to copy) is not deleted from the original location, just copied to the destination location. ► To Copy a Preset All the Sound Navigator 1. Select the Preset you want to copy information *into*. features work when using the 2. Press the Save/Copy menu button. Copy functions. 3. Select "Copy Preset from" using the data entry control. 4. Select the preset you want to copy using the data entry control. The ROM Bank, Preset Number, Bank Number, Category and Preset Name fields are all selectable. 5. Press the Home/Enter button. 6. A warning appears asking you to confirm once more. Press the Home/ Enter button to copy the selected preset into the current location. Copy Layer The Copy Layer command lets you copy any layer information from one preset into any layer of the current preset location. The layer information in the source location (the layer location from which you want to copy) is not deleted from the original location, just copied to the destination location. L1 -> L4 COPY LAYER User 020¹ Source Preset To Copy a Layer 1. Select the Preset and Layer you want to copy information *into*. 2. Press the Save/Copy menu button. 3. Move the cursor to the bottom line on the display.

4. Select the preset location using the data entry control, of the preset containing the information you want to copy into the current preset.

- **5.** Move the cursor to the top line in the display.
- **6.** Select the layer of the source preset in the first field on the right.
- **7.** Select the destination layer in the second field.
- **8**. Press the **Home/Ent**er button.

Copy PatchCords

The Copy Patch Cord command lets you copy the PatchCord settings from one layer of the preset location into the current layer of the current preset location. The preset information in the source location (the preset location from which you want to copy) is not deleted from the original location, just copied to the destination location.

To Copy a PatchCord

- 1. Select the Preset and Layer you want to copy information *into*.
- 2. Press the Save/Copy menu button.
- **3.** Move the cursor to the bottom line on the display.
- **4. Select the preset location** using the data entry control, of the preset containing the information you want to copy into the current preset.
- **5**. Move the cursor to the top line in the display.
- **6.** Select the layer of the source preset in the first field on the right.
- **7**. Select the **destination layer** in the second field.
- 8. Press the Home/Enter button.

Copy Arpeggiator Pattern

This function lets you copy the Arpeggiator pattern from any ROM or RAM preset to any RAM (user) pattern.

► To Copy the Arpeggiator Pattern

- 1. Press the Save/Copy menu button.
- 2. Move the cursor to any of the fields on the bottom line on the display.
- **3.** Use the data entry control to **select the preset** you want to copy *from*.
- 4. Press Enter when you have made your selection.

Overwrite pattern: 00⁰ No Control

5. Press Enter. The Arp Pattern is copied into the selected User Pattern.

Copy Preset Bank

The Copy Preset Bank command lets you copy an entire bank from any ROM or RAM bank location to any RAM (user) bank. This function can be especially useful after installing a new sound SIMM.

To Copy a Preset Bank

- 1. Press the Save/Copy menu button.
- **2**. Move the cursor to the "**From**" field on the bottom line on the display.
- **3.** Use the data entry control to **select the preset bank** you want to copy *from*.
- 4. Move the cursor to the "To" field on the bottom line on the display.
- **5.** Use the data entry control to **select the User preset** bank you want to copy *into*.
- 6. Press the Home/Enter button to overwrite the bank.

Copy Sequencer Pattern

Save Song

This function lets you copy a sequencer pattern from any location into the current pattern location.

► To Copy the Sequencer Pattern

- 1. Press the **Save/Copy** menu button.
- **2.** Move the cursor to any of the fields on the bottom line on the display.
- **3.** Use the data entry control to select the **pattern** you want to copy *from*.
- 4. Press Enter when you have made your selection.

5. Press Enter. The pattern is copied into the current Pattern location.

Changes made to the current song are not made permanent until the song is saved.

When a song (or pattern) has been edited and needs to be saved, an asterisk (*) appears in the display. The asterisk and your edits remain on the edited song even if you change songs. Edits are only erased by saving the song, editing another song, invoking the "Revert To Saved" feature (page 112), or turning the unit off.

SAVE SONG to 004 :Blank

30%

To Save a Song

- 1. Press the Save/Copy menu button.
- **2**. Move the cursor to the bottom line of the display.
- **3.** Use the data entry control to select the new location for the song. The Enter LED will be flashing.
- **4.** Press Enter when you have made your selection. The display will momentarily flash "Saving Song", and the song will be saved.

Copy Song

This function lets you copy a song from any location into the current song location.

► To Copy the Song

- **1**. Press the **Save/Copy** menu button.
- **2.** Move the cursor to any of the fields on the bottom line on the display.
- **3.** Use the data entry control to select the song you want to copy *from*.
- 4. Press Enter when you have made your selection.

5. Press **Enter**. The song is copied into the current song location.

Sound Authoring

Copy User Bank to Flash

66

If there is no Flash SIMM in the unit, the error message, "Requires Flash SIMM" will be displayed. This is a special purpose function to be used with the Flash sound authoring feature. Flash Sound SIMMs created on an EOS Ultra sampler can be used as a custom Proteus 2500 bank. Presets are then created in a User bank. When the bank of presets is finished, it can be copied, using this function, to the Flash SIMM. Flash SIMMs contain two separate memory locations. One of these memories contains the sound samples and the other memory can hold four banks of 128 presets.

WARNING: dangerous voltages are exposed inside Proteus 2500! Make sure power is completely disconnected from Proteus 2500 before removing the top panel. Replace the top panel before restoring power to the unit. The two sound SIMM sockets in Proteus 2500, marked 0 and 1, are located behind the controller knobs on the circuit board.**The destination Flash** SIMM must be placed in SIMM socket 1.

► To Copy a User Bank to Flash

- 1. Make sure a Flash SIMM is inserted into the extra Proteus SIMM socket.
- 2. Press the Save/Copy menu button.
- **3.** Rotate the data entry control to select the "**Copy User Bank**" function shown above.
- **4.** Move the cursor to the **"From"** field and select the User bank that you want to copy to the Flash SIMM.
- **5.** Move the cursor to the **"To"** field and select the Flash bank that you want to contain the User bank.
- 6. Press Enter. The Enter LED will flash and the screen below appears.

Press ENTER to Overwrite Flash SIMM Presets

7. Press Enter again to confirm. The following screen appears:

COPYING USER BANK TO FLASH Done. Please Reboot Now.

8. The Flash presets cannot be used until Proteus 2500 is rebooted (power off then on). **Reboot** the Proteus 2500 and verify that the new Flash bank has been properly copied.

Rename Flash SIMM

The Flash ID is the MSB of the MIDI Bank Select command used to select the Sound Bank.

66

If there is no Flash SIMM in the unit, the error message, "Requires Flash SIMM" will be displayed. This utility allows you to rename the Flash SIMM and change its ID number. Flash SIMMs can have any five letter name you choose. Each Flash SIMM in a Proteus 2500 unit must have a unique ID number (106-119).

The field in the upper right corner selects between multiple Flash SIMMs. If only one Flash SIMM is installed, the field cannot be modified.

- **1.** Make sure a Flash SIMM is inserted in a Proteus 2500 SIMM socket.
- 2. Press the Save/Copy menu button.
- **3.** Rotate the data entry control to select the "Rename Flash SIMM" function shown above.
- **4.** Move the cursor to the "**New Name**" field and rename the SIMM using the data entry control to select the letter and the cursor keys to select the position.
- **5.** Set the Sound ID number for the SIMM. It doesn't matter which number you choose as long as the same number isn't used in another SIMM.
- **6.** Press **Enter**. The following screen appears and the Enter LED will be flashing.

Press ENTER to Update Flash SIMM data

7. Press **Enter** again to confirm or any other button to abort. The following screen appears:

CHANGING SIMM NAME & ID (takes about 2 minutes)

8. The Flash presets cannot be used until is rebooted (power off then on). **Reboot** the and verify that the new Flash bank has been properly renamed.

Duplicate Flash

This utility allows you to duplicate Flash SIMMs using. Both Sound and Preset data is copied when a Flash SIMM is duplicated. A factory sound SIMM cannot be copied using this utility.

WARNING: dangerous voltages are exposed inside! Make sure power is completely disconnected from before removing the top panel. Replace the top panel before restoring power to the unit.

The two sound SIMM sockets in are marked 0 and 1. These are located behind the controller knobs on the circuit board. The Flash SIMM you want to copy MUST be placed into SIMM Socket 0. The destination Flash SIMM must be placed in SIMM socket 1.

DUPLICATE SLOT O FLASH Start

- **1.** Make sure the two Flash SIMM are located in the required SIMM sockets.
- 2. Press the Save/Copy menu button.
- **3.** Rotate the data entry control to select the **"Duplicate Flash SIMM"** screen shown above.
- 4. Move the cursor to the bottom line and press Enter. The following screen appears and the Enter LED will be flashing.

Press ENTER to overwrite the Flash SIMM in Slot 1

5. Press **Enter** again to confirm or any other button to abort. The following screen appears and the SIMM is copied.

DUPLICATING SLOT 0 -> SLOT 1 (Takes about 5 minutes)

6. When has finished duplicating the SIMM, turn power off, remove the copied SIMM, then **reboot**. That's it!

If there are no Flash SIMMs in the unit, or if the SIMMs are in the wrong slots, an error message will be displayed.

Create Random Preset

Examine interesting presets to learn how they work using the Edit menu. This is a great feature which creates a new preset using portions of the ROM presets as source material. By merging random presets, really great sounding presets can be generated with ease. Use this feature to generate wild new sounds, get new programming ideas or just for fun.

RANDOMIZE PRESET 000⁰ Any User Preset

User

► To Create a Random Preset

- 1. Press the Save/Copy menu button.
- 2. Move the cursor to the bottom line on the display and press Enter.
- **3**. A new random preset will be created.
- 4. Don't like the sound? Press **Enter** again and a new random sound will be generated.

Preset Programming

	There is so much you can do with the Proteus 2500 it's impossible to describe it all. This chapter is will give you a few ideas for programming your own custom sounds and contains step-by-step instructions to help you get started. In order to get the most from this chapter, we recommend you actually try each example.	
Editing Presets	One of the easiest ways to make a new preset is to edit an existing preset. This is also an excellent way of becoming familiar with Proteus 2500. If you don't like what you hear, simply select a new preset, then Proteus 2500 reverts to the original sound. Changes are not permanent until you Save them (see "Saving a Preset" on page 264).	
	Let's experiment and modify a few parameters of an existing preset. We'll start with functions that have an obvious effect on the sound: Instrument Select, Tuning, and Chorus.	
Changing the Instrument	Changing the instrument is the easiest and most dramatic way to modify an existing preset.	
The Preset Edit Jump Buttons are located in the "Command Functions" section of the front panel.	 To Change the Instrument for the Current Layer 1. Choose any cool preset, then press the Preset Edit button. 2. Press the #1 Jump button twice to jump directly to the Instrument page. See "Preset Menu Jump Keys" on page 41. 	
	 L¹ INSTRUMENT ROM:2500 0195 gtr: Jazz Riff 1 3. Move the cursor down to the bottom line (using a Cursor button). 4. Use the data entry control to change the instrument. This changes the 	
	instrument for the current laver (in this case it's L1).	

5. Play the keyboard as you scroll through the various instruments.

► To Change the Instrument for any Layer in the Preset

- 6. Move the **cursor** back up to the first field in the first line (the layer).
- 7. Use the data entry control to select the layer you want.

8. Repeat steps 3 and 4 for each selected layer. Find an instrument that sounds good when combined with the previous instruments selected.

With all these great instruments to work with, you really can't go wrong. Now let's play with the tuning.

Tuning the selected layer of the preset changes the pitch of the key on the controller. If the numbers are "00," it means that the instruments are tuned to concert pitch (A=440 Hz). The Coarse tuning value represents whole semitone intervals. The Fine tuning value shifts the pitch in 1/64 semitones (or 1.56 cents).

► To Tune the Instrument of the Current Layer

1. Press the **#3 Jump button** twice to jump directly to **Tuning** page.

- 2. Move the cursor to the Coarse field (using the cursor button).
- **3.** Set the value to +12 to shift the pitch up a whole octave. To shift the pitch in smaller units than a semitone, use the Fine field.

Try tuning one of the instruments to a perfect fifth above the other by setting the Coarse value to +7.

Tuning an instrument far out of its normal range completely changes the character of the sound. For example, if you tune a bass guitar up 2 octaves, it's going to sound rather petite. On the other hand, if you tune it down 2 octaves, you can probably rattle plaster off the walls! Experiment with radical pitch shifting. You'll be surprised at the results.

Changing the Tuning of an Instrument
Chorus

This is an easy one. Chorus works by doubling the instruments and detuning them slightly. The larger the chorus value, the more detuning occurs. The Width parameter controls the stereo spread. A Width value of 0% reduces the chorus to mono, a value of 100% provides the most stereo separation. Chorus is useful when you want to "fatten up" a part quickly and easily.

66

WARNING: Since it works by doubling the instruments, Chorusing halves the number of notes you can play on Proteus 2500.

Volume Envelope

To Chorus a Layer

- 1. Press the **#5 Jump button** to jump directly to the Chorus page.
- 2. Use the **cursor buttons** to advance the cursor to the Chorus field (the first field in the bottom line of the display). Use the **data entry control** to turn on chorus.

3. Select a Width value based on the amount of detuning you want. Smaller numbers mean less detuning, larger ones more.

You can select various amounts of chorusing for each of the instruments, just play around with the Chorus and Width parameter until you like what you hear.

Every sound you hear, whether it's a piano note, a drum, or a bell, has a characteristic volume curve or envelope. This Volume Envelope shapes the volume of the sound which grows louder or softer in various ways during the course of the sound. The volume envelope of a sound is one of the clues our brain uses to determine what type of sound is being produced.

An envelope shapes the sound or volume of the sound over time. The envelope generators in Proteus 2500 all have six stages to the contour: Attack 1, Attack 2, Decay 1, Decay 2, Release 1 and Release 2. When you press a key on the keyboard, the envelope goes through each of the first four stages, advancing to the next stage when the defined Level for each is reached. As long as you continue to hold the key down, the envelope continues through the first four stages holding at the end of the Decay 2 level until the key is released. When you release the key, the envelope jumps to the Release stages (no matter where the envelope is when you release the key) ending at the Release 2 level.

Organ

Strings

Percussion

Front panel knobs 5-8 are routed to the volume envelope parameters and thus affect the settings. You may want to disconnect the PatchCords to gain total control of the envelope parameters. (Alternately, you can create a completely blank preset and start from there.)

Every instrument in Proteus 2500 has it's own predetermined volume envelope which is used when the Volume Envelope parameter is set to "factory." By setting the Volume Envelope to "time-based" or "tempobased," we can reshape the instrument's natural volume envelope any way we want. By reshaping the volume envelope of a instrument, you can dramatically change the way the sound is perceived. For example, you can make "bowed" pianos or backward gongs. The diagrams to the left show the characteristic volume envelopes of a few common sounds.

In preparation for this experiment choose almost any of the standard organ presets which continues to sustain when the key is held down. Go to the Instrument page and set it to "None" on all layers except Layer 1. Now you're ready to play with the Volume Envelope.

► To Setup the Volume Envelope

1. Go to the **Volume Envelope** mode screen, by pressing the "Amp" jump button, and set the Volume Envelope mode to "time-based."

^{L1} VOLUME ENVELOPE

Mode: <u>t</u>ime-based

2. Now move on to the next screen to set the Volume Envelope parameters.

3. Increase the Attack 1 time value and play a note. The attack controls the time it takes for the sound to reach the Attack level when a key is pressed and held.

- **4.** Move the cursor to the first field in the bottom line and use the cursor buttons to advance to the Release pages.
- **5.** Increase the Release 1 and 2 times. Note the effect as you release the key on the controller. The Release stages controls the time it takes for the sound to die away when a note is released.

To Setup the Volume Envelope as an ADSR

The classic synthesizer ADSR (Attack-Decay-Sustain-Release) envelope is easy to create using the Proteus 2500 six segment envelope generators. The trick is to only use segments: Attack1, Decay2, and Release1.

- 1. Set Atk1, Atk2 & Dcy1 levels to 100.
- **2**. Set Rls1 & Rls2 levels to 0.
- **3.** Set Atk2, Dcy1 and Rls2 rates to 0.
- **4.** Program the Atk1, Dcy2 and Rls1 segments as you wish. Decay 2 level is your Sustain level.

Working with Filters

The filters make it possible to remove certain components of the sound. A low pass filter removes the high frequency components or put another way, it "lets the low frequencies pass." A high-pass filter removes the low frequency components from the sound letting only the high frequencies pass. See "Proteus 2500 Filter Types" on page 196 for a complete list of Proteus 2500's filters and their descriptions.

In preparation for the next tutorial, select the Blank Preset. (Select the Preset Category and spin the data entry control all the way to the left).

- Go to the Instrument screen (Preset Edit menu) and select Instrument #. This is a harmonically rich sound. Since filters work by removing or accentuating certain frequencies, we want to make sure that we have a lot of frequencies to start with.
- **1.** Advance to the Filter Type screen using the data entry control. Select the Classic 4th order filter.

Front panel knobs 1-2 are routed to the filter parameters and will affect the initial settings made here. You may want to disconnect the PatchCords to gain total control over the filter parameters.

2. Go to the Filter Frequency and Q screen. Position the cursor in the Freq: field as shown in the following illustration.

The Frequency parameter determines the filter cutoff frequency or the frequency the filter uses as the highest frequency allowed to pass.

If you play the keyboard now, you should hear the raw sound. Slowly decrease the filter cutoff frequency value as you play the keyboard. The sound gets more and more dull as you remove more and more high frequencies from the sound. At some point, the sound completely disappears. (You have filtered out everything.) The chart on the following page illustrates what you just did.

- **3.** Open the filter back up to 255, then move the cursor to the Q field.
- **4.** Set the Q to 10, then move the cursor back under the Freq value. As you change the frequency, notice that the sound now has a sharp, nasal quality. A high Q boosts or amplifies the frequencies at the cutoff frequency (Fc).
- **5**. Reset the cutoff frequency to the lowest setting and the Q to 00.

Adding the Filter Envelope

Now let's modulate the Filter Frequency with the Filter Envelope. The Filter Envelope is a device that can automatically change the filter frequency during the course of the note. Before we define the Filter Envelope, we need to patch the Filter Envelope to the Filter Frequency.

To Setup the Filter Envelope

1. Go to the PatchCord screen by pressing the Cords Jump Key.

- 2. Move the **cursor** below the first field in the bottom line of the display. This is the **Source** field. Use the **data entry control** to change the Source to "FiltEnv" as shown in the following illustration.
- **3.** Advance the **cursor** to the next field. This is the **Destination** field. Use the data entry control to change the destination to "FiltFreq."
- **4.** Move the **cursor** to the last field in the line. This is the **Amount** field. The Amount field determines the amount of modulation applied. Set this value to "+100."

This setup connects the Filter Envelope Generator to the Filter Cutoff as shown in the following diagram.

5. Now, return to the **Filter Envelope Mode** screen. Set the Mode to "time-based."

^{L1} FILTER ENVELOPE <u>M</u>ode: time-based

6. Advance to the Filter Envelope parameter page.

7. Move the cursor underneath the **time field** and change the value to about +50. Now when you press a key the filter slowly sweeps up.

- **8**. Change the **attack rate** and note the change in the sound.
- **9**. Set the envelope parameters as shown in the following table.

Envelope Phase	Time	Level %
Attack 1	40	65
Attack 2	65	100
Decay 1	80	85
Decay 2	25	50
Release 1	97	20
Release 2	73	0

With the above setup, the filter sweeps up, then Decays back down to the Decay 2 Level until you release the key. Then it sweeps down at the Release rates. Play with the envelope parameters for awhile to get a feel for their function. (If you're having trouble understanding the Envelope Generators, please refer to the Programming Basics section in this manual.)

Changing Filter Types

Go back to the Filter Type screen shown below and move the cursor down the lower line of the display. Change the filter type while playing the keyboard. There are 50 different filter types.

These filters are extremely powerful and have been carefully crafted to offer maximum flexibility and musical control. You may want to change the Envelope (PatchCord) Amount, Q and/or the Filter Frequency to get the right sound for each filter and instrument. These three controls, coupled with the Filter Envelope, are perhaps the most important controls on any synthesizer. Take the time to learn how they interact with each other and you will be able to create sounds beyond imagination.

Envelope Repeat

The Envelope Generator can also be made to repeat. When the envelope repeat function is On, the Attack (1&2) and Decay (1&2) stages will continue to repeat as long as the key is held.

► To Make the Filter Envelope Repeat:

- 1. Go to the Filter Envelope Mode screen shown below.
- **2**. Move the **cursor** to the Mode field.

3. Turn the **data entry control** clockwise. The Mode field will change to Repeat as shown below.

^{L1} FILTER ENVELOPE

Repeat: on

- 4. Move the cursor to the on/off field and turn Envelope Repeat On.
- **5. Play a key** on the keyboard. You should now hear the envelope repeating.

	6. Go back to the envelope parameter page and adjust the Attack 1&2 , and Decay 1&2 parameters. The repeating envelope cycles through these four stages as long as the key is held.
Practice Modulating	 Try modulating the pitch with the Filter Envelope generator. Use Velocity to modulate the Filter Envelope PatchCord or the Filter Frequency. This brightens the sound as you play harder. Program the LFO to modulate Filter Frequency and Volume (PatchCord screen). Modulate the LFO with the other LFO, with Velocity, and with the Touchstrip or Pitch Wheel. Examine the Factory presets to learn how they're constructed. There are lots of cool synthesis tricks you can use in your own presets. We've programmed the front panel knobs our way, but since they're completely programmable there's no reason why you can't create your own custom controls. Think of ten exotic modulation routings, then try them out. Experimentation is the key to learning how to control Proteus 2500.

TroubleshootingA common source of confusion when working with the filter envelope is
that the Attack or Release parameters might not seem to be working
correctly. If you are not getting the expected result, try to analyze the
situation. There will be many times when you will have to stop for a
minute and think, "What am I trying to do and why isn't it working?"
When this happens (and it will), don't panic. Troubleshooting is a normal
part of the synthesis process. Simply examine the various parameters and
try to be as analytical as possible as you solve the problem. The solution is
usually simple. ("The filter is already wide open and can't open any more."
or "Another PatchCord is connecting something to the parameter and
affecting it.") Learning to play any instrument takes a little patience and
practice.

Referring to the diagram below which shows the Proteus 2500 signal flow, notice that the DCA comes after the Filter. The DCA controls the final volume of the sound, so if the filter's release is longer than the release for the DCA, you won't hear it, because the DCA has already shut off the sound.

You're getting the general idea by now. Remember not to select a new preset before saving the current one or all your changes will be lost (the preset reverts to the last saved version). If you want to save your creation, select the Save/Copy menu and select a destination preset location for your masterpiece, then press Enter.

Because you can save your work, it's worth spending time to get the sound just right. When designing sounds you become an instrument builder as well as a musician. With Proteus 2500 you can design the custom radical instruments you've always wanted!

Linking Presets

Using the Link pages in the Edit menu is a quick and easy way to create new sounds. Use the Links to "layer" presets and to "split" a keyboard into sections containing different sounds.

► To Layer Two Presets

- 1. Select the first preset you want to layer.
- 2. Press the **Preset Edit** button.
- **3**. Go to the **Link** screen by pressing the **Links** Jump Key.

- **4.** Move the cursor to the second line of the display. Select the preset you want to link with the preset you selected in step 1. Play the keyboard as you scroll through the various presets to hear the results.
- **5.** If you want the link to be a permanent part of the preset, be sure to save the preset. Otherwise, simply change the preset to erase your work.

► To Create a Split Keyboard Using Links

- **1**. Follow steps 1 through 4 above.
- 2. Press Enter and use the Jump Key to advance to the next page.

- **3**. Set the keyboard range of the linked preset as desired.
- **4.** Press **Enter** and use the **data entry control** to go to the Key Range page using the **Ranges** jump key.

5. Set the range of the original preset so it fills the remaining keyboard area. **Save the preset.**

See "Preset Links" on page 218 for more information.

Appendix

This section provides some of the more technical information about Proteus 2500.

In this appendix, you will find information about velocity curves, MIDI commands and PatchCord charts.

The front panel knob functions are standardized for most of the factory presets. The typical functions of the controller knobs are described below. Match the controller knobs on an external MIDI controller to the Realtime Controller Assignments in the MIDI menu if you want to externally control these functions.

Front Panel Knob Functions

Knob Controller Descriptions

The Front Panel Knobs can be reprogrammed for each preset and stored in any of the User Presets. The functions shown here are the factory programmed settings.

Presets

Proteus 2500 Preset Categories

Filter QFilter ResonanceFilter AttackFilter Envelope Attack RateFilter DecayFilter Envelope Decay and Release RateAmp AttackVolume Envelope Attack RateAmp DecayVolume Envelope Decay RateAmp SustainVolume Envelope Sustain LevelAmp ReleaseVolume Envelope Release RateVelocity -> AmpKey Velocity to VolumeVelocity -> FilterKey Velocity to Filter FrequencyLFO 2 AmountLFO 2 AmountLFO 2 RateLFO 2 FrequencyMod 1Alternate Modulation Parameter 1Mod 2Scales the Velocity values of arpeggiated notesArp GateVaries the arpeggiator Gate Time

Filter Cutoff Filter Frequency

The Proteus 2500 presets are organized in categories according to the types of sound. Listed below are the categories and their three letter prefixes:

arp: Arpeggiated	air: Wind noise instrument
bas: Basses	bel: Bells
bpm: Synchro-sonic, clocks	bts: BEATS presets
edg: Edgy, cutting	gtr: Guitar
hit: Shorter	key: Keyboard instrument, organ
kit: Drum kit	led: Leads
pad: Sustained, pad-like	nse: Noises
raw: Playable, vanilla	prc: Percussion
syn: Complex, harmonically rich	sfx: Sound Effects
wal: Dense, harmonically complex	vox: Vocals

84. bas:InYourFace!

Preset Listing

User Bank 0, Proteus 2500 Bank 0

0. arp:Guitartar**1.** kit:D&B Tight

2. str:Golden

5. bts:Foggy

3. bas:Sustainer

4. gtr:Clean String

6. led:UnderTone

8. brs:Section 8

10. vox:Christmas

prc:Q Stick
 bpm:Trekia

7. key:Piano Grand

9. syn:ThikPlsLayer

11. hit:RingaDinDing

12. wnd:Reeds&String

15. pad:Japan Town

16. sfx:At the Races

17. bas:Sub Blipper

19. key:Late Night

20. key:GlassPiano

21. k*y:Piano Mio

24. k*y:Grande

27. key:EP 1

28. key:EP 2

29. key:EP 3

30. key:EP 4

31. key:EP 5

32. key:EP 6

33. key:Wurly

34. key:Wurly Tramp

35. key:ClavStandard

36. key:Process?Clav

37. k*y:Elecro7CP80

39. key:1-900Rhodez

40. key:Haunted EP

41. key:TwinkleToes

38. key:Fuzzy Pad

22. key:StereoGrand1

23. key:StereoGrand2

25. key:Piano/String

26. key:Piano Pad

18. key:DownTheRhodz

- 42. key:Missy
- **43.** k*y:Techno Piano
- **44.** k*y:HonkTonkeyz
- 45. key:Eno's Piano
 - **46.** key:FM JazzSplit
 - 47. key:Bass/Keys1
 - **48.** key:PianoString2
 - **49.** key:Piano/Synth
 - **50.** key:Piano/Str/EP
 - **51.** key:Piano/Analog**52.** key:Comp n' Pad
- **53.** key:Stage Piano
- 54. key:Pno/Str/EP2
- **55.** key:B-3 3rd
- 56. key:B-3 2nd
- 57. key:B-3 Lo/Hi
- 58. key:B-X Fade 1
- 59. key:B-X Fade 2
- 60. key:B-3 Leakage
- 61. key:Distortion
- 62. key:B-Hive
- 63. key:Assasin
- 64. key:Munchkin B3
- 65. key:AutoChord
- **66.** key:(B3- PI)/7
- 67. key:Pno/Str/EP3
- **68.** key:Space Case
- **69.** key:Clav Metal
- **70.** key:Clav 2
- **71.** key:Sweet Ballad
- **72.** bas:ATC 3*
- 73. bas:Sub 1
- 74. bas:Sub 2
- **75.** bas:Sub 3
- **76.** bas:Big DX
- **77.** bas:Perco Plus
- 78. bas:Micro Moog
- **79.** bas:Basic Moog
- 80. bas:Log Bass
- 81. bas:PopGrowler
- 82. bas:ChubbyChaser
- 83. bas:Jaguar Bass

85. bas:Modem 86. bas:Nerdo 87. bas:Synth Bass 88. bas:PlasticBass 89. bas:Taurus 90. bas:Less Than 91. bas:FingerSlap1 92. bas:FingerSlap2 93. bas:Slap 1 94. bas:Slap 2 95. bas:Over Picked 96. bas:Finger 1 97. bas:Finger 2 98. bas:SE 99. bas:Street 100. bas:Finger Snap 101. bas:Bang'in Up 102. bas:Basss ic 103. bas:Acoustic 104. bas:Upright 1 105. bas:Upright 2 106. bas:Switch Up 107. bas:Harms 108. bas:Fretless 1 109. bas:Fretless 2 **110.** bas:Fretless 3 111. bas:Fretless 4 112. bas:Fretless 5 113. bas:Fretless 6 114. bas:LookMaNoFret 115. bas:Driver 116. led:TooMuchLead 117. led:Bender 118. led:SquareChorus 119. led:Balls Out 120. led:Spiraling 121. led:Prophetic 122. led:OneBigMoFo! 123. led:Class Lead 124. led:Pulse Lead **125.** led:Worm 5 126. led:EKKo

127. led:Tutor

Preset Listing

User Bank 1, Proteus 2500 Bank 1

0.	kit:Acoustic 1&2	42.	bts:Ripped	84.	prc:Tams 1
1.	kit:Acoustic 3&4	43.	bts:Detourant	85.	prc:Tams 2
2.	kit:Dance	44.	bts:MAD Onna	86.	prc:Claps 1
3.	kit:Kit 01	45.	bts:Bleak	87.	prc:Claps 2
4.	kit:Kit 02	46.	bts:Magnetic	88.	prc:Snaps
5.	kit:Kit 03	47.	bts:Stringy	89.	prc:Claves
6.	kit:Kit 04	48.	bts:CuzIWuzStond	90.	prc:Orch
7.	kit:Kit 05	49.	bts:Electro	91.	prc:Misc
8	kit·Kit 06	50.	bts:Jungle*Club	92.	prc:Misc Perc 1
a.	kit·Kit 07	51.	bts:Moderno	93.	prc:Misc Perc 2
J. 10	kit-Kit 08	52.	bts:Nu Metal	94.	prc:Vibraslap
10.	kit:Kit 00	53.	bts:Outside	95.	prc:Guiro Roll
11. 12	kit:Kit 10	54.	bts:Rubbish	96.	prc:Cowbells
12	kit-Kit 11	55.	bts:Smasher	97.	prc:Agogos
1/1	kit.Kit 12	56.	bts:BigPimpin!	98.	prc:Carillon
15	kit:Kit 12	57.	bts:ChunkyButt	99.	prc:Belltree
16	kit:Kit 14	58.	bts:PhatterStill	100.	prc:Flexi
17	kit:Kit 15	59.	bts:Lowness	101.	prc:Soft Vibes
18	kit:Kit 16	60.	bts:FreakShifter	102.	prc:Hard Vibes
19	kit:Swing Hon 1	61.	bts:Maestro	103.	prc:Both Vibes
20	kit:Swing Hop 2	62.	syn:Unsuspecting	104.	prc:VibeSwap
21	kit:Swing Hop 2	63.	kit:KastOff	105.	prc:Xylo
22	kit:GM Dance	64.	prc:Kicks 1	106.	prc:Marimba
23	kit:F-mu 2003	65.	prc:Kicks 2	107.	prc:Plevy
24	kit:FunDaMental	66.	prc:Snares 1	109.	prc:KikKastr
25	kit:Booster	67.	prc:Snares 2	110.	prc:XcitSyn
26	kit:All Niter	68.	prc:Hats 1	111.	prc:Xcite
27.	kit:StadiumRockr	69.	prc:Hats 2	112.	prc:MetalThing
28	kit:Hard Ass	70.	prc:Cymbals 1	113.	prc:I lands
29.	kit:CurrentBeatz	71.	prc:Cymbals 2	114.	prc:Squelch!
30.	kit:Crackle Kit	72.	prc:Toms 1	115.	str:Big Layerz
31.	. kit:Tainted	73.	prc:Toms 2	116.	prc:Vibe Split
32.	. kit:BarelyLegal	74.	prc:Shakers	117.	bel:A Pale Horse
33.	. kit:SicK Fx	75.	prc:Maracas	118.	bel:Chimes
34.	. kit:Krunkee	76.	prc:Timbales 1	119.	bel:Dropiets
35.	kit:Streetwise	77.	prc:Timbales 2	120.	bel:Plilikerbells
36.	bts:RasclvRapper	78.	prc:Congas + 1	121.	bel·HauntedBells
37	. bts:WhatNow!#\$%?	79.	prc:Congas + 2	123	bel:Metal Trin
38	. bts:RaD RaceR	80.	prc:Bells 1	124.	key:Foot Kevz
39.	bts:FilterPhaser	81.	prc:Bells 2	125.	key:NightOrgan
40.	bts:BiteZapper	82.	prc:Blocks 1	126.	key:Dyno Grand
41.	bts:Inna City	83.	prc:Blocks 2	127.	key:Tines
	2				

Preset Listing

User Bank 2, Proteus 2500 Bank 2

0. led:Wormy**1.** led:Warning!

5. hit:Voxxy

6. hit:Garagiste*

7. hit:HellaBoom

9. hit:Cazio Jamin!

10. hit:EchoOrgan

11. hit:Get Funky!

8. hit:Honker

2. led:Warm Worm

3. hit:Organ Hits 1

4. hit:Dance Chord

- **42.** str:Pizz 2
- **43.** str:Tron Strings
- **44.** str:Quartet
 - 45. str:Section/Qrt46. str:Leg/Pizz Cmb
 - **40.** Stilleg/1122 Cliff
 - **47.** str:Legato/Pizz
 - **48.** str:RubbrStrngs
 - **49.** str:ProcessoTron
 - 50. str:DramaQueen
 - **51.** str:FilmLayerz
 - **52.** str:WeirdStrngs
 - 53. str:Digital
 - 54. str:Neo Strings
 - 55. str:Asia Layers
 - 56. str:Solo Strings
 - 57. str:Solo & Sect
 - 58. str:Trio Solo
 - 59. str:FluteTron
 - 60. str:String Pad
 - 61. str:UltraTron
 - 62. cmb:String/Brs w
 - 63. cmb:Brass/Tenor
 - 64. cmb:Analog 1
 - **65.** cmb:Nylon/Str w
 - 66. cmb:Analog 2
 - 67. cmb:Fear Day
 - **68.** cmb:SoloStr & EP
 - 69. cmb:Cool 5th
 - **70.** cmb:Strung Block
 - 71. orc:SoloStr&Wind
 - 72. orc:S.Sax&Winds
 - 73. led:ManyASquare
 - 74. brs:SforzandoSct
 - **75.** brs:TaDa!
 - 76. brs:Trumpet
 - **77.** brs:Mute Trmpt
 - **78.** brs:Glide Bone

 - **79.** brs:Big Band
 - 80. brs:Jazz Combo
 - **81.** brs:Brass Hits 1
 - **82.** brs:Brass Hits 2
 - 83. brs:The Trumpet

- 84. brs:3 Bones
- 85. brs:2 Trumpets
- 86. brs:Trump&Bones1
- **87.** brs:Trump&Bones2
- 88. brs:Matrix Horn
- **89.** brs:Pseudo Brass
- **90.** wnd:Tenor Sax
- 91. wnd:Oboe
- 92. wnd:Clarinet
- 93. wnd:FluteCake
- 94. wnd:BariSax
- 95. wnd:Squeel 1
- **96.** wnd:Squeel 2
- 97. wnd:AltoSax
- 98. wnd:TenorSax
- **99.** wnd:Synth Flute
- 100. wnd:Flute & Oboe
- 101. wnd:Saxophones
- 102. wnd:New Ager
- 103. wnd:Clarinuff
- 104. gtr:Singlecoil
- **105.** gtr:Nylon
- **106.** gtr:Electric Pwr
- 107. gtr:Solo Jazz
- 108. gtr:Trash
- 109. gtr:Thrash Lead
- **110.** gtr:Surf 1 w
- **111.** gtr:Surf 2 w
- 112. gtr:Chord Chuck
- **113.** gtr:Mo'Mutes
- 114. gtr:Jazz Slide w
- 115. gtr:SlamitDown
- 116. gtr:Acoustic
- 117. gtr:Jazz
- 118. gtr:Nylon
- 119. gtr:Steel
- 120. gtr:Ghosted
- 121. gtr:Seduced
- 122. gtr:Cordal
- 123. gtr:Nylon&on
- 124. gtr:Hard Garage
- **125.** gtr:Jazzy Comp
- 126. gtr:Enchantment
- 127. gtr:Nylonium

- 12. hit:Sad Ending13. hit:Vox Hits
- **14.** hit:Brassist
- 14. IIIt.DIassist
- 15. hit:Lush Dance
- 16. bas:PWM Oldskool
- **17.** bas:Octave Cat
- **18.** led:FusionMini
- 19. led:HippoSauce20. vox:REBman

21. vox:Aah 1

22. vox:Aah 2

23. vox:Ooh 1

24. vox:Ooh 2

25. vox:Filter 1

26. vox:Filter 2

27. vox:Filter 3

28. vox:Filter 4

29. vox:Big Chorus

30. vox:Talk to Me

31. vox:Harmony

34. vox:ReflecSyn

36. vox:TV Land

37. str:Orchestra1

38. str:Orchestra2

39. str:Section1

40. str:Section2

41. str:Pizz 1

33. vox:Shimmerings

35. vox:Luna'sWood

32. vox:Male

Preset Listing

User Bank 3, Proteus 2500 Bank 3

- 0. pad:Richness
- 1. pad:Your Fault
- 2. pad:PianoMeltz
- 3. pad:OutofTime
- 4. pad:Moon Flute
- 5. pad:OldSaws
- 6. pad:Evidence
- 7. pad:EvenMoEPIC!
- 8. pad:Under
- 9. pad:Life
- 10. pad:Phatt
- 11. pad:Keyngdom
- **12.** pad:Dance Chord
- 13. pad:Brassage
- 14. pad:Crystal
- 15. pad:Elysium
- 16. pad:CloudBuster
- 17. pad:Star Seeker
- 18. pad:Trilogy
- 19. pad:Squirmy
- 20. pad:Paddy Cake
- 21. pad:Vector
- 22. pad:Velour
- 23. pad:Jarreing
- 24. pad:PWMpathy
- 25. arp:Azian
- 26. vox:Percolator
- 27. hit:HouseStrum
- 28. hit:Disco Stab
- **29.** gtr:Mute Trails
- **30.** gtr:Mute 5ths
- **31.** syn:Re Entry
- **32.** syn:Dance Split
- **33.** syn:Pluck Pad
- **34.** syn:Profit 500
- **35.** syn:ClassicMoog
- **36.** syn:Synth Bass
- **37.** syn:Sync
- **38.** syn:Saw Fifths
- **39.** syn:VFX Stack
- **40.** syn:Big Dance
- **41.** syn:Riff Trip

- 42. syn:Brazz 5ths43. syn:VS44. syn:Goliath
- 45. syn:Xtra Large
- 46. syn:Major Saw
- 47. syn:Minor Saw
- 48. syn:JP Six
- **49.** syn:Row Tate
- 50. syn:Rezelle
- **51.** syn:SlowRide
- 52. syn:LFO Synth
- 53. syn:FrogLead
- 54. syn:Ubu II
- **55.** syn:Serial Fly
- **56.** syn:Matrix Pad
- **57.** syn:CZone
- 58. syn:Benda
- **59.** syn:Asian Dreams
- **60.** syn:Big Comp
- **61.** syn:Chipper
- **UI**. Syntempper
- 62. syn:RubberBands
- **63.** syn:PeachyFuzz
- 64. sfx:Porch*Night
- **65.** sfx:SFX 1
- **66.** sfx:SFX 2
- 67. sfx:Scratches 1
- **68.** sfx:Scratches 2
- **69.** sfx:MCScratch
- **70.** sfx:Space Wiggle
- 71. sfx:HeavySynth
- 72. sfx:Slicer
- 73. sfx:Cymbolater
- 74. sfx:Post Razz
- 75. sfx:Goblins
- **76.** arp:Vectrek
- 77. sfx:8BitGameOver
- 78. nse:WinditDown
- 79. nse:SpaceDreams
- **80.** arp:Synth Bass
- **81.** arp:Syrup HP
- 82. arp:LowPercRoll
- **83.** arp:MadEndingYo

84. arp:Plucked 5ths 85. led:DX Gone Mini 86. led:Lego 87. bpm:PWM Voxation 88. bpm:Classic 89. bpm:Drum 1 90. bpm:Drum 2 **91.** bpm:Drum 3 92. bpm:Octover 93. bpm:Chaser 94. gtr:Nyl ONDa 95. bas:Killer SE 96. bas:Fing'd 97. bas:Finger Oxx 98. bas:Hangem Mono 99. bas:Hiptainer **100.** bas:Container 101. bas:Go Deep 102. bas:Drop Sub 2 **103.** bas:Drop Sub 3 104. bas:Low Rider 105. bas:PopSlidah 106. bas:Real Low 107. bas:Sub H2O **108.** bas:Subber 1 109. bas:Subber 2 110. bas:Wheel Wide **111.** bas:Pepper Bass **112.** key:Simple EP 113. key:Tine EP 1 key:Tine EP 2 114. **115.** key:Tine EP 3 116. key:Pianostic 117. key:Spread Grand 118. key:Chorus Dyno 119. key:Piano & Pizz 120. key:Dramatic 121. key:Drama At Sea 122. key:Polarity 123. key:Piano Night 124. syn:Pliedes 125. syn:Sensitive **126.** syn:SoftClipHarp

127. default V1.0

Proteus 2500 Pattern Layout

The Proteus 2500 factory patterns range from 4-16 bars long using 8 to 16 tracks each. Use the Track Enable/Mute buttons to bring parts in and out.All instrument tracks are in the key of C.

Pattern Track List

	MAIN PARIS
Track 1 / Channel 1	Lead
Track 2 / Channel 2	Comp
Track 3 / Channel 3	Vox
Track 4 / Channel 4	Misc or Hit/Vox 2
Track 5 / Channel 5	Misc or Comp 2
Track 6 / Channel 6	Misc or Lead 2
Track 7 / Channel 7	Misc or Bass 2
Track 8 / Channel 8	Bass
	MAIN GROOVE
Track 9 / Channel 9	Kick Pattern 1
Track 10 / Channel 10	Snare Pattern 1
Track 11 / Channel 11	Hat Pattern 1
Track 12 / Channel 12	Percussion 1 or Fill 1
	ALTERNATE GROOVE
Track 13 / Channel 13	Kick Pattern 2
Track 14 / Channel 14	Snare Pattern 2
Track 15 / Channel 16	Hat Pattern 2
Track 16 / Channel 16	Percussion 2 or Fill 2

Pattern Listing

- The number after the pttern name is the tempo beats per minute.
- **0.** Ven A Mi 108
- 1. Smoover 179
- 2. Healing 120
- **3.** Bangin 112
- 4. Jazz Surprise 150
- 5. YouDaMan 107
- 6. Heartland 121
- **7.** LEBLEUZ 170
- **8.** Getcha DanceOn 120
- **9.** Big Band A&B 103
- **10.** Visual E 120
- **11.** NARANJA 102
- **12.** PearlDiver 120
- **13.** Chainless 152
- 14. Django&John 114
- **15.** Jig 110
- **16.** The Chase 140
- **17.** Puff Tuff 108
- **18.** Sporadic 182
- **19.** Wack Batch 100
- 20. AL@Nite 70

- **21.** Dbl Time 80
- 22. Funkensteen 86
- **23.** J-Star 88
- **24.** Station 17 91
- **25.** Screwface 91
- **26.** You and I 91
- **27.** Baby's Fsace 92
- 28. Fastbuk Blues 95
- **29.** Diddy Bop 95
- **30.** Hangtime 95
- **31.** AutumnFalling 96
- 32. RiskyBizness 96
- **33.** Hayride 97
- 34. Juumba 98
- 35. Dat's Right 100
- **36.** Dramatic A 100
- **37.** Dramatic B 100
- **38.** LowRider 100
- **39.** ColdCut 100
- **40.** SE Jive 100
- **41.** Tower 100

42. Hip Fela 101 43. StarSeeker 104 **44.** Swingin 104 45. Latina 105 46. Like Butta 06 47. WorldBeat 108 48. Blunt 110 49. BEATNIX 112 50. HighDesert 112 51. Wangadang 114 **52.** Hard Times 115 53. Less Than 119 54. Mi Amor 120 55. PimpDaddy 120 56. SpanishFly 120 57. Make it Stop 120 58. According 128 59. Bailar 132 60. In the Mix 134 **61.** SpeedJam 170

62. Big Band 2270

Song Listing

1. Jukebox 0-11

- 2. Visualyz\$
- 3. Fadin Lights
- 4. Glad Band
- 5. Chase

- 6. Heritage
- 7. CommunitasGratis
- 8. Bop Arise
- 9. Eringobraugh
- 10. Infernal Disco

Lucky2knyT
 Fallen Autumn
 Muchas Gracias
 Visualyz\$ ReMix
 Jukebox 0-11 FX
 All Patterns

86. CMB-Shamitone

87.

88.

90.

91.

92.

94.

95

96.

97.

98.

99.

100

101.

102.

103.

104.

105.

106.

107.

108.

109.

111.

112.

113.

114. 115.

116.

117.

118.

122.

123.

125.

126.

127.

128.

CMB-Spiritphone

CMB-Vln&Oboe

CMB-Wind Jam 2

CMB-BabyOcarina

GTR-Cast Teller2

GTR-Chuckin

GTR-Dark Gut

GTR-Distorter-X

GTR-Distorter-X2

GTR-Distorter-X3

GTR-Dolobroso

GTR-Electric 2

GTR-ElectricDis

GTR-FullNylon

GTR-Grusty

GTR-LA Strata

GTR-Looz 12s

GTR-Mutes

119. GTR-Nylon

120. GTR-NyloSteel

121. GTR-Nylon Silk

GTR-Spy

124. GTR-Steel

GTR-Nylonistic

GTR-SteelReal

GTR-Stolen7

GTR-Nrysty12

GTR-MellowElect

GTR-Metal Head

GTR-Mutant Pick

GTR-Mutant Pick2

110. GTR-Jazzed

GTREmTVCrunch

GTR-FallingNylon

GTR-GenericClean

GTR-Electric

GTR-Distorter-X4

89. CMB-Wind Jam 1

GTR-Carlos

93. GTR-Cast Teller

Riff Listing

- **0.** KEY-C3
- 1. KEY-C3 (2 Bars)
- 2. KEY-C3 (4 Bars)
- **3.** KEY-C4
- 4. KEY-Cs Up
- 5. KEY-Cs Up-Down
- 6. KEY-C Triad
- **7.** KEY-Cm7
- **8.** KEY-Cm9
- 9. KEY-Cmaj7
- **10.** BAS-2600
- 11. BAS-3 O Worm
- 12. BAS-A Ku Stq
- **13.** BAS-ATC 3
- 14. BAS-BadTube
- **15.** BAS-Brolin's 1st
- **16.** BAS-Distorto-TB
- 17. BAS-Easy
- **18.** BAS-Finger1
- **19.** BAS-Fingered In
- 20. BAS-FingerHarms2
- 21. BAS-Finger Out
- 22. BAS-Finger&Harms
- 23. BAS-Four U
- 24. BAS-Fretless
- 25. BAS-Lowness 2
- 26. BAS-Lowness 3
- 27. BAS-Froggy
- **28.** BAS-Homeboy E
- **29.** BAS-Lowness 2
- **30.** BAS-Metal Heart
- **31.** BAS-Mini More
- 32. BAS-Mod da Wheel
- **33.** BAS-Mr. Clean
- 34. BAS-Mystery
- **35.** BAS-Plexy
- **36.** BAS-PuLs A'ting
- **37.** BAS-Punchy
- **38.** BAS-Q Bass 2
- **39.** BAS-Reverend JB
- 40. BAS-RoundabouT
- **41.** BAS-SE Micro
- 42. BAS-Say What

- 43. BAS-Shift
- 44. BAS-SignFeld Pop
- **45.** BAS-Simple 3
- 46. BAS-Slap Me
- 47. BAS-Slappity
- 48. BAS-Stomper
- **49.** BAS-Sub Core
- **50.** BAS-Sub Pummeled
- 51. BAS-Sub-Basement
- 52. BAS-Sugar Freak
- 53. BAS-The Reason
- **54.** BAS-ThickFretles
- 55. BAS-Thickley Dub
- 56. BAS-VeloFretless
- 57. BAS-WalkinUprite
- 58. BAS-WalknUprite2
- 59. BAS-Walky Talk
- 60. BOW-Erhu w-wah
- 61. BOW-Gaozong
- 62. BOW-Nervosa
- **63.** BRS-Alt TptLoops
- **64.** BRS-Barry Bones
- **65.** BRS-Brass&Bari
- **66.** BRS-BreathTBone
- **67.** BRS-Centurions
- 68. BRS-Don'sTrumpet
- 69. BRS-DynaTrump
- **5.** DRS-Dynamu
- **70.** BRS-Horny
- 71. BRS-Huge Brass72. BRS-MelloD'Trmp
- **73.** BRS-Milez
- **74.** BRS-Movie Brass
- **75.** BRS-MutedTrumpet
- 75. BK3-Muted Humpe
- **76.** BRS-Soft Trumpet
- **77.** BRS-The Ensemble
- **78.** BRS-Trumpet ff
- 79. BRS-Trmpt&Sect
- **80.** CMB-Cosmovivor a
- **81.** CMB-Cuic Me
- 82. CMB-EastMeetWest
- 83. CMB-HiPassSquare
- 84. CMB-Org Tool 1
- **85.** CMB-Org Tool 2
- GTR-Stolen7Away HIT-Brass Hits 2 HIT-Fashion
- 129. HIT-Fashion130. HIT-MasterBlast
- **131.** HIT-Organ Hits 2
- Proteus 2500 Operation Manual 295

Riff Listing

132. KBD-And Voice 133. KBD-And Voice2 134. KBD-B3 X-Wheel 135. KBD-B3 X-Wheel 2 136. KBD-Ballad Tine 137. KBD-Bally Yard 138. KBD-Classic EP 139. KBD-Clav 1 140. KBD-Clavinetti 1 141. KBD-Clavinetti 2 142. KBD-Comp Keyz 2 143. KBD-Crystal 144. KBD-DynofunkEP 145. KBD-DynamicGrnd 146. KBD-DynoPiano 147. KBD-E Grand 148. KBD-EP Roll 2 149. KBD-Elecre 2 150. KBD-Elecro7CP80 151. KBD-FM2Classc **152.** KBD-Filmscore 153. KBD-GenBalladEP 154. KBD-Gospel Soul 155. KBD-Grand FM 156. KBD-Grand Piano2 157. KBD-Grande 4 158. KBD-GreenEyed 159. KBD-Hard Comp 1 160. KBD-Hard Comp 5 161. KBD-Hard Dyno 162. KBD-HonTonkeyz 163. KBD-JimmyJazzyB 164. KBD-Klassical 165. KBD-Knockkerz 166. KBD-KoolNMelo 167. KBD-Lovers FM EP 168. KBD-Med Dyno 169. KBD-Med EP 170. KBD-Mellow man 171. KBD-Melosoul EP 172. KBD-Miami Grand 173. KBD-Organomics X 174. KBD-PerkyRhodes 175. KBD-Piano&Strng1

176. KBD-Pure Fog 220. KIT-For Real 2 177. KBD-Pure Roll 2 221. KIT-Hip 01 178. KBD-Pure Roll 3 222. KIT-Hip 02 179. KBD-Rock'in B 180 KBD-RollinDreams 181. KBD-Stereo Grand 182. KBD-StereoGrand2 183. KBD-StereoGrand3 **184.** KBD-Suitcase EP **185.** KBD-Supatramp EP 186. KBD-TechnoUprite 187. KBD-WheelSpeed B 188. KBD-WideSuitcase 189. KBD-Yo My Dynos 190. KIT-424 **191.** KIT-Acoustic 1 **192.** KIT-Acoustic 2 193. KIT-African 194. KIT-BMF 195. KIT-Bag O Tricks 196. KIT-Berzerker 197. KIT-Booster 198. KIT-BrazilianGM1 **199.** KIT-BrazilianGM2 200. KIT-BrazilianGM3 201. KIT-ClubVinyl 202. KIT-CookUsAHit 2 203. KIT-DearLyBeEmuD 204. KIT-DeepBooty2 205. KIT-DeepBooty3 206. KIT-Disengrate 250. 207. KIT-Drum 303 208. KIT-Drum Buzza 209. KIT-Drum-Bass 1a 210. KIT-Drum-Bass 1b 211. KIT-Drum-Bass 2 212. KIT-Drum-Bass 3a 213. KIT-Drum-Bass 3b 214. KIT-Drum-Bass 4a 215. KIT-Drum-Bass 4b 216. KIT-Drum-Bass 5 217. KIT-Drum-Bass 6 218. KIT-Earth 219. KIT-For Real

223. KIT-Hip 03 224. KIT-Hip 04 225. KIT-Hip 05 226. KIT-Hip 06 227. KIT-Hip 07 228. KIT-Hip 08 229. KIT-Hip 09 230. KIT-Hip 10 231. KIT-Hip 11 232. KIT-Hip 12 233. KIT-Hip 13 234. KIT-Hip 14 235. KIT-Hip 15 236. KIT-Hip 16 237. KIT-Hip 17 238. KIT-Hip 18 239. KIT-Hip 19 240. KIT-Hip 20 241. KIT-Hip 21 242. KIT-Hip 22 243. KIT-Hot Swing 244. KIT-Kit 17 245. KIT-Kit 18 246. KIT-Kit 19 a 247. KIT-Kit 19 b 248. KIT-Kit 20 249. KIT-OnTheTip **KIT-Ritual** Drum 251. KIT-Salsa ENS 252. KIT-Salsa GM1 253. KIT-Salsa GM2 254. KIT-Salsa GM3 255. KIT-Salsa GM4 256. KIT-Salsa GM5 257. KIT-Salsa GMX 1 258. KIT-Salsa GMX 2 259. KIT-Shag 260. KIT-Speedman 261. KIT-Swing Hop 3 262. KIT-Swing Hop a 263. KIT-Swing Hop b

Riff Listing

264. KIT-Tribal House 265. KIT-World GM 266. LED-Apple Eater 267. LED-Blue Danube 268. LED-Ethereosity 269. LED-Freakus 270. LED-inBottles 271. LED-Post 90's DM 272. LED-Q Snapper 273. LED-Quacker 274. LED-Sci-Fi B 275. LED-Shiner 276. LED-Soft Slip 277. LED-Weezy Lead 278. LED-Worm 279. LED-Worm 2 280. LED-Worm Up 281. LED-Wormwood 282. LED-Zimppler 283. ORC-Combo 284. ORC-Orchestra 285. ORG-Blues 286. ORG-Classical 1 287. ORG-Classical 2 288. ORG-Funk 289. ORG-Fusion 290. ORG-Gospel 1 291. ORG-Gospel 2 292. ORG-Gospel 3 293. ORG-Jazz 1 294. ORG-Jazz 2 295. ORG-Latin 1 296. ORG-Latin 2 297. ORG-Tech 1 298. ORG-Tech 2 299. ORG-Variation 1 **300.** ORG-Variation 2 301. ORG-Variation 3 302. ORG-Variation 4 **303.** ORG-Variation 5 304. ORG-Ballad 305. PAD-Airborn 306. PAD-Exotic 1 **307.** PAD-Exotic 2

308. PAD-Exo Pad 2 309. PAD-Exotic 3 **310.** PAD-Exotic 4 **311.** PAD-Exotic 5 312. PAD-Exo Pad 1 313. PAD-Ganic 314. PAD-Highway 315. PAD-Infants 316. PAD-Infants2 317. PAD-MetalBeats 318. PAD-My Hero 319. PAD-Pad Life 320. PAD-Paddy 321. PAD-Phat 322. PAD-Sophia 323. PLK-Celtic Harp 324. PLK-SegDomraMut1 325. PLK-Dulcolin 326. PRC-Acidphone 327. PRC-Balifon Ntrl 328. PRC-BasBuBaliMar 329. PRC-Blokba a 330. PRC-Brazil Drums 331. PRC-Celtic Perc 332. PRC-Claves 333. PRC-Congas 334. PRC-Congas 2 335. PRC-DmbkMbongo 336. PRC-Cymbals 337. PRC-HarpFantasy 338. PRC-Hats 1 339. PRC-Kalimba 2 340. PRC-Limbafon 341. PRC-Log On 342. PRC-Marimba 343. PRC-Metalofon 344. PRC-Multipizz 345. PRC-Pandebal 346. PRC-Plexitone 347. PRC-Progress a 348. PRC-Shakers 349. PRC-Snare 1 **350.** PRC-Snare 2 351. PRC-Steel Drum

352. PRC-Sweet Mar 353. PRC-TV Spy Vibes 354. PRC-Velo Vibes 355. PRC-Velo Vibes 2 356. PRC-Xylophone 357. SFX-MetalScience 358. SFX-Oh No Its 359. SFX-P57K-009 360. STR-AbbeyStrngs 361. STR-AbbeyStrngs2 362. STR-Allin a Pizz 363. STR-AllinaPizz 2 **364.** STR-AllinaPizz 3 365. STR-ArcotremPizz 366. STR-Dyna-heim 367. STR-ExtremeStrng 368. STR-Fiddle 369. STR-Filmscore 370. STR-HindooKurdoo 371. STR-Japanman 372. STR-Kult E Vatn 373. STR-Orchestra 1 374. STR-Orchestra 2 375. STR-Pizzicati 376. STR-SitarTalk 377. STR-Solo Quartet 378. STR-StrSection 379. STR-Strg + Choir 380. STR-Swoon 381. STR-Texture 382. STR-TronStrings 383. STR-Velo Marcato 384. STR-Victrola 385. SYN-Bender 386. SYN-Brazz 387. SYN-Ensemblist 388. SYN-Euro Wave 389. SYN-Festival 390. SYN-Hydraine 391. SYN-ProfitMargin 392. SYN-Silk OBX saws 393. SYN-Sync Trance 394. SYN-Syntax On2 395. SYN-Synthall AT

Riff Listing

- **396.** SYN-ThinTecPulse 397. SYN-Z&C Leeder 398. VOX-Ahhs **399.** VOX-Frozen Time 400. VOX-Lo-Fi Ether 401. VOX-MauzeWowz 402. VOX-Mist 403. VOX-NewAge Oohs 404. VOX-Odd Boys 405. VOX-Pop Oohs **406.** VOX-Slo Lunarvox 407. VOX-Spiritworld 408. VOX-SynthSing 409. VOX-Voxicord 410. WAV-Lowtronics **411.** WAV-M12 **412.** WAV-Metal 2 413. WAV-vs37 414. WND-A-Sax 415. WND-Alto Saxo **416.** WND-Amazone 417. WND-Bottle Blow 418. WND-Breather 419. WND-Chamber Orc
- 420. WND-Clarinet

421. WND-Clarinet 2 422. WND-Eurasion 423. WND-Ethnic Reed 424. WND-Fieldberries 425. WND-Flute 426. WND-FluteScape 427. WND-Harmonica 428. WND-Nuages 429. WND-Oboe 430. WND-Ocarina a **431.** WND-Ocarina b 432. WND-Pan Flute 433. WND-Pastoral 434. WND-Real Flute **435.** WND-Real Flute 2 436. WND-Shenaidelic 437. WND-Synth Flute 438. WND-T-Sax 439. WND-Virtuaccord 440. WND-Wind Fingers 441. BTS-BigPimpin 442. BTS-BiteZapper 443. BTS-Bleak 444. BTS-ChunkyButt

445. BTS-CuzIWasStond

447. BTS-Electro 448. BTS-FilterPhaser 449. BTS-Foggy 450. BTS-FreakShifter 451. BTS-InnaCity 452. BTS-JungleClub 453. BTS-Lowness 454. BTS-MAD Donna 455. BTS-Maestro 456. BTS-Magnetic 457. BTS-Moderno 458. BTS-NuMetal 459. BTS-Outside 460. BTS-PhatterStill 461. BTS-RadRacer 462. BTS-RascllyRappr 463. BTS-Ripped 464. BTS-Rubbish 465. BTS-Smasher 466. BTS-Stringy 467. BTS-WhatNow 468. XTR-JunglyBeat

446. BTS-Detourant

This section lists the raw instruments in the Proteus 2500 ROM set. Instruments consist of either multisamples or single samples.

- 0. None
- 1. pno:Stereo Grand
- 2. pno:Grand Piano2
- pno:Techno Piano 3.
- epo:Med Rhodes 4.
- 5. epo:Hard Rhodes
- epo:DynoRhodesMd 6.
- epo:DynoRhodesHd 7.
- epo:Hard Tine 8.
- epo:WurlitzerSft 9.
- epo:Wurlitzer Hd 10.
- 11. epo:FM El Piano
- 12. epo:Tine EP
- epo:Pretty EP 13.
- epo:Classic EP 14.
- epo:FM EP 1 15.
- epo:FM EP 2 16.
- epo:Clavinet 1 17.
- epo:Clavinet 2 18.
- epo:EP Roll 1 19.
- 20. epo:EP Roll 2
- epo:EP Roll 3 21.
- 22. epo:EP Fog
- 23. org:B3DistLowSlo
- 24. org:B3 Dist Fast
- org:B3 Hi Slow 25.
- org:B3 Hi Fast 26.
- 27. org:B3 Perc 3rd
- 28. org:B3OrganWave1
- org:B3OrganWave2 29.
- org:Gritty B Wav 30.
- 31. org:Farfisa 1
- org:Farfisa 2 32.
- 33. org:Farfisa 3
- org:Vox 1 34.
- **35.** org:Vox 2
- 36. org:Pipe Organ
- 37. org:Drawbar
- 38. org:Perc Organ
- 39. org:Day
- 40. org:Disco
- 41. org:DX Organ

42. org:JX Organ 43. org:Tone Organ 44. org:Simple Organ org:Org Lite 45. org:Nod 46. 47. org:Full Organ

- org:Synth Organ 48.
- org:Breathy 49.
- org:Dance
- 50. org:Synth Cheeze
- 51.
- org:Oddd Organ 52. sub:Bass Hum 53.
- sub:Below Sub 54.
- sub:Super Sub 55.
- sub:SE Sub 1 56.
- sub:SE Sub 2 57.
- 58. sub:SE Sub 3
- sub:SE Sub 4 59.
- 60. sub:SE Sub 5
- sub:SE Sub 6 61.
- sub:SE Sub 7 62.
- sub:Subtle Bass 63.
- sub:Moog 1 64.
- sub:Moog 2 65.
- 66. sub:Q Attack
- 67. sub:Juno
- sub:Complex 68.
- 69. sub:Full Octave
- sub:Deep Pocket 70.
- 71. sub:JP4 Bass
- 72. sub:Bass Hit
- bas:Acid 73.
- bas:TB 1 74.
- bas:TB 2 75.
- bas:TB 3 76.
- 77. bas:TB 4
- bas:Saw Sync 78.
- bas:Big Sync 79.
- bas:Power Q 80.
- bas:Buzzed 81.
- bas:SE 1 82.
- 83. bas:SE 2

84. bas:Basss ic 85. bas:Stereo VP1 1 86. bas:VP1 2 87. bas:FM bas:DB 88. 89. bas:Memory Moog bas:Moog Tri 90. 91. bas:Moog Basic bas:Mini 1 92. **93.** bas:Mini 2 94. bas:Mini 3 95. bas:Mini 4 bas:Micro Moog 96. bas:Not So Mini 97. bas:Sawz 98. 99. bas:Lowness 100. bas:Ice 101. bas:Analow **102.** bas:Fat Sunbass bas:Analogic 103. 104. bas:Q Bass 1 bas:Q Bass 2 105. bas:Q Bass 3 106. 107. bas:Planet Bass 108. bas:2600 109. bas:Synth 1 **110.** bas:Synth 2 111. bas:Synth 3 112. bas:Synth 4 **113.** bas:Synth 5 114. bas:Synth 6 115. bas:Synth 7 **116.** bas:Synth 8 117. bas:Synth 9 118. bas:Synth 10 119. bas:CZ101 120. bas:PPG Hybrid **121.** bas:Ultimate 1 **122.** bas:Ultimate 2 bas:DB9 1 123.

- 124. bas:DB9 2
- 125. bas:Phlappy

126.	bas:Pocket
127.	bas:Sonics
128.	bas:Perco
129.	bas:Spitt
130.	bas:Tapp
131.	bas:DX 1
132.	bas:DX 2
133.	bas:DX 3
134.	bas:Finger 1
135.	bas:Finger 2
136.	bas:Picked
137.	bas:Slap 1
138.	bas:Slap 2
139.	bas:Slap 3
140.	bas:Slap 4
141.	bas:Slap 5
142.	bas:Pop
143.	bas:Fretless 1
144.	bas:Fretless 2
145.	bas:Fretless 3
146.	bas:Fretless 4
147.	bas:Fretless 5
148.	bas:Fretless 6
149.	bas:EP 1
150.	bas:EP 2
151.	bas:EP 3
152.	bas:Home 1
153.	bas:Home 2
154.	bas:Street
155.	bas:Pure
156.	bas:Fing&Harms 1
157.	bas:Fing&Harms 2
158.	bas:All Purpose
159.	basiCruzzu Don
160.	basiDan Slida 1
161.	bas:Pop Slide 2
162.	bas:Pop Slide 2
167	has Pon Slide 4
165	bas: Organ Bass 1
166	has Organ Rass 7
167	has Acoustic
168	has Harmonics
160.	has·Unright 1
109.	bus.opiigin i

170. bas:Upright 2 171. gtr:Nylon 172. gtr:Steel 173. gtr:Jazz **174.** gtr:Electric 1 175. gtr:Electric 2 **176.** gtr:El Mute 1 **177.** gtr:El Mute 2 178. gtr:Mutes **179.** gtr:ElectricDis 180. gtr:Power 1 **181.** gtr:Power 2 182. gtr:Power Hit 183. gtr:Synth Axe 184. gtr:Gtr Hi Chuck 185. gtr:Gtr Up Strk 186. gtr:Gtr Scratch 187. gtr:Muted String 188. gtr:Klean Chuck 189. gtr:Jangle **190.** gtr:Riff 1 191. gtr:Riff 2 192. gtr:Riff 3 193. gtr:Funky Hit 194. gtr:Another Hit 195. gtr:Jazz Riff 1 196. gtr:Jazz Riff 2 197. gtr:Jazz Riff 3 gtr:Slide Riff 198. 199. gtr:Pop Slide 200. gtr:Pop **201.** gtr:Chord Chuck 202. gtr:Slide 203. gtr:Sad Guitar 204. gtr:Wawa 1 **205.** gtr:Wawa 2 **206.** gtr:Wawa 3 207. gtr:Wawa 4 208. gtr:Wawa 5 209. gtr:Wawa 6 210. gtr:Heavy Hit 211. gtr:Heavy Dive 212. str:Solo Quartet 213. str:Section

214. str:Pizzicato 215. str:Tron 216. str:Analog 217. str:Matrix Synth 218. str:Digital 219. str:Sham Wave 220. str:Koto 221. str:Sitar 222. brs:Soft Trumpet 223. brs:Hard Trumpet 224. brs:MuteTrumpet1 225. brs:MuteTrumpet2 226. brs:Trombone 227. brs:Tuba 228. brs:Trumpet FX 1 229. brs:Trumpet FX 2 230. brs:Trumpet FX 3 231. brs:Trumpet FX 4 232. brs:Trumpet FX 5 233. brs:Trumpet FX 6 234. brs:Trumpet FX 7 235. brs:Alt TptLoops 236. brs:Ensemble 237. brs:Section 238. brs:Brass Hits 1 239. brs:Brass Hits 2 240. brs:ClassicBrass 241. brs:Moog 242. brs:Prophet 5 243. brs:5th Wave 244. wnd:Ocarina 245. wnd:Pan Flute 246. wnd:Flute 247. wnd:Synth Flute 248. wnd:Clarinet 249. wnd:Oboe 250. wnd:English Horn 251. wnd:Soprano Sax 252. wnd:Alto Sax 253. wnd:Tenor Sax 254. wnd:Sax Wave 255. wnd:Bari Sax 1 256. wnd:Bari Sax 2 257. wnd:Sax Riff

258.	wnd:Sax FX 1	302.	wav:Moog Lead	346.
259.	wnd:Sax FX 2	303.	wav:Fretless	347.
260.	wnd:Sax FX 3	304.	wav:Magic	348.
261.	wnd:Bottle Blow	305.	wav:ES Rag	349.
262.	wnd:Shenai	306.	wav:Chime	350.
263.	wnd:Harmonica	307.	wav:Pure H20	351.
264.	vox:Pop Oohs	308.	wav:Log Hit	352.
265.	vox:Pop Aahs	309.	wav:Pluck Tone	353.
266.	vox:Soul Oohs	310.	wav:Hollow Deep	354.
267.	vox:Breathy 1	311.	wav:Bell Synth	355.
268.	vox:Breathy 2	312.	wav:Syn Tone	356.
269.	vox:Very Breathy	313.	wav:Perc Axe Syn	357.
270.	vox:VS Wave	314.	wav:Whine	358.
271.	vox:Choir Wave	315.	wav:CZ101 Digi	359.
272.	vox:Jax Breath	316.	wav:CZ Lead	360.
273.	vox:Vox Synth	317.	wav:CZ Echo Lead	361.
274.	vox:Orch Vox	318.	wav:Wild Synth	362.
275.	vox:CMI Breath	319.	wav:Spacey Keys	363.
276.	vox:Tarzana	320.	wav:Dig Buzz Syn	364.
277.	vox:Gothic	321.	wav:Rast Keys	365.
278.	vox:Oow	322.	wav:Narrow Synth	366.
279.	vox:Comon Vox	323.	wav:Fat Attack	367.
280.	vox:Odd Vox	324.	wav:Synthetic	368.
281.	vox:Mmm Hmm	325.	wav:Overtone Syn	369.
282.	vox:Ah Hah	326.	wav:Buzz Saw Syn	370.
283.	wav:PWM	327.	wav:Blipper	371.
284.	wav:Eraser	328.	wav:Full Synth	372.
285.	wav:M12 Sync	329.	wav:Bass Synth	373.
286.	wav:Stereo Synth	330.	wav:Mini Lead	374.
287.	wav:FeedbackWave	331.	wav:M12 Lead	375.
288.	wav:MetalAttack	332.	wav:Sync 1	376.
289.	wav:Arp 1	333.	wav:Sync 2	377.
290.	wav:Arp 2	334.	wav:Sync 3	378.
291.	wav:Arp 3	335.	wav:Sync 4	379.
292.	wav:ARP Lead	336.	wav:Sync 5	380.
293.	wav:Metal 1	337.	wav:Sync 6	381.
294.	wav:Metal 2	338.	wav:Pop Square	382.
295.	wav:Metal 3	339.	wav:Juno Square	383.
296.	wav:PPG	340.	wav:SquareAttack	384.
297.	wav:VS Vox	341.	wav:Square Lead	385.
298.	wav:VS37	342.	wav:SquareChorus	386.
299.	wav:VS48	343.	wav:Juno Pulse	387.
300.	wav:Rezzy	344.	wav:Worm Lead 1	388.
301.	wav:Glass Perc	345.	wav:Worm Lead 2	389.

wav:Worm Lead 3 wav:Worm Lead 4 wav:Worm Lead 5 wav:Worm Lead 6 wav:Sinusoid wav:Sine Wave 2 wav:Sine Squared wav:Sine Inv Sqr wav:Sine Cubed wav:SineInvCubed wav:Triangle wav:Square wav:Sawtooth 1 wav:Sawtooth 2 wav:Pulse Plus wav:Pulse 75% wav:Pulse 90% wav:Pulse 94% wav:Pulse 96% wav:Pulse 98% wav:FourOctaves wav:Low Odds wav:Low Evens syn:Saw Stack syn:Moog 55 syn:Buzz Synth syn:Bender syn:Soft Synth syn:Hi String syn:OBX Saws syn:Big Planet syn:Saw Sweep wav:Juno Pulse syn:CZ Synstring syn:SynEnsemble syn:Rezzy Wave syn:Heavy syn:Rez Synth syn:Hi Oct Synth syn:Mood Strings syn:Brazz syn:Synth Brass syn:P5 Brass pad:JP6 Pad

390. pad:Dreamy 391. pad:Phat Pad 392. pad:Synth Pad 393. pad:Pad Life 394. pad:Classic 395. pad:Dream Pad 396. pad:Paddy 397. pad:Dance Chord 398. pad:Zoom 399. pad:Keyngdom 400. pad:Under Pad FM 401. pad:Xylo Pad 402. hit:Organ Hits 1 403. hit:Organ Hits 2 404. hit:Basses **405.** hit:Synth Basses 406. hit:Guitars 407. hit:String Hits 408. hit:Brass Hits 1 409. hit:Brass Hits 2 **410.** hit:Vox Hits 1 411. hit:Vox Hits 2 412. hit:Dance Hits 1 413. hit:Dance Hits 2 414. hit:Organ Hit 1 415. hit:Organ Hit 2 416. hit:Organ Hit 3 417. hit:Organ Hit 4 418. hit:Organ Hit 5 419. hit:Organ Hit 6 420. hit:Bass Stab 1 421. hit:Bass Stab 2 422. hit:Bass Slide **423.** hit:Orch C3 **424.** hit:UnisonString 425. hit:Unison Brass 426. hit:Brass Hit 1 427. hit:Brass Hit 2 428. hit:Brass Hit 3 429. hit:Brass Hit 4 430. hit:Brass Hit 5 431. hit:Brass Hit 6 432. hit:Brass Hit 7 433. hit:Brass Hit 8

434. hit:Brass Hit 9 435. hit:Brass Hit 10 436. hit:Brass Hit 11 hit:Brass Hit 12 437. 438. hit:Brass Hit 13 hit:Brass Hit 14 439. 440. hit:Brass Hit 15 441. hit:Brass Hit 16 hit:Brass Hit 17 442. 443. hit:Brass Hit 18 hit:Brass Hit 19 444 445 hit:Brass Hit 20 446. hit:Boink hit:Fat Low Syn 447. 448. hit:Hit On It 449. hit:Jazz Short hit:Blamp Hit 450. hit:Blipp 451. 452. hit:Buzz Blip 453. hit:Game Hit 454. hit:Diss Hit 455. hit:Bell Hit 456. hit:Klang Hit 457. hit:Metal Hit 458. hit:Slinky Q Hit hit:Space Whip 459. 460. hit:Short Quack 461. hit:Quack Ahhh hit:Bowser Bark 462. 463. hit:Chiffin 464. hit:Ripped 465. hit:Drum Stab 466. hit:Hip Hop Hit **467.** hit:Drum Stall hit:Dance Hit 1 468. 469. hit:Dance Hit 2 470. hit:Dance Hit 3 **471.** hit:Dance Hit 4 472. hit:Dance Hit 5 473. hit:Dance Hit 6 474. hit:Dance Hit 7 475. hit:Dance Hit 8 476. hit:Dance Hit 9 477. hit:Dance Hit 10

478. hit:Dance Hit 11 **479.** hit:Dance Hit 12 480. hit:Dance Hit 13 481. hit:Dance Hit 14 482. hit:Dance Hit 15 483. hit:Dance Hit 16 484. hit:Dance Hit 17 485. hit:Dance Hit 18 486. hit:Dance Hit 19 487. hit:Dance Hit 20 488. hit:Dance Hit 21 489. hit:Dance Hit 22 490. hit:Dance Hit 23 **491.** hit:Dance Hit 24 492. hit:Dance Hit 25 493 hit:Dance Hit 26 494. hit:Dance Hit 27 sfx:Q Snap 495. 496. sfx:Bass Scrape 497. sfx:Bass Thud 498. sfx:Gtr Scrape 1 sfx:Gtr Scrape 2 499. 500. sfx:Guitar Pick sfx:GtrBodyKnock 501. 502. sfx:StringScrape 503. sfx:Tpt Breath 504. sfx:Alto Breath 505. sfx:PnoSndBoard 506. sfx:Loop 1 507. sfx:Loop 2 508. sfx:Loop 3 **509.** sfx:Loop 4 510. sfx:Loop 5 511. sfx:Loop 6 **512.** sfx:Loop 7 513. sfx:Loop 8 514. sfx:Crickets 515. sfx:Crowd 516. sfx:Music Crowd 517. sfx:Lawn Mower 518. sfx:Riff Trip 519. sfx:Cyber Pan 520. sfx:Groove Thing 521. sfx:Science

522. sfx:Sci Fi 523. sfx:Synth Siren 524. sfx:Space Wiggle 525. sfx:Sqweal Rev 526. nse:White 1 527. nse:No Pitch 528. nse:Pink 1 529. nse:Pink 2 530. nse:Spectrum 1 531. nse:Spectrum 2 532. nse:Spectrum 3 533. nse:Spectrum 4 534. nse:Air 535. nse:High Pass 536. nse:Excited HP 537. nse:IP Wave 538. nse:Metal Noise 539. nse:Vinyl 1 540. nse:Vinyl 2 541. nse:Vinyl 3 542. nse:Vinyl 4 543. nse:Vinyl 1 NTF 544. nse:Vinyl 2 NTF 545. nse:Vinyl 3 NTF 546. nse:Vinyl 4 NTF 547. nse:CMI Hot Air 548. nse:L9000 Noise 549. scr:Scratches 1 550. scr:Scratches 2 551. scr:Vinyl Set 552. scr:Stalled 553. scr:Wind Down 1 554. scr:Wind Down 2 555. scr:Draggit 556. scr:MC Scratch 557. scr:Fun Scratch 558. scr:SSSSystem 1 **559.** scr:SSSSystem 2 560. scr:Scratch Here 561. scr:Scratch On I 562. scr:Scratch Diss 563. scr:Bow Wow 564. scr:Diva Scratch 565. scr:OrganBlipper

566. scr:Classic Tape 567. scr:Scratch Out! 568. scr:Punch It 569. scr:Ork Scratch 570. scr:Tape Stop 571. scr:Zip Scratch 572. scr:Tape Pull 573. scr:Wild Scratch 574. scr:Up Scratch 575. scr:Scratch Away 576. scr:Frenzy 577. scr:KickScratch1 578. scr:KickScratch2 579. scr:SnareScratch 580. scr:Tite Scratch 581. scr:Scratch Up 582. scr:Barker 583. scr:Plunger 584. scr:Skipper 585. scr:Fast Scratch 586. prc:Soft Vibes 587. prc:Hard Vibes 588. prc:Xylophone 589. prc:Marimba 590. prc:Kalimba 591. prc:Plexitone 592. prc:Orchestral 593. prc:Miscellany 594. prc:FM Log Drum 595. prc:SynDrum Wave 596. prc:X-ite Tick 597. prc:Kicks 1 598. prc:Kicks 2 599. prc:Snares 1 600. prc:Snares 2 601. prc:Toms 1 **602.** prc:Toms 2 **603.** prc:Timbales 1 604. prc:Timbales 2 605. prc:Congas etc 1 606. prc:Congas etc 2 607. prc:Hats 1 608. prc:Hats 2 609. prc:Cymbals 1 653. kit:Swing Hop 3

610. prc:Cymbals 2 611. prc:Shakers 612. prc:Maracas 613. prc:Bells 1 614. prc:Bells 2 615. prc:Blocks 1 616. prc:Blocks 2 617. prc:Tams 1 618. prc:Tams 2 619. prc:Claps 1 620. prc:Claps 2 621. prc:Snaps 622. prc:Claves 623. prc:Vibraslap 624. prc:Guiro Roll 625. prc:Cowbells 626. prc:Agogos 627. prc:Carillon 628. prc:Misc Perc 1 629. prc:Misc Perc 2 **630.** kit:Acoustic 1&2 631. kit:Acoustic 3&4 632. kit:Dance Set 633. kit:Dance Perc 634. kit:Kit 1 635. kit:Kit 2 636. kit:Kit 3 637. kit:Kit 4 638. kit:Kit 5 639. kit:Kit 6 640. kit:Kit 7 641. kit:Kit 8 642. kit:Kit 9 643. kit:Kit 10 644. kit:Kit 11 645. kit:Kit 12 646. kit:Kit 13 647. kit:Kit 14 648. kit:Kit 15 649. kit:Kit 16 650. kit:GM Dance 651. kit:Swing Hop **652.** kit:Swing Hop 2

654.	prc:Kick 1	698.	prc:Kick 45	742.	prc:Snare 18
655.	prc:Kick 2	699.	prc:Kick 46	743.	prc:Snare 19
656.	prc:Kick 3	700.	prc:Kick 47	744.	prc:Snare 20
657.	prc:Kick 4	701.	prc:Kick 48	745.	prc:Snare 21
658.	prc:Kick 5	702.	prc:Kick 49	746.	prc:Snare 22
659.	prc:Kick 6	703.	prc:Kick 50	747.	prc:Snare 23
660.	prc:Kick 7	704.	prc:Kick 51	748.	prc:Snare 24
661.	prc:Kick 8	705.	prc:Kick 52	749.	prc:Snare 25
662.	prc:Kick 9	706.	prc:Kick 53	750.	prc:Snare 26
663.	prc:Kick 10	707.	prc:Kick 54	751.	prc:Snare 27
664.	prc:Kick 11	708.	prc:Kick 55	752.	prc:Snare 28
665.	prc:Kick 12	709.	prc:Kick 56	753.	prc:Snare 29
666.	prc:Kick 13	710.	prc:Kick 57	754.	prc:Snare 30
667.	prc:Kick 14	711.	prc:Kick 58	755.	prc:Snare 31
668.	prc:Kick 15	712.	prc:Kick 59	756.	prc:Snare 32
669.	prc:Kick 16	713.	prc:Kick 60	757.	prc:Snare 33
670.	prc:Kick 17	714.	prc:Kick 61	758.	prc:Snare 34
671.	prc:Kick 18	715.	prc:Kick 62	759.	prc:Snare 35
672.	prc:Kick 19	716.	prc:Kick 63	760.	prc:Snare 36
673.	prc:Kick 20	717.	prc:Kick 64	761.	prc:Snare 37
674.	prc:Kick 21	718.	prc:Kick 65	762.	prc:Snare 38
675.	prc:Kick 22	719.	prc:Kick 66	763.	prc:Snare 39
676.	prc:Kick 23	720.	prc:Kick 67	764.	prc:Snare 40
677.	prc:Kick 24	721.	prc:Kick 68	765.	prc:Snare 41
678.	prc:Kick 25	722.	prc:Kick 69	766.	prc:Snare 42
679.	prc:Kick 26	723.	prc:Kick 70	767.	prc:Snare 43
680.	prc:Kick 2/	724.	prc:Kick 71	768.	prc:Snare 44
681.	prc:Kick 28	725.	prc:Snare 1	769.	prc:Snare 45
682.	prc:Kick 29	726.	prc:Snare 2	770.	prc:Snare 46
683.	prc:Kick 30	727.	prc:Snare 3	771.	prc:Snare 4/
684. COF	prc:Kick 31	728.	prc:Snare 4	772.	prc:Snare 48
685.	prc:Kick 32	729.	prc:Snare S	773.	prc:Snare 49
680. 697	pro:Kick 35	730.	pre:Snare 7	774.	pre:Snare 51
007. 600	provide 25	731.	preiSnare 8	775.	preiSpare 52
000. 690	pre:Viel 26	132. 722	pre:Spare 9	770.	pre:Spare 52
600	pre:Kick 37	733.	prc:Snare 10	778	prc:Snare 54
601	pre:Kick 38	735	pre:Snare 11	770.	pre:Snare 55
602	pre:Kick 39	736	pre:Snare 12	780	pre:Snare 56
603	pre-Kick 40	737	pressnare 12	781	pre-Snare 57
60 <i>1</i>	pre-Kick 41	738	pressnare 14	782	pressnare 58
695	pre-Kick 42	730	pressnare 15	783	pressnare 50
696	pre-Kick 43	740	pressnare 16	784	pre:Snare 60
607	pre-Kick 44	741	pressnare 17	785	pressnare 61
001.	Presiden 11		ricionale 1/		Pressinare 01

786.	prc:Snare 62	830.	prc:Snare 106	874.	prc:Tom 13
787.	prc:Snare 63	831.	prc:Snare 107	875.	prc:Tom 14
788.	prc:Snare 64	832.	prc:Snare 108	876.	prc:Tom 15
789.	prc:Snare 65	833.	prc:Snare 109	877.	prc:Tom 16
790.	prc:Snare 66	834.	prc:Snare 110	878.	prc:Tom 17
791.	prc:Snare 67	835.	prc:Snare 111	879.	prc:Tom 18
792.	prc:Snare 68	836.	prc:Snare 112	880.	prc:Tom 19
793.	prc:Snare 69	837.	prc:Snare 113	881.	prc:Tom 20
794.	prc:Snare 70	838.	prc:Snare 114	882.	prc:Tom 21
795.	prc:Snare 71	839.	prc:Snare 115	883.	prc:Tom 22
796.	prc:Snare 72	840.	prc:Snare 116	884.	prc:Tom 23
797.	prc:Snare 73	841.	prc:Snare 117	885.	prc:Tom 24
798.	prc:Snare 74	842.	prc:Snare 118	886.	prc:Tom 25
799.	prc:Snare 75	843.	prc:Snare 119	887.	prc:Tom 26
800.	prc:Snare 76	844.	prc:Snare 120	888.	prc:Tom 27
801.	prc:Snare 77	845.	prc:Snare 121	889.	prc:Tom 28
802.	prc:Snare 78	846.	prc:Snare 122	890.	prc:Tom 29
803.	prc:Snare 79	847.	prc:Snare 123	891.	prc:Tom 30
804.	prc:Snare 80	848.	prc:Snare 124	892.	prc:Tom 31
805.	prc:Snare 81	849.	prc:Snare 125	893.	prc:Conga 1
806.	prc:Snare 82	850.	prc:Snare 126	894.	prc:Conga 2
807.	prc:Snare 83	851.	prc:Snare 127	895.	prc:Conga 3
808.	prc:Snare 84	852.	prc:Snare 128	896.	prc:Conga 4
809.	prc:Snare 85	853.	prc:Snare 129	897.	prc:Conga 5
810.	prc:Snare 86	854.	prc:Snare 130	898.	prc:Conga 6
811.	prc:Snare 87	855.	prc:Snare 131	899.	prc:Conga 7
812.	prc:Snare 88	856.	prc:Timbale 1	900.	prc:Conga 8
813.	prc:Snare 89	857.	prc:Timbale 2	901.	prc:Conga 9
814.	prc:Snare 90	858.	prc:Timbale 3	902.	prc:Conga 10
815.	prc:Snare 91	859.	prc:Timbale 4	903.	prc:Conga 11
816.	prc:Snare 92	860.	prc:Timbale 5	904.	prc:Conga 12
817.	prc:Snare 93	861.	prc:Timbale 6	905.	prc:Conga 13
818.	prc:Snare 94	862.	prc:Tom 1	906.	prc:Conga 14
819.	prc:Snare 95	863.	prc:10m 2	907.	prc:Conga 15
820.	prc:Snare 96	864.	prc:10m 3	908.	prc:Conga 16
821.	prc:Snare 97	865.	prc:10m 4	909.	prc:Conga 17
822.	prc:Snare 98	866.	prc: Iom 5	910.	prc:Conga 18
823.	prc:Snare 99	867.	prc: 10m 6	911.	prc:Conga 19
824.	prc:Snare 100	868.	prc:10m /	912.	prc:Conga 20
825.	prc:snare 101	869.	prc:10m 8	913.	prc:Conga 21
826.	pre:Snare 102	87U.	pre: Tom 9	914.	prc:Hat 1
827.	pre:Snare 103	8/1.	pre:Tom 10	915.	prc:Hat 2
828.	pre:Snare 104	872.	prc:10III 11	916.	prc:Hat 3
829.	prc:Snare 105	873.	prc:10m 12	917.	prc:Hat 4

918.	prc:Hat 5	962.	prc:Hat 49	1006.	prc:Hat 93
919.	prc:Hat 6	963.	prc:Hat 50	1007.	prc:Hat 94
920.	prc:Hat 7	964.	prc:Hat 51	1008.	prc:Hat 95
921.	prc:Hat 8	965.	prc:Hat 52	1009.	prc:Cymbal 1
922.	prc:Hat 9	966.	prc:Hat 53	1010.	prc:Cymbal 2
923.	prc:Hat 10	967.	prc:Hat 54	1011.	prc:Cymbal 3
924.	prc:Hat 11	968.	prc:Hat 55	1012.	prc:Cymbal 4
925.	prc:Hat 12	969.	prc:Hat 56	1013.	prc:Cymbal 5
926.	prc:Hat 13	970.	prc:Hat 57	1014.	prc:Cymbal 6
927.	prc:Hat 14	971.	prc:Hat 58	1015.	prc:Cymbal 7
928.	prc:Hat 15	972.	prc:Hat 59	1016.	prc:Cymbal 8
929.	prc:Hat 16	973.	prc:Hat 60	1017.	prc:Cymbal 9
930.	prc:Hat 17	974.	prc:Hat 61	1018.	prc:Cymbal 10
931.	prc:Hat 18	975.	prc:Hat 62	1019.	prc:Cymbal 11
932.	prc:Hat 19	976.	prc:Hat 63	1020.	prc:Cymbal 12
933.	prc:Hat 20	977.	prc:Hat 64	1021.	prc:Cymbal 13
934.	prc:Hat 21	978.	prc:Hat 65	1022.	prc:Cymbal 14
935.	prc:Hat 22	979.	prc:Hat 66	1023.	prc:Cymbal 15
936.	prc:Hat 23	980.	prc:Hat 67	1024.	prc:Cymbal 16
937.	prc:Hat 24	981.	prc:Hat 68	1025.	prc:Cymbal 17
938.	prc:Hat 25	982.	prc:Hat 69	1026.	prc:Cymbal 19
939.	prc:Hat 26	983.	prc:Hat 70	1027.	prc:Cymbal 20
940.	prc:Hat 27	984.	prc:Hat 71	1028.	prc:Cymbal 21
941.	prc:Hat 28	985.	prc:Hat 72	1029.	prc:Cymbal 22
942.	prc:Hat 29	986.	prc:Hat 73	1030.	prc:Cymbal 23
943.	prc:Hat 30	987.	prc:Hat 74	1031.	prc:Cymbal 24
944.	prc:Hat 31	988.	prc:Hat 75	1032.	prc:Cymbal 25
945.	prc:Hat 32	989.	prc:Hat 76	1033.	prc:Cymbal 26
946.	prc:Hat 33	990.	prc:Hat 77	1034.	prc:Cymbal 27
947.	prc:Hat 34	991.	prc:Hat 78	1035.	prc:Cymbal 28
948.	prc:Hat 35	992.	prc:Hat 79	1036.	prc:Cymbal 29
949.	prc:Hat 36	993.	prc:Hat 80	1037.	prc:Shaker 1
950.	prc:Hat 37	994.	prc:Hat 81	1038.	prc:Shaker 2
951.	prc:Hat 38	995.	prc:Hat 82	1039.	prc:Shaker 3
952.	prc:Hat 39	996.	prc:Hat 83	1040.	prc:Shaker 4
953.	prc:Hat 40	997.	prc:Hat 84	1041.	prc:Shaker 5
954.	prc:Hat 41	998.	prc:Hat 85	1042.	prc:Shaker 6
955.	prc:Hat 42	999.	prc:Hat 86	1043.	prc:Shaker 7
956.	prc:Hat 43	1000.	prc:Hat 87	1044.	prc:Shaker 8
957.	prc:Hat 44	1001.	prc:Hat 88	1045.	prc:Shaker 9
958.	prc:Hat 45	1002.	prc:Hat 89	1046.	prc:Shaker 10
959.	prc:Hat 46	1003.	prc:Hat 90	1047.	prc:Shaker 11
960.	prc:Hat 47	1004.	prc:Hat 91	1048.	prc:Shaker 12
961.	prc:Hat 48	1005.	prc:Hat 92	1049.	prc:Shaker 13

1050.	prc:Shaker 14	1092.	prc:Bell 26	1134.	prc:Clap 17
1051.	prc:Shaker 15	1093.	prc:Bell 27	1135.	prc:Clap 18
1052.	prc:Shaker 16	1094.	prc:Bell 28	1136.	prc:Snap 1
1053.	prc:Shaker 17	1095.	prc::Block 1	1137.	prc:Snap 2
1054.	prc:Shaker 18	1096.	prc::Block 2	1138.	prc:Snap 3
1055.	prc:Shaker 19	1097.	prc::Block 3	1139.	prc:Snap 4
1056.	prc:Shaker 20	1098.	prc::Block 4	1140.	prc:Snap 5
1057.	prc:Shaker 21	1099.	prc::Block 5	1141.	prc:Snap 6
1058.	prc:Shaker 22	1100.	prc::Block 6	1142.	prc:Misc: 1
1059.	prc:Shaker 23	1101.	prc::Block 7	1143.	prc:Misc: 2
1060.	prc:Shaker 24	1102.	prc::Block 8	1144.	prc:Misc: 3
1061.	prc:Shaker 25	1103.	prc::Block 9	1145.	prc:Misc: 4
1062.	prc:Shaker 26	1104.	prc::Block 10	1146.	prc:Misc: 5
1063.	prc:Shaker 27	1105.	prc::Block 11	1147.	prc:Misc: 6
1064.	prc:Shaker 28	1106.	prc::Block 12	1148.	prc:Misc: 7
1065.	prc:Flexitone	1107.	prc::Block 13	1149.	prc:Misc: 8
1066.	prc:Bell 1	1108.	prc::Block 14	1150.	prc:Misc: 9
1067.	prc:Bell 2	1109.	prc::Tam 1	1151.	prc:Misc: 10
1068.	prc:Bell 3	1110.	prc::Tam 2	1152.	prc:Misc: 11
1069.	prc:Bell 4	1111.	prc::Tam 3	1153.	prc:Misc: 12
1070.	prc:Bell 5	1112.	prc::Tam 4	1154.	prc:Misc: 13
1071.	prc:Bell 6	1113.	prc::Tam 5	1155.	prc:Misc: 14
1072.	prc:Bell 7	1114.	prc::Tam 6	1156.	prc:Misc: 15
1073.	prc:Bell 8	1115.	prc::Tam 7	1157.	prc:Misc: 16
1074.	prc:Bell 9	1116.	prc::Tam 8	1158.	prc:Misc: 17
1075.	prc:Bell 10	1117.	prc::Tam 9	1159.	prc:Misc: 18
1076.	prc:Bell 11	1118.	prc:Clap 1	1160.	prc:Misc: 19
1077.	prc:Bell Tree	1119.	prc:Clap 2	1161.	prc:Misc: 20
1078.	prc:Bell 12	1120.	prc:Clap 3	1162.	prc:Misc: 21
1079.	prc:Bell 13	1121.	prc:Clap 4	1163.	prc:Misc: 22
1080.	prc:Bell 14	1122.	prc:Clap 5	1164.	prc:Misc: 23
1081.	prc:Bell 15	1123.	prc:Clap 6	1165.	prc:Misc: 24
1082.	prc:Bell 16	1124.	prc:Clap 7	1166.	prc:Misc: 25
1083.	prc:Bell 17	1125.	prc:Clap 8	1167.	prc:Misc: 26
1084.	prc:Bell 18	1126.	prc:Clap 9	1168.	prc:Misc: 27
1085.	prc:Bell 19	1127.	prc:Clap 10	1169.	prc:Misc: 28
1086.	prc:Bell 20	1128.	prc:Clap 11	1170.	prc:Misc: 29
1087.	prc:Bell 21	1129.	prc:Clap 12	1171.	prc:Misc: 30
1088.	prc:Bell 22	1130.	prc:Clap 13	1172.	prc:Misc: 31
1089.	prc:Bell 23	1131.	prc:Clap 14	1173.	prc:Misc: 32
1090.	prc:Bell 24	1132.	prc:Clap 15		
1091.	prc:Bell 25	1133.	prc:Clap 16		

Velocity Curves

This section provides diagrams and descriptions of the Proteus 2500 velocity curves.

Velocity Curves

PatchCord Amount Chart

The following chart shows the PatchCord "Amount" settings in order to get semitone intervals when modulation sources are connected to pitch.

Semitone	PatchCord Amount	Semitone	PatchCord Amount
1	3	21	66
2	6	22	69
3	approx. 9	23	approx. 72.5
4	approx. 12	24	approx. 76
5	16	25	79
6	19	26	82
7	22	27	88
8	25	28	91
9	28	29	approx. 95
10	approx. 31	30	98
11	35	31	
12	38	32	
13	41	33	
14	44	34	
15	47	35	
16	50	36	
17	approx. 53	37	
18	57	38	
19	60	39	
20	63	40	

Rhythmic Notation	This extremely brief overview is intended solely as a refresher and memory jogger; for a detailed description of rhythmic notation, see any good book on music theory.
Measures	A piece of music is divided into measures, and each measure is divided into notes. The number of notes, and rhythmic value of the notes, depends both on the composition and the time signature (see Appendix C).
Note values	With a measure written in 4/4, there are four beats per measure, with each beat representing a quarter note. Thus, there are four quarter notes per measure of 4/4 music.There are two eighth notes per quarter note. Thus, there are eight eighth notes per measure of 4/4 music.There are four sixteenth notes per quarter note. Thus, there are sixteen
	sixteenth notes per measure of $4/4$ music. There are eight thirty-second notes per quarter note. Thus, there are thirty-
	two thirty second notes per measure of 4/4 music.
	There are also notes which span a greater number of beats than quarter notes. A half-note equals two quarter notes. Therefore, there are two half-notes per measure of 4/4 music. A whole note equals four quarter notes. Therefore, there is one whole note per measure of 4/4 music.
Triplets	The above notes divide measures by factors of 2. However, there are some cases where you want to divide a beat into thirds, giving three notes per beat. Dividing a quarter note by three results in eighth note triplets. The reason why we use the term "eighth note triplets" is because the eighth note is closest to the rhythmic value which we want. Dividing an eighth note by three results in sixteenth note triplets. Dividing a sixteenth note by three results in thirty-second note triplets.
Time Signatures	A time signature (also called metric signature) describes the meter of a piece of music. It consists of two numbers arranged like a fraction, such as 3/4, 4/ 4, etc. The top number (numerator) indicates the number of beats in each measure, while the bottom number (denominator) indicates the rhythmic value of each beat. For example, with a 3/4 time signature the numerator indicates that there are three notes per measure, while the denominator indicates that each of these notes is a quarter note. 4/4 indicates that each measure includes 4 quarter notes. Usually the downbeat (1st beat) of each measure is emphasized by a metronome to help you get a feel for the meter. 3/4 and 4/4 are the most common time signatures, but they are by no means the only ones. In jazz, both 5/4 (where each measure has five 1/4
	notes) and 7/4 (where each measure has seven 1/4 notes) are often used. In practice, complex time signatures are played like a combination of simpler time signatures; for example, some 7/4 compositions would have you count each measure not as "1, 2, 3, 4, 5, 6, 7" but as "1, 2, 3, 4, 1, 2, 3". It's often easier for musicians to think of 7/4 as one bar of 4/4 and one bar of 3/4, since as we mentioned, 4/4 and 3/4 are extremely common time signatures.

Block Diagrams

Volume & Pan

These block diagrams show the internal signal routings and the functions of the various screens. They should prove highly useful when programming complex setups or for troubleshooting.

Block Diagrams Sequencer Recording Input MIDI Out (0-31) Synth Engine Out A Out B MIDI In Sequencer Routing Track h Channel +16 ۵ Soft Thru B ı الج ا 6 ∢ No MIDI In A or B Soft Thru A ്മ NO ۵ Rechan On/Off D - CHANNEL ASSIGN (Pattern/Song Edit menu) Off ∢ **B** - MERGE MIDI IN TO OUT (MIDI menu) A - RECHANNELIZE INPUT (MIDI menu) C - MIDI IN CHANNELS (MIDI menu) MIDI In

Block Diagrams

Triggers & Programmable Knobs

Block Diagrams

Quick Edit

E-MU Expansion Sound Sets

Eleven different ROM expansions are currently available, with more being developed every day. ROM expansions typically add 32MB of sound data and 512 additional presets. Adding new sounds is like getting a new instrument and a sure way to spark your creativity. ROM Expansions are available from your E-MU dealer. Also check out the official E-MU website: **www.emu.com** for the latest sounds.

Orchestral Sessions VOLUME 1

The Orchestral Sessions Vol. 1 expansion 32 MB ROM offers you the most realistic and comprehensive collection of section strings available, complete with legato, spiccato, pizzicato and tremolande samples, and includes special presets for 4 speaker applications.

Orchestral Sessions VOLUME 2

The Orchestral Sessions Vol. 2 expansion 32 MB ROM offers you the most realistic and comprehensive collection of woodwinds, brass, percussion, and solo strings available, complete with velocity switching between p/mf/ ff samples, special presets for 4 speaker applications and a percussion battery with over 20 instruments.

Siedlaczek Orchestra Special Edition

The Peter Siedlaczek Advanced Orchestra Special Edition puts 32 MB of his finest ensembles onto a single expansion ROM. String, brass, woodwind and percussion ensembles are included in a variety of styles (i.e. vibrato, tremolo, pizzicato, sordino, etc.), to give you a diverse collection of samples.

Protozoa

E-MU presents the 16 MB Protozoa expansion ROM—the ultimate sound compilation containing presets from the ground breaking Proteus sound modules, all optimized for your Proteus 2500's advanced synthesis and filter architecture.

Sounds of the ZR

The Sounds of the ZR Expansion ROM faithfully reproduces the diverse sounds of ENSONIQ's popular ZR-76 keyboard, including William Coakley's Perfect Piano. You'll find everything from synths and orchestral instruments to one of the finest pianos ever sampled in one soundset.

Definitive B-3

John Novello and E-MU present the 32 MB Definitive B-3 expansion ROM, a diverse collection of tone wheel organ drawbar settings sampled direct and with rotary speakers (chorale and tremolo) to give you the most versatile and playable B-3 available!

X-Lead

The X-Lead soundset consists primarily of analog, noise and modern synthesizer waveforms. These sounds are rich in harmonic texture and are a perfect match with the Z-plane filters in your Proteus® family sound module. With the included software upgrade, you now have access to dynamic and rhythmic features not found on any other instrument. (*Note: This sound set is installed in the XL-7.*)

PURE PHATT

The 32 MB Pure Phatt is E-MU's latest Hip-Hop soundset that produces the freshest and newest sounds and grooves from top notch producers from the East, Southeast and West coasts. Pumping leads and basses, silky pads and those unique hits, scratches and drones that your mix needs to bring it to the next level are ready to provide the love. (*Note: This sound set is installed in the MP-7.*)

World Expedition

An amazing collection of traditional instruments from the four corners of the globe including exotic stringed instruments, winds, percussion, and chromatic percussion. World Expedition provides you with the most realistic ethnic soundset in the world. Discover a world of sounds to bring to your music.

Techno Synth

Rob Papen and E-MU introduce the 32 MB Techno Synth Construction Yard Expansion ROM, a compilation of synth, techno, and ambient sounds from one of Europe's finest programmers. From atmospheric pads to punchy subbasses and crunch drum loops, these sounds will help you tear up the dance floor!

Beat Garden

Dutch sound designer Rob Papen and E-MU introduce the 32 MB Beat Garden expansion ROM, a diverse palette of all-new Electronica/Dance beats, synths, basses, drumkits, acoustic and electronic percussion. Experience the Beat Garden for yourself and add a unique dimension to your tracks.

Installing Sound SIMMs

Proteus 2500 can be easily expanded to contain up to 128 MB of sound data (4 SIMMs). The sound SIMM sockets are located inside the unit.

Open the Unit

- 1. IMPORTANT: Unplug power from the unit before opening!
- **2.** The top panel is secured by seven phillips head screws. First remove the two black screws on each side near the bottom of the unit. Next remove the three black screws at the top of the back panel. Place all the screws in a safe place where they won't roll away or get lost.
- **3.** The top cover can now be lifted off. Set this piece aside in a safe place.

► To Remove ROM SIMMs (if necessary):

- 1. Orient the unit so that the rear panel is facing you. Ground yourself by touching a grounded object. (*Such as the chassis of another piece of equipment connected to the wall socket with a three-prong power plug.*)
- **2.** On each end of the SIMM socket there is a silver or plastic tab. Use a screwdriver or a ball point pen to squeeze the tabs toward the outside of the socket while gently nudging the SIMM toward the right side of the unit. The old SIMM should "hinge" to the right and can now be removed.

Install a New ROM SIMM

- 1. Ground yourself by touching a grounded object, then remove the memory SIMM modules from the static protected packaging.
- **2.** Notice that one end of the SIMM connector is notched. This notch should be oriented towards the rear panel of the unit. When installing multiple SIMMS, install the SIMM into the lowest numbered socket first (i.e. first CN-5, then CN-6, then CN-7, then CN-8).

ROMs can be installed in any available SIMM location. The physical position of the sound set does not affect the order that they appear in the LCD.

- **3.** Gently set the SIMM deep into the SIMM socket at a 45° angle with the notch toward the rear of the unit. Without forcing the insertion, let the board rest in the socket as deep as it will go. It should rest naturally in place at this 45° angle. Refer to the diagram on the previous page.
- **4.** While applying a slight downward pressure on the top of the SIMM to keep it from popping out of the socket, tilt the SIMM board into a vertical position. You should hear an audible click. Make sure both sides of the silver tabs have latched.

Reassemble the Unit

1. Replace the top panel and all seven screws. The screws are all identical.

Test It

The installation is almost finished.

- 1. Turn the unit right-side up and plug in the power cord.
- 2. Turn on power.
- **3.** Press the Preset View button.
- **4.** Move the cursor under the ROM field and turn the data entry control to verify that your new sound ROM has been recognized.
- 5. Play the presets on the new ROM banks and verify that they sound OK.

Problems?

- 1. Disconnect power immediately.
- 2. Open the unit, and try re-seating the ROM SIMMs. If you're still having problems, return the unit to its original configuration and call EMU / ENSONIQ Customer Service at (831) 438-1921. Telephone support hours are 8:00-5:00 PST, Monday through Friday.

MIDI

MIDI Implementation Chart (part 1)

MIDI Information	Transmitted	Recognized	Remarks
MIDI Channels	1-16A, 1-16B	1-16	32 MIDI Chan.
Note Numbers	0-127	0-127	
Program Change	0-127	0-127	
Bank Select Response?	No	Yes	MSB + LSB
Modes: Omni (Mode 1)	No	Yes	
Mono (Mode 2)	No	Yes	
Poly (Mode 3)	No	Yes	
Mode 4 (Y/N)	No	No	
Multi (Mode 5)	No	Yes	
Note On Velocity	Yes	Yes	
Note Off Velocity	No	Yes	
Channel Aftertouch	No	Yes	
Poly (Key) Aftertouch	No	No	
Pitch Bend	No	Yes	
Active Sensing	No	No	
System Reset	No	No	
Tune Request	No	No	
System Exclusive	Yes	Yes	
Sample Dump Standard	No	No	
File Dump	Yes	Yes	
MIDI Tuning	Yes	Yes	
Master Volume	No	Yes	
Master Balance	No	No	
Notation Information	No	No	
Turn GM1 System On	No	No	
Turn GM2 System On	No	No	
Turn GM1 System Off	No	No	
Other (See Remarks)	No	No	
NRPNs	No	No	
RPN 00 (Pitch Bend Sensi.)	No	No	
RPN 01 (Chan. Fine Tune)	No	No	
RPN 02 (Chan Coar. Tune)	No	No	
RPN 03 (Tuning Prog Sel.)	No	No	
RPN 04 (Tuning Bank Sel.)	No	No	
RPN 05 (Mod Depth Rang)	No	No	
MIDI Timing & Sync			
MIDI Clock	Yes	Yes	
Song Position Pointer	Yes	Yes	Received only when synced to MIDI clock
Song Select	No	No	

MIDI Information	Transmitted	Recognized	Remarks
Start	Yes	Yes	Start/Continue
Continue	Yes	Yes	response only
Stop	Yes	Yes	from the stopped
			transport state.
MIDI Time Code	No	No	
MIDI Machine Control	No	No	
MIDI Show Control	No	No	
Extension Capability			
General MIDI Compat?	No	No	
Is GM default mode?	No	No	
DLS compatible?	No	No	
Import DLS Files?	No	No	
Export DLS Files?	No	No	
Import Std MIDI files	Yes	Yes	
Export Std MIDI files	Yes	Yes	
	•	•	•

Control #	Function	Transmitted	Recognized	Remarks
0	Bank Select MSB	Yes	Yes	
1	Mod Wheel MSB	No	Yes	* see note
2	Breath Cntrl MSB	No	No	* see note
3		No		*
4	Foot Cntrl MSB	Yes	No	*
5	Portamento MSB	No	No	*
6	Data Entry MSB	No	No	*
7	Chan Volume MSB	Yes	Yes	*
8	Balance MSB	No	No	*
9				*
10	Pan MSB	Yes	Yes	*
11	Expression MSB	No	Yes	*
12	Effect Cntrl 1 MSB	No	No	*
13	Effect Cntrl 2 MSB	No	No	*
14				*
15				*
16	GenPur Ctrl 1 MSB			*
17	GenPur Ctrl 2 MSB			*
18	GenPur Ctrl 3 MSB			*
19	GenPur Ctrl 4 MSB			*
20				*
21				*
22				*
23				* see note
24				*
25	> +	Yes	Yes	* Filt Attck
26	> +	Yes	Yes	* Filt Decy
27				*
28				*
29				*
30				*
31				*
32	Bank Select LSB			*
33	Mod Wheel LSB			*
34	Breath Cntrl LSB			*
35				*
36	Foot Cntrlr LSB			*

MIDI Implementation Chart (part 2 - Controllers)

Control #	Function	Transmitted	Recognized	Remarks
37	Portamento LSB			*
38	Data Entry LSB			*
39	Chan Volume LSB			*
40	Balance LSB			*
41				*
42	Pan LSB			*
43	Expression LSB			*
44	Effect Cntrl 1 LSB			*
45	Effect Cntrl 2 LSB			*
46				*
47				*
48	Gen Pur Ctrl 1 LSB			*
49	Gen Pur Ctrl 2 LSB			*
50	Gen Pur Ctrl 3 LSB			*
51	Gen Pur Ctrl 4 LSB			*
52				*
53				*
54				*
55				*
56				*
57				*
58				*
59				*
60				*
61				* see note
62				*
63				*
64	Sustain Pedal	Yes	Yes	*
65	Portamento on/off	No	No	*
66	Sostenuto	No	No	*
67	Soft Pedal			*
68	Legato Footswitch			*
69	Hold 2			*
70	Variation			*
71	Timbre/Har Inten	Yes	Yes	*
72	Release Time	Yes		*
73	Attack Time	Yes		*
74	Brightness	Yes		*

Control #	Function	Transmitted	Recognized	Remarks
75	Sound Cntrlr 6 ↦	Yes	Yes	* Decay
76	Sound Cntrlr 7			*
77	Sound Cntrlr 8 ↦	Yes	Yes	* Vel->Filt
78	Sound Cntrlr 9 ↦	Yes	Yes	* Vel->amp
79	Sound Cntrlr 10	Yes	Yes	See note
80	Gen Purp Cntrlr 5	Yes	Yes	් See note
81	Gen Purp Cntrlr 6			*
82	Gen Pur Ctrlr 7 ⊷	Yes	Yes	* Arp Vel
83	Gen Pur Ctrlr 8 ⊷	Yes	Yes	* Arp Gate
84	Portamento Cntrl			*
85	>→	Yes	Yes	* Sustain
86				*
87				*
88				*
89				*
90				*
91	Effects 1 Depth	Yes		*
92	Effects 2 Depth			*
93	Effects 3 Depth	Yes		*
94	Effects 4 Depth			*
95	Effects 5 Depth			*
96	Data Increment			
97	Data Decrement			
98	NRPN (LSB)			
99	NRPN (MSB)			
100	RPN (LSB)			
101	RPN (MSB)			
102				
103				
104				
105				
106				
107				
108				
109				
110				
111				
112				

Control #	Function	Transmitted	Recognized	Remarks
113				
114				
115				
116				
117				
118				
119				
120	All Sound Off	No	Yes	See note
121	Reset All Contlrs	No	Yes	
122	Local Cntrl on/off	No	No	
123	All Notes Off	No	Yes	
124	Omni Mode Off	No	Yes ★	★ if enabled
125	Omni Mode On	No	Yes ★	★ if enabled
126	Poly Mode Off	No	Yes ★	★ if enabled
127	Poly Mode On	No	Yes ★	★ if enabled
NOTES:	 * Proteus 2500 can transmit and receive ANY continuous controller number from 1 to 95. Because of Proteus 2500's powerful synth engine, many of the standard MIDI controllers can be user programmed to provide the desired function. A "Yes" response in this chart means that a controller is programmed by default in Proteus 2500. ↓ Controller 79 is hard-coded to the Mix Output parameter. 			
	 O=Ose Preset, 1=Send 1, 2=Send 2, 3=Send 3, 4=Send 4 Controller 80 is hard-coded to the Arp Status parameter. 0=Off, 1=On, 2=P (preset), 3=M (master) Value of 0 = reset all except vol & pan; value of 127 = reset all. 			
	Other: Pan: -64 = har	d = hard	l right	

Product ID for Proteus 2500 = 0F (15)

MIDI Device Inquiry Responses

Family

MSB 0x04 (Musical Instruments)

LSB 0x04 (ROM Players)

Members

MSB 0x00 (Proteus 2000 series)

LSB 0x02 Audity 2000 0x03 Proteus 2000 0x04 B-3 0x05 XL-1 0x06 Virtuoso 2000 0x07 Mo'Phatt 0x08 B-3 Turbo 0x09 XL-1 Turbo 0x0A Mo'Phatt Turbo **0x0B** Planet Earth **0x0C** Planet Earth Turbo 0x0D XL-7 0x0E MP-7 **OxOF Proteus 2500** 0x10 Orbit 3

There is only one edit buffer which is used by the current preset (the preset shown in the display). You can edit only one preset at a time via SysEx commands, although these presets can be edited independently of the current preset edited using the Front Panel. Remote Preset selection is independent of the edit buffer. Changing the current preset erases the edit buffer.

Received Channel Commands

Channels number (n) = 0-15. Message bytes are represented in hex. All other numbers are decimal. Running Status is supported.

Command	Message	Comments
Note Off	8n kk vv	
Note On	9n kk vv	velocity 0 = note off
Key Aftertouch	An kk vv	kk = 0-127 vv = 0-127
Program Change	Cn vv	0-127
Channel Aftertouch	Dn vv	0-127
Pitch Bend	En ll mm	l = lsb, m = msb
Real-time Controller	Bn cc vv	cc = 00-31, 64-95
Footswitch	Bn cc vv	$cc = 64-79, vv \ge 64 = on$
Volume	Bn 07 vv	0-127
Pan	Bn OA vv	0=left, 127=right, 64=center
All Sound Off	Bn 78 00	turns all sound off
Reset All Controllers	Bn 79 00	ignored in omni mode
All Notes Off	Bn 7B 00	ignored in omni mode
Omni Mode Off*	Bn 7C 00	forces all notes & controls off
Omni Mode On*	Bn 7D 00	forces all notes & controls off
Mono Mode On (Poly Off)*	Bn 7E 00	forces all notes & controls off
Poly Mode On (Mono Off)*	Bn 7F 00	forces all notes & controls off
Bank Select MSB	Bn 00 bb	bb = bank MSB (see page 174)
Bank Select LSB	Bn 20 bb	bb = bank LSB (see page 174)

Special Notes:

- From Omni ModeOmni Off turns Poly On.
- From Poly ModeOmni On turns Omni On; Mono On turns Mono On.
- From Mono Mode......Mono Off turns Poly On; Omni On turns Omni On.
- From Multi Mode Omni On turns Omni On; Omni Off or Mono Off turns Poly On; Mono On turns Mono On.
- All other changes have no effect.

SysEx Specification

Proteus 2500 contains an extensive set of MIDI SysEx commands. (*Virtually every parameter is controllable via SysEx.*) Because of the size and technical nature of the System Exclusive specification, it is beyond the scope of this manual. The complete SysEx specification for Proteus 2500 is available on the official E-mu Systems, Inc. web site: www.emu.com

Technical Specifications

Audio Channels:	128
MIDI:	MIDI In, (2) MIDI Out
MIDI Channels:	32
Presets:	512 user presets. (The number of ROM presets is determined by the sound SIMMs installed.)
Sequencer	
Timing Resolution:	1/384 quarter note
Tracks:	16 tracks +1 song track (16 channels/track)
Patterns:	1024 pattern locations
Songs:	512 song locations
Filters:	2nd order to 12th order filters
	(50 different types)
Audio Outputs:	6 polyphonic analog outputs
Submix Inputs:	4 analog inputs (sum to main outs)
Digital Output:	S/PDIF stereo (AES-pro compatible)
Max. Output Level:	+4 dB
Output Impedance:	1000 Ohms
Sound Memory:	64 MB (expandable to 128 MB)
Data Encoding:	16-bit linear data
Effects Engine:	24-bit internal processing
Sample Playback Rate:	44.1 kHz
Signal to Noise:	>92 dB
Dynamic Range:	>90 dB
Frequency Response:	20 Hz - 20 kHz (+2/-1 dB)
THD + Noise:	< 0.02% (1kHz sine wave, A-weighting)
IMD	< 0.05%
Stereo Phase	Phase Coherent +/- 1º at 1 kHz
Power Consumption:	20 Watts
Voltage Input:	90VAC-260VAC at 50Hz-60Hz

Warranty

Please read this warranty, as it gives you specific legal rights.

Limited Warranty This product is warranted, to the original consumer purchaser, to be free of all defects in workmanship and materials for a period of one (1) year (warranty period is two (2) years in the European Union, effective Jan-1-2002), from the date of such purchase from an authorized E-MU/ ENSONIQ dealer, provided that: (a) the Warranty Registration Card is filled out and returned to E-MU / ENSONIQ within 14 days of the purchase date; (b) the E-MU / ENSONIQ service center is provided a copy of the consumer purchaser's sales receipt; and (c) E-MU / ENSONIQ has confirmed the validity of the subject unit's serial number.

Warranty Restrictions Specifically, but without limitation, E-MU / ENSONIQ does not provide warranty service for:

- Damages due to improper or inadequate maintenance, accident, abuse, misuse, alteration, unauthorized repairs, tampering, or failure to follow normal operating procedures as outlined in the owner's manual;
- Deterioration or damage of the cabinet;
- Damages occurring during any shipment of the unit;
- Any unit which has been modified by anyone other than E-MU / ENSONIQ.
- Any unit with an invalid or wholly or partially obliterated serial number.

NO OTHER EXPRESS OR IMPLIED WARRANTY IS MADE, AND E-MU / ENSONIQ SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY, SATISFACTORY QUALITY, AND FITNESS FOR A PARTICULAR PURPOSE. E-MU / ENSONIQ'S LIABILITY UNDER WARRANTY IS LIMITED TO REPAIR OR REPLACEMENT OF THE UNIT, OR REFUND, AT EMU'S OPTION. IN NO EVENT WILL E-MU / ENSONIQ BE LIABLE FOR LOSS OF REVENUE OR SAVINGS, LOSS OF TIME, INTER-RUPTION OF USE, OR ANY OTHER CONSEQUENTIAL, INDIRECT, INCIDENTAL, SPECIAL OR EXEMPLARY DAMAGES.

The foregoing will apply notwithstanding the failure of essential purpose of any remedy provided herein. Some jurisdictions do not allow the exclusion of implied warranties or conditions, or limitations on how long an implied warranty or condition may last, so the above limitations may not apply. This warranty gives you specific legal rights. You may have other rights which vary from jurisdiction to jurisdiction.

How To Obtain Warranty Service

All E-MU / ENSONIQ products are manufactured with the highest standards of quality. If you find that your unit does require service, it may be done by any authorized E-MU / ENSONIQ service center. If you are unable to locate a service center in your area, please contact EMU's Service Department at (831) 438-1921. They will either refer you to an authorized service center in your area or ask that you return your unit to the E-MU / ENSONIQ factory.

When returning your unit to the E-MU / ENSONIQ factory, you will be issued a Return Merchandise Authorization (RMA) number. Please label all cartons, shipping documents and correspondence with this number. E-MU / ENSONIQ suggests you carefully and securely pack your unit for return to the factory. (Do not send the power cord or operation manual.) Send the unit to E-MU Systems, Inc., 1600 Green Hills Road, Scotts Valley, CA 95066. You must pre-pay shipping charges to E-MU / ENSONIQ. E-MU / ENSONIQ will pay return shipping charges. You will be responsible for any damage or loss sustained during shipment in any direction.

3/9

Index Symbols

Index

Symbols

"+" modulation polarity 206 "±" modulation polarity 206

Numerics

19-tone tuning 216 1-bar trigger 243 1st Pattern Only 97 2-pole filters 168 4-pole filters 168 6-pole filters 168

Α

A effect types 251, 252 Absolute Value Processor 157 AC Power Switch 31 AC Receptacle 16 ADSR Envelopes 279 AES Pro Output Format 134 Aftertouch mono 149 Algorithm FXA 253, 254 FXB 253, 255 master FXA 131 master FXB 132 All Layers 177, 179 All Notes Off, MIDI 36 All Patterns 97 All Sound Off, MIDI command 36 Alternate Tunings 134, 216 Amount patchcord 172, 205 quantization 71 Amplifier 189 Amplitude 196, 278 envelope 190 modulation 148 Arpeggiator 45 button 36 channel 45 controllers 223 copy pattern 268

copy settings 267 copying settings 268 delay 228, 229 duration 234 enabling in song mode 97 extension 223 extension count 227 extension interval 227 factory patterns 225 gate 223 gate time 226 guided tour 27 interval 223 key offset 233 key range 231 keyboard thru 230 latch mode 230 master parameters 223 MIDI song start 231 mode 224 modes 222 note value 225, 229 patchcord destinations 214 pattern 222, 225 pattern naming 235 pattern speed 225 resolution 223 status 224 user patterns 232 velocity 223, 226 Assign group 194 tracks to MIDI channels 84, 85, 108 Asterisk in pattern name 49, 263, 269 in preset name 43, 264 in song name 269 removing from pattern 91 removing from song 112 Attack envelope 191, 200, 207, 282 Audition beats 238 button 36 patterns in song step record 93 patterns while recording songs 93 preset 24 riff 219 Auto Mode pattern step mode 66 Auto-correct description 53 pattern 71 song 99

Automated Mixing in pattern mode 59 in song mode 95 Automated Pan in a pattern 59 in song mode 96 Automatic Channel Assignment, sequencer 60 Automating Volume Changes 59 Aux Channel Assign 86 Auxiliary Envelope 151, 200

В

B Effect Types 251, 252 Balance 171 Band-Pass Filter 167, 196 Bandwidth 169 Bank Number 25, 43 Bank Select Display 37 Banks 25 selecting 43 selecting via MIDI 44 Bar, song 93 Bar/Beat display 33 Base Tempo 138 Basic Channel 43, 238 Basic Setup 16 Basics, programming 147 Beat Markers 52 Beats 221, 238 busy 241 channel 238 initial setup 239 keys layout 243 keys offset 244 part group 246 part transpose 245 part velocity 244 patchcord destinations 214 played using trigger buttons 236 riffs 236 variation 242 example 240 velocity group 1-4 241 xpose group 1-4 241 Bend Range 126 **Bounce Tracks** pattern 83 Breath Controller 122 Bts Busy 241 Button arpeggiator 36 audition 36

compare 36 controllers 35 cursor 33 glide 42 global 35 home/enter 36, 115, 123, 137, 221 MIDI 36 pattern edit 35 preset edit 35 repeat 42, 60 save/copy 36, 263 song edit 35 trigger 41 Bypass Knobs 42

С

Category instrument 46 preset 46 Center Frequency 169 Change filter type 283 MIDI preset 142 preset 26, 43 Channel arpeggiator 45 assign 84 MIDI enable 141 pan 45 selection, MIDI 43 volume 44 **Channel Aftertouch** erasing events from a song 102 erasing from a pattern 75 thinning events in a song 101 thinning from a pattern 74 Chorus 251, 261 width 277 Chorus, effect 261 Chorusing 192, 277 Clear Beats Part 236, 237 Clipboard copy track to 81, 106 cut track to 80, 105 paste to track 82, 107 Clock divisor 149 MIDI output enable 140 modulation 155 using external MIDI 138 Clogging the Sequencer 95 Coarse Tuning 189, 276 Comb Filter 197 Comb Filter, effect 252, 261

Compare Button 36 Conductor Track 90 Connection Examples 113 **Connection Instructions 16** Continuous Controller 172 editing pattern 88 song 110 erasing events from a song 102 erasing from a pattern 75 thinning events in a song 101 thinning from a pattern 74 Contour, envelope 149, 191 Control data entry 33 effects multi mode 130 keys 237 volume 31 Controller assigning real-time 141 footswitch 16, 17, 122 knobs 37, 38, 39, 40, 121, 173 modes 37 programming 120 menu 115 MIDI 121, 172 MIDI #10 45 MIDI #7 44, 172 MIDI real-time 172 pan knobs 40 programmable knobs 39, 120 quick edit 38 realtime assignment 121 realtime knobs 37 standardized MIDI numbers 121 tempo 122 trigger buttons 41, 116 **Controllers Button 35** Copy bar of a pattern 78 layers 265 patchcord 266 preset 265 preset banks 268 preset patchcords 267 track to clipboard 81, 106 Count-in 55 Crossfade random 150 ranges 185 Current Tempo 138 Cursor buttons 33 definition 33

Curve glide 195 velocity 127 volume 277 Cut, track to clipboard 80 Cutoff Frequency 167, 280

D

Damping, high frequency 252, 260 Data Entry Control 33 DC Offset, example 164 DCA 171, 285 Decay effect A 132, 252 effects 252 envelope 277 Default Assignment, beats 237 Delay arpeggiator 228, 229 effect B 133 effects 251, 252, 262 layer 192 LFO 204 master FXB 133 preset link 218 Delete notes from a pattern grid mode 65 realtime record mode 57 notes from a song realtime record mode 95 pattern, from a song 93 Demo Sequences 24 Descending Arpeggiator 222 Destinations, modulation 156, 207 Device ID 143 Digital Output Format 134 Diode Processor 158 Disable Knobs 42 Disable Tracks 84, 108 Display Edit Button 33 Display, viewing angle 135 Distortion Effect 251, 262 Double & Detune 192, 277 Double Time, grid record 64 Doubling, effect 261 Dual Channel Beats 238 Dual Tap, delay effect 262 Duration arp pattern 234 pattern step mode, note-on 66 Dynamic Filter 165 Dynamic Range 328

Ε

Echo Thru, Local Control on/off 116 Edit All Layers Enable 134 Edit Controls 35 Edit Display Button 33 Edit MIDI notes in a pattern 87 Editing arp user patterns 232 MIDI notes song 109 presets 275 Effect decay 252 FXA decay 132 FXA HF Damping 132 FXB->FXA 132 type B 133 Effect Diagram 209, 210, 212 Effects A type 251 B into effect A 258 B submix routing 133 B type 251 busses 249 by channel number 258 chorus 261 decay 252 delay 252, 262 description 260 distortion 262 doubling 261 dual tap delay 262 enabling in song mode 97 feedback 252, 262 flanger 261 FXB feedback 133 FxB->FxA 253 global 257 HF damping 252 LFO rate 133, 252 master 249, 254, 257 A algorithm 131 B algorithm 132 FxB->FxA 254 LFO rate 133 mode, bypass 256 multi mode control 130 panning delay 262 patchcords 213 preset 209, 253 processor 249 programming in the preset 253 returns 19 reverb 260 routing diagram 129

saved with a pattern 48, 58 saved with a song 50 send amounts 249 sends 128 patchcord destinations 214 slapback 261 stereo delay 262 submix routing, A 132, 212, 213 type A 131, 211, 251, 252 type B 133, 212, 252 vibrato 262 Enable controller knobs 42 controllers menu 115 MIDI channels 141 quick-edit mode 120 Enter Button 36 Envelope ADSR, programming 279 attack 191, 200, 207 auxiliary 200 decay 277 filter 199, 281, 284 generator 149, 151 example 168 mode, factory 278 mode, filter 281 release 277 repeat 283 repeating 152 reverberation 260 volume 190, 191, 277, 278 Equal Temperment Tuning 216 Erase button 42 deleting patterns with 42,93 in grid record mode 42, 65 controller data 60 in song mode 96 controller data in a pattern 60 entire pattern 57 events 75 from a pattern 57, 65, 75 from a song 95 in a song 96, 102 notes from a pattern 57,65 from a song 95 pattern event 88 pattern note 87 song event 110 song note 109 tempo changes 91 track 57 Errors, data transmission 144

Event List Editor pattern 88 song 110 Event Scroll Field 87, 88, 109, 110 Event Source 50, 94, 97 **Event Timing 51 Events** thinning in a pattern 74 thinning in a song 101 Extend Sequence Data To 78 Extension count, arpeggiator 227 interval, arpeggiator 227 External Clock, MIDI 138 External MIDI Keyboard, connection example 113 External Song Start/Stop 140

F

Factory envelope mode 278 patterns, arpeggiator 225 Fail-Safe Power Off 31 Fc 198, 280 Feedback 252, 262 FXB 133 Feel, adding using swing 71 Fills, beats 236 Filter 2-pole 168 4-pole 168 6-pole 168 bandpass 167, 196 changing type 283 comb 197, 252 definition 166 dynamic 165 envelope 151, 199, 281 attack 282 envelope generator 199, 284 envelope mode 281 frequency 198, 199, 207, 280 highpass 166, 279 lowpass 166 mode 281 morph 170 notch 167 parametric 169 pole 168 programming 279 Q 198, 280 swept EQ 169 troubleshooting 285 tutorial 165

type 279, 283 changing 283 Z-plane 170, 171, 196 Fine Tuning 189, 276 Fingered Glide. solo mode 194 First Key, modulation 160 Flanger Effect 251, 261 Flashing LEDs 52 Flip-Flop Processor 158 Footswitch 122, 149 connecting 16, 17 programming 117 Format, output 134 Free Running LFO 202 Frequency filter 199.207 center 169 cutoff 167 instrument 188, 189 Frequency Modulation 148 Front Panel Knobs 37, 120, 287 FX Cords 213 FXA Algorithm 253, 254 FXA Parameters 212 FXB -> FXA 253, 254, 258 FXB Algorithm 212, 253, 255 master 132 **FXB** Parameters 213 FXB Submix Routing 133

G

Gain Processor 158 Gamelan Tuning 216 Gate 149 pattern step mode 66 time 226 Generator envelope 149 filter envelope 199, 284 noise & random 149 volume envelope 190 Glide 195 curve 195 key 149 rate 149, 195 Global button 35 controller assignments 121 effects 254, 257 menu 123

Grid editing 49 mode double time 64 jumping into from play mode 34 velocity change 64 recording, description 61 Grooves, beat 236 Group beats 236 Group, assigning channels to a 194

Η

High Frequency Damping 132, 252, 260 Highpass Filter 166, 279 Home Position 26 Home/Enter Button 36, 115, 123, 137, 221

I

Implementation Chart, MIDI 320, 322 Initial pan position 189 setup reloading pattern & song 34, 52, 92 volume 189 Input Quantize 53 Input, rechannelize MIDI 138 Insert meter changes 91 pattern 93 pattern event 88 track mutes into a song 93 Installing in a Rack 19 Instrument 171, 275 category 46 listing 299 selecting 180 Inverting LFO Waves 154

J

Jump Buttons preset edit menu 41 using 275 Just C Tuning 216 description 217 Just Intonation 216

Κ

Key glide 149 layout, beats 243 offset, arpeggiator 233 range arpeggiator 231 keyboard 182 preset link 218 sync, arpeggiator 228 transpose 188 trigger 243 tuning 134 velocity 149 Keyboard beats trigger layouts 236 key 149 layering & splitting 286 pressure 149 range 181, 182 semitone transpose 116 splitting 286 thru, arpeggiator 230 transpose 188 on/off 193 tuning 216 19-tone 216 equal temperment 216 gamelan 216 just C 216 Kirnberger 216 repeating octave 216 Scarlatti 216 Vallotti 216 Werkmeister III 216 Keyboard/Knob Channel 116 Kirnberger Tuning 216 Knob bypass button 42 controller 37, 173 keyboard/knob channel 116 programmable controller 120 typical functions 287 Knob Preset Quick-Edit 120 Knobs Output MIDI 140

L

Lag Amount, preset lag 159 Lag Processor 157 Latch beats part 243 keys in beats 236 mode, arpeggiator 230 triggers 41 Layer copy 265 definition 178 instrument 147 presets 286 selecting 179 LED Display 33 LED View 33 Left/Right Cursor Buttons 33 Legato 193 LFO 201 effect B 133 flanger 262 key sync 202 master FXB rate 133 rate 252 rate, effect 133 tricks & tips 202 trigger 154 variation 204 waveforms 153 waveshape 201 Linking Presets 218, 286 Load, pattern/song setups 34, 52 Local Control On/Off 116, 117 Loop, pattern in song mode 23 Looping Envelopes 152 Low Frequency Oscillator 149, 153, 201 delay 204 free running 202 sync 201, 202 variation 204 Lowpass Filter 166 example 168

Μ

Master arpeggiator 27 parameters 223 bend range 126 clock current tempo 138 modulation 154 effects 130, 249, 254, 257 FXA algorithm 131 FXB algorithm 132 riff 238, 246 tempo, offset 219 Measure, definition 311 Melody Solo Mode high 193 last 193 low 193

Memory Size, reducing in pattern 74 in song 101 Meter definition 311 erasing events from a song 102 erasing from a pattern 75 inserting or editing changes 91 setting in a pattern 69 Metronome 56, 70, 99 MIDI A-P assignments 121 bank select display 24, 37 channel routing outputs by 128 tempo controller 122 channel inc/dec using a footswitch 118 channel selection 43 channel shift 138 channels A or B select 141 clock output enable 140 continuous controller assignment 121 continuous controller knobs 120 continuous controllers 149, 172 controller #7 44 device ID 143 enable 141 event step editing in a song 111 pattern 89 external clock 138 footswitch assign 117, 122 implementation chart 320, 322 inputs A & B 17 knob transmit 140 menu button 36 mode 141, 249 multi mode 146 multichannel data 85 note edit in a pattern 87 in a song 109 note triggers 41, 118, 119 omni mode 146 out knob enable 140 pan control #10 45 panic button 36 poly mode 146 port A & B assignments song 108 real-time controllers 172 receive program change 142 received channel commands 327

recording sysex data 145 send sysex data 145 sequencer, recording into an external 116 song start 231 received/ignored 140 standardized controller numbers 121 SysEx data, sending 144 sysex packet delay 144 sysex, send/receive 145 MIDI In Channels 141 Minimoog, solo mode 194 Mix button 32 display 39 enabling in song mode 97 view screen 32 using 59 Mix Output 208 description 128 function 250 programmed in the preset 208 Mod Wheel 149 Mode arpeggiator 224 latch 230 controller 37 effects 256 factory envelope 278 filter envelope 281 MIDI 141.249 mono 327 multi 146, 249, 327 non-transpose 193 omni 146, 256, 327 poly 146, 256, 327 solo 193 time-based envelope 281 Mode/View Buttons 32 Modulation 206 amplitude 148 clock 155 definition 148 destinations 156 note-on 156 polarity 206 processors 157, 161 random 150 routing 205 sources 149 sources & destinations 207 wheel 122 Momentary Footswitch 16 Mono Aftertouch 149 Mono A-I, assign group 194 Mono Mode 327

Morph Filter 170 Multi A/B Channels 84 Multi Channel arpeggiators 28 MIDI data 85 pan knobs 40 track recording 85 volume knobs 39 Multi Mode 146, 249, 327 effects control 130 Multimode Map send/receive 144 Multiple Trigger, solo mode 193 Multisetup definition 124 name 125 restoring 124 saving 125 send/receive 144 Mute Beats 236, 237

Ν

Name multisetup 125 pattern 68 preset 178 song 97 user arp pattern 235 Noise & Random Generators 149 Non-Transpose Mode 193 Notch Filter 167 Note & Event order 51 Note Duration scaling in a pattern 100 shifting in a pattern 100 Note List Editor pattern 87 song 109 Note Value arpeggiator 225, 229 definition 311 Note-On Modulation 156 Notes erasing from a pattern 57, 65, 75 erasing from a song 95, 102

Index O

0

Offset, arpeggiator key 233 Omni Mode 146, 256, 327 On Record, rechannelize 138 Output format 134 jack 16, 17, 18 jacks 19 mix 128, 208, 250 mono 16 routing 208 Overall Tuning, adjusting 126 Overdub, realtime controller data 95

Ρ

Packet Delay, MIDI sysex 144 Pan 171 automation in a pattern 59 automation in song mode 96 channel 45 enabling in song mode 97 initial 189 knob control of 40 preset link 218 Panic Button, MIDI 36 Panning Delay, effect 262 Parametric Filters 169 Part, beat 236 Paste, clipboard to track 82, 107 Patchcord 150, 205 amount 172, 205 copy 266 example 161 routing 156 Pattern arpeggiator 222, 225 duration 234 naming 235 repeat 234 speed 225 user 232 velocity 234 audition in song step record 93 edit button 35 edit menu 68 inc/dec using a footswitch 118 length 68 listing 294 loop in song mode 23 sequencer information saved with a 58 length 56 changing in a song 93

in main pattern screen 69 mode display 32 number display 33 record modes 34, 49 setup information 48, 58 Pause Mode 34 Pedal 149 Performance Controllers 37, 41, 149 Pink Noise, example 163 Pitch Wheel 149 erasing events from a song 102 erasing from a pattern 75 master bend range 126 range 208 thinning events in a song 101 thinning from a pattern 74 Pitch, shifting 276 Pitchbend Range 208 Play button 34 pattern 21, 52 patterns & songs 21 solo layers 219 song 23, 92 trigger buttons 119 Play/Stop using a footswitch 117 Polarity modulation & LFO 206 ramp rate 160 Pole, filter 168 Poly Aftertouch erasing events from a song 102 erasing from a pattern 75 thinning events in a song 101 thinning from a pattern 74 Poly All, assign group 194 Poly Mode 146, 256, 327 Poly Pressure Editing pattern 89 song 111 Poly, assign group 194 Portamento 195 Power Consumption 328 Power Down Sequence 19 Power Switch 16 Pre-sequence Setup 51 Preset architecture 178 audition 24 category 26, 46 change enable 142 changes, enabling in song mode 97 changing 26 copy 265

edit button 35 editing 275 effects 209, 253 links 218, 219, 286 listing 299 menu jump buttons 41 MIDI changes 142 naming 178 random 274 select screen 32 selecting 25, 43 selection 43 tempo offset 219 user 145 view button 32 view screen 43 Preset Lag Processor 159 patchcord destinations 214 Preset Ramp Processor 159 patchcord destinations 214 Processor 4x gain 158 absolute value 157 diode 158 effect 249 flip-flop 158 modulation 161 preset lag 159 preset ramp 159 quantizer 158 Product Description 1 Program Change editing pattern 89 song 111 enabling in song mode 97 erasing events from a song 102 erasing from a pattern 75 receive enable 142 Program->Preset Map 142 send/receive 144 Programmable Knobs 120 enabling 39 Programming Basics 147 Punch In & Out 57 using a footswitch 118

Q

Q 167, 197, 198, 280, 283 Quantization, explained 53 Quantize pattern 71 song 99 Quantized, arp sync 228 Quantizer 158, 164 example 163 Quarter Note Marker 52 Quick Edit enabling 120 mode 38 recording in a pattern 58 recording in song mode 96

R

Rack Mounting 19 Ramp Rate 160 Random creating presets 274 crossfade 150 crosswitch 186 generator, noise and 149 modulation sources 150 Range arp extension count 227 key 181, 182 keyboard 181 pitchbend 208 velocity 183 Rate effect, LFO 133, 252 glide 195 **LFO 202** master FXB LFO 133 Rate/Level Envelopes 151 Realtime Control of Arps 223 Realtime Controller 116 assignment 121, 141 crossfading 185 data recording in a pattern 58 tutorial 172 Realtime Crossfade 185 Realtime Pattern Record 49, 53 Realtime Song Record 50, 94 Receive Program Change 142 Receiving MIDI SysEx Data 145 Rechannelize Data 84 Rechannelize Input 138 Record button 34 MIDI sysex data 145 new pattern 56 pattern in step time 66 pattern using grid record 63 quick edits 58 realtime controller data in a pattern 58 song in realtime mode 94

Record-Pause Mode 34, 95 Rectifier 157 Reducing Pattern Size 74 Release Velocity 149 Release, envelope 277 Reload, pattern/song setups 34, 52 Rename, arpeggiator pattern 235 Repeat arpeggiator pattern 234 button 42 inserting patterns with 93 recording with 60 song event 110 song note 109 **Repeat Button** inserting events 88, 110 inserting pattern notes 87 inserting song notes 109 inserting tempo changes 91 Resolution, quantize 71 Resonance, filter 167, 197, 198, 283 Restoring Multisetups 124 via MIDI command 124 Return Signal 18 Return To Zero 34, 52 Reverb 251, 260 envelope 260 Revert to Saved Pattern 91, 112 Riff assignment 219 controllers 247 listing 295 playing 24, 36 tempo 247 **ROM Card Identifier 25 ROM Installation 318** Routing FXA submix 132, 212, 213 FXB submix 133 modulation 205 output 128, 208, 249 RTZ 52, 92

S

S/PDIF output 17 output format 134 Save arp menu parameters 124 arp parameters 221 controllers menu parameters 124 global menu parameters 124 MIDI menu parameters 124 multiple arp setup 29

multisetup 125 preset 264 preset/volume/pan/arp assignments 124 song 93 Save/Copy button 36, 263 menu 263 Scale/Shift note duration in a pattern 73 in a song 100 velocity in a pattern 77 in a song 104 Scarlatti Tuning 216 Screen Viewing Angle 135 Selecting control data in a song 97 menus with jump buttons 275 patterns 52 presets 25, 43 Semitones, transpose keyboard by 116 Send amount 249 FXA 132, 212, 213 FXB 133 effect 128 preset effect 208 Sequencer controls 34 definitions 48 events, definition 48 metronome 70,99 name pattern 68 overview 48 pattern definition 48 erase events 75 grid recording 61 length 68 note duration scale 73, 100 note duration shift 73 paste track 82 step mode gate 66 step resolution 66 step time record 66 time signature 69 track copy 81 track cut 80 transpose 76 velocity scale 77 velocity shift 77 play button 52 quantize 71

amount 71 resolution 71 realtime recording a pattern 53 rechannelize 138 RTZ 52 song track copy 106 track cut 105 songs, definition 50 stop button 52 swing 71 track mute buttons 52 tracks, definition 48 transpose pattern 76 Setting Meter pattern 69 song 98 Setup basic 16 performance 18 studio 17 Shift Note Duration pattern 73 song 100 Signal Path 171, 249 SIMM Installation 318 Slapback 261 Soft Power Switch 31 Solo Layer 219 Solo Mode 193 Song & pattern buttons 32 auto-correct 99 channel assign screen 108 deleting a pattern 42,93 edit menu 97 erase events 102 event source 98 events only 97 Inserting a pattern 93 meter 98 name 97 parameters saved with 94 playing 92 quantize 99 realtime mode 94 record modes 34, 50 setup information 50 start, MIDI 231 step recording 92 thin events 101 time signature 98 track 50 transpose 103 velocity scale 104 velocity shift 104

Song & Pattern event source 97 Song Mode 92 button 92 display 32 realtime record 50 step Eedit 50 Song Start 140 Song, factory listing 294 Sound Memory Installation 318 Sound Navigator 46 selecting instruments 180 Sound Start 192 Sources, modulation 207 Specifications, technical 328 Split Keyboard 218, 286 using links 286 Stack layers 183 presets 218 Standard MIDI Files 49 Standardized MIDI Controller Numbers 121, 322 Start/Stop Beats 236, 237 Step Edit patterns 49 songs 50 Step Number, song 93 Step Recording 66 song mode 92 step-by-step 66 Step-By-Step Preset Programming 275 Stereo Delay, effect 262 Stolen Voices 194 Stop Button 34, 53, 92 Stop/RTZ using a footswitch 118 Studio Setup 17 Sub Output Jacks 19 Submix Routing FXB 133 Summing Amp 157, 158 Summing Nodes 148 Swept EQ Filter 169 Swing 71 definition 72 Switch Processor 157, 161 Sync arp key 228 LFO 201, 202 Synth Solo Mode high 194 last 193 low 194

SysEx packet delay 144 System Exclusive device ID 143 erasing from a pattern 75 send data 145

Т

Tap Tempo 34, 138 using a footswitch 118 **Technical Specifications 328** Tempo base 138 change using conductor track 90 change via MIDI controller 122 controller 122 display 33 enabling in song mode 97 erasing events from a song 102 erasing from a pattern 75 listing of factory patterns 294 offset 219 thinning events in a pattern 74 thinning events in a song 101 Tempo-based Envelope 152, 190, 199, 278 Thin Events pattern 74 song 101 Ticks 0 & 1 51 Ticks-per-note Chart 66 Time arpeggiator gate 226 master FXB delay 133 **Time Signature** pattern 69 song 98 Time-based Envelope 151, 190, 199, 278, 281 Touchstrip 284 erasing from a pattern 75 master bend range 126 thinning events in a song 101 thinning from a pattern 74 Track & MIDI channel display 33 copy to clipboard 81 cut to clipboard 80 extending the length of 78 mixing 22 mute buttons 52 mutes recording into a song 93 muting 22

priority 51 Track/Channel +/- Buttons 33 Transmission Errors 144 Transmit MIDI Clock 140 Transmit MIDI, knob 140 Transpose 126, 188, 189 arpeggiator 227 beat part 245 pattern 76 preset link 218 rubber keypads 116 Trig Hold, beats 237 Trigger Buttons 41, 118, 119 controlling multiple arps 28 Trigger Channel 238 Trigger Key 236 Trigger Mode 41, 119 Triplets, definition 311 Troubleshooting 285 Tune 126 Tuning 189, 276 19-tone 216 coarse 276 equal temperment 216 fine 276 gamelan 216 just C 216 key 134 keyboard 216 Kirnberger 216 repeating octave 216 Scarlatti 216 Vallotti 216 Werkmeister 216 Tutorial filter 165 synth programming 275

U

Unlatch Beats Part 243 User banks 25 key tuning 134 presets 145 tuning tables 134 User Pattern arpeggiator 232 naming 235 repeat 234 velocity 234

V

Vallotti Tuning 216 Value, metronome 70,99 Variation beats 242 Variation, LFO 204 Velocity arpeggiator 226 changing in grid record 64 crossfade 183, 184 curve 127, 308 key 149 preset link 218 recording in pattern step mode 66 release 149 scale song 104 scaling in a pattern 77 shift song 104 shifting in a pattern 77 user pattern 234 Vibrato, effect processor 262 Viewing Angle, screen 135 Voices, stolen 194 Volume automation in pattern 59 channel 44 control 31 control #7 44 curve 277 enabling in song mode 97 envelope 151, 171, 190, 191, 277, 278 mixing in song mode 95 preset link 218

W

Waveform instrument list 299 inverting 154 LFO 153 Werkmeister Tuning 216 Wheel modulation 149 pitch 149 Width, chorus 277

Ζ

Z-Plane Filter 170, 171, 196